function cube01_volume ( ) c*********************************************************************72 c cc cube01_volume(): volume of the unit cube in 3D. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 18 January 2014 c c Author: c c John Burkardt c c Parameters: c c Output, double precision CUBE01_VOLUME, the volume. c implicit none double precision cube01_volume cube01_volume = 1.0D+00 return end subroutine cube01_monomial_integral ( e, integral ) c*********************************************************************72 c cc CUBE01_MONOMIAL_INTEGRAL: integral over interior of unit cube in 3D. c c Discussion: c c The integration region is c c 0 <= X <= 1, c 0 <= Y <= 1. c 0 <= Z <= 1. c c The monomial is F(X,Y,Z) = X^E(1) * Y^E(2) * Z^E(3). c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 18 January 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer E(3), the exponents. c Each exponent must be nonnegative. c c Output, double precision INTEGRAL, the integral. c implicit none integer m parameter ( m = 3 ) integer e(m) integer i double precision integral if ( e(1) .lt. 0 .or. & e(2) .lt. 0 .or. & e(3) .lt. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CUBE01_MONOMIAL_INTEGRAL - Fatal error!' write ( *, '(a)' ) ' All exponents must be nonnegative.' stop 1 end if integral = 1.0D+00 do i = 1, m integral = integral / dble ( e(i) + 1 ) end do return end subroutine cube01_sample ( n, seed, x ) c*********************************************************************72 c cc CUBE01_SAMPLE samples the interior of the unit cube in 3D. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 18 January 2014 c c Author: c c John Burkardt c c Reference: c c Russell Cheng, c Random Variate Generation, c in Handbook of Simulation, c edited by Jerry Banks, c Wiley, 1998, pages 168. c c Reuven Rubinstein, c Monte Carlo Optimization, Simulation, and Sensitivity c of Queueing Networks, c Krieger, 1992, c ISBN: 0894647644, c LC: QA298.R79. c c Parameters: c c Input, integer N, the number of points. c c Input/output, integer SEED, a seed for the random c number generator. c c Output, double precision X(3,N), the points. c implicit none integer m parameter ( m = 3 ) integer n integer seed double precision x(m,n) call r8mat_uniform_01 ( m, n, seed, x ) return end subroutine i4vec_uniform_ab ( n, a, b, seed, x ) c*********************************************************************72 c cc I4VEC_UNIFORM_AB returns a scaled pseudorandom I4VEC. c c Discussion: c c An I4VEC is a vector of I4's. c c The pseudorandom numbers should be uniformly distributed c between A and B. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 12 November 2006 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the dimension of the vector. c c Input, integer A, B, the limits of the interval. c c Input/output, integer SEED, the "seed" value, which should NOT be 0. c On output, SEED has been updated. c c Output, integer X(N), a vector of numbers between A and B. c implicit none integer n integer a integer b integer i integer k real r integer seed integer value integer x(n) if ( seed .eq. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4VEC_UNIFORM_AB - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop end if do i = 1, n k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed .lt. 0 ) then seed = seed + 2147483647 end if r = real ( seed ) * 4.656612875E-10 c c Scale R to lie between A-0.5 and B+0.5. c r = ( 1.0E+00 - r ) * ( real ( min ( a, b ) ) - 0.5E+00 ) & + r * ( real ( max ( a, b ) ) + 0.5E+00 ) c c Use rounding to convert R to an integer between A and B. c value = nint ( r ) value = max ( value, min ( a, b ) ) value = min ( value, max ( a, b ) ) x(i) = value end do return end subroutine monomial_value ( m, n, e, x, v ) c*********************************************************************72 c cc MONOMIAL_VALUE evaluates a monomial. c c Discussion: c c This routine evaluates a monomial of the form c c product ( 1 <= i <= m ) x(i)^e(i) c c where the exponents are nonnegative integers. Note that c if the combination 0^0 is encountered, it should be treated c as 1. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 04 May 2007 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input, integer N, the number of points at which the c monomial is to be evaluated. c c Input, integer E(M), the exponents. c c Input, double precision X(M,N), the point coordinates. c c Output, double precision V(N), the value of the monomial. c implicit none integer m integer n integer e(m) integer i integer j double precision v(n) double precision x(m,n) do j = 1, n v(j) = 1.0D+00 end do do i = 1, m if ( 0 .ne. e(i) ) then do j = 1, n v(j) = v(j) * x(i,j) ** e(i) end do end if end do return end function r8vec_sum ( n, v1 ) c*********************************************************************72 c cc R8VEC_SUM sums the entries of an R8VEC. c c Discussion: c c An R8VEC is a vector of R8's. c c In FORTRAN90, the system routine SUM should be called c directly. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 22 July 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the dimension of the vectors. c c Input, double precision V1(N), the vector. c c Output, double precision R8VEC_SUM, the sum of the entries. c implicit none integer n integer i double precision r8vec_sum double precision v1(n) double precision value value = 0.0D+00 do i = 1, n value = value + v1(i) end do r8vec_sum = value return end subroutine r8mat_uniform_01 ( m, n, seed, r ) c*********************************************************************72 c cc R8MAT_UNIFORM_01 returns a unit pseudorandom R8MAT. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 11 August 2004 c c Author: c c John Burkardt c c Reference: c c Paul Bratley, Bennett Fox, Linus Schrage, c A Guide to Simulation, c Springer Verlag, pages 201-202, 1983. c c Bennett Fox, c Algorithm 647: c Implementation and Relative Efficiency of Quasirandom c Sequence Generators, c ACM Transactions on Mathematical Software, c Volume 12, Number 4, pages 362-376, 1986. c c Peter Lewis, Allen Goodman, James Miller, c A Pseudo-Random Number Generator for the System/360, c IBM Systems Journal, c Volume 8, pages 136-143, 1969. c c Parameters: c c Input, integer M, N, the number of rows and columns in the array. c c Input/output, integer SEED, the "seed" value, which should NOT be 0. c On output, SEED has been updated. c c Output, double precision R(M,N), the array of pseudorandom values. c implicit none integer m integer n integer i integer j integer k integer seed double precision r(m,n) if ( seed .eq. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if do j = 1, n do i = 1, m k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed .lt. 0 ) then seed = seed + 2147483647 end if r(i,j) = dble ( seed ) * 4.656612875D-10 end do end do return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end