subroutine burgers_solution ( nu, vxn, vx, vtn, vt, vu ) c*********************************************************************72 c cc burgers_solution() evaluates a solution to the Burgers equation. c c Discussion: c c The form of the Burgers equation considered here is c c du du d^2 u c -- + u * -- = nu * ----- c dt dx dx^2 c c for -1.0 < x < +1.0, and 0 < t. c c Initial conditions are u(x,0) = - sin(pi*x). Boundary conditions c are u(-1,t) = u(+1,t) = 0. The viscosity parameter nu is taken c to be 0.01 / pi, although this is not essential. c c The authors note an integral representation for the solution u(x,t), c and present a better version of the formula that is amenable to c approximation using Hermite quadrature. c c This program library does little more than evaluate the exact solution c at a user-specified set of points, using the quadrature rule. c Internally, the order of this quadrature rule is set to 8, but the c user can easily modify this value if greater accuracy is desired. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 17 November 2011 c c Author: c c John Burkardt. c c Reference: c c Claude Basdevant, Michel Deville, Pierre Haldenwang, J Lacroix, c J Ouazzani, Roger Peyret, Paolo Orlandi, Anthony Patera, c Spectral and finite difference solutions of the Burgers equation, c Computers and Fluids, c Volume 14, Number 1, 1986, pages 23-41. c c Parameters: c c Input, double precision NU, the viscoscity. c c Input, integer VXN, the number of spatial grid points. c c Input, double precision VX(VXN), the spatial grid points. c c Input, integer VTN, the number of time grid points. c c Input, double precision VT(VTN), the time grid points. c c Output, double precision VU(VXN,VTN), the solution of the Burgers c equation at each space and time grid point. c implicit none integer qn parameter ( qn = 8 ) integer vtn integer vxn double precision bot double precision c double precision nu double precision pi parameter ( pi = 3.141592653589793D+00 ) integer qi double precision qw(qn) double precision qx(qn) double precision vt(vtn) integer vti double precision vx(vxn) integer vxi double precision vu(vxn,vtn) double precision top c c Compute the rule. c call hermite_ek_compute ( qn, qx, qw ) c c Evaluate U(X,T) for later times. c do vti = 1, vtn if ( vt(vti) .eq. 0.0D+00 ) then do vxi = 1, vxn vu(vxi,vti) = - sin ( pi * vx(vxi) ) end do else do vxi = 1, vxn top = 0.0D+00 bot = 0.0D+00 do qi = 1, qn c = 2.0D+00 * sqrt ( nu * vt(vti) ) top = top & - qw(qi) * c * sin ( pi * ( vx(vxi) - c * qx(qi) ) ) & * exp ( - cos ( pi * ( vx(vxi) - c * qx(qi) ) ) & / ( 2.0D+00 * pi * nu ) ) bot = bot + qw(qi) * c & * exp ( - cos ( pi * ( vx(vxi) - c * qx(qi) ) ) & / ( 2.0D+00 * pi * nu ) ) vu(vxi,vti) = top / bot end do end do end if end do return end subroutine get_unit ( iunit ) c*********************************************************************72 c cc GET_UNIT returns a free FORTRAN unit number. c c Discussion: c c A "free" FORTRAN unit number is a value between 1 and 99 which c is not currently associated with an I/O device. A free FORTRAN unit c number is needed in order to open a file with the OPEN command. c c If IUNIT = 0, then no free FORTRAN unit could be found, although c all 99 units were checked (except for units 5, 6 and 9, which c are commonly reserved for console I/O). c c Otherwise, IUNIT is a value between 1 and 99, representing a c free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 c are special, and will never return those values. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 02 September 2013 c c Author: c c John Burkardt c c Parameters: c c Output, integer IUNIT, the free unit number. c implicit none integer i integer iunit logical value iunit = 0 do i = 1, 99 if ( i .ne. 5 .and. i .ne. 6 .and. i .ne. 9 ) then inquire ( unit = i, opened = value, err = 10 ) if ( .not. value ) then iunit = i return end if end if 10 continue end do return end subroutine hermite_ek_compute ( n, x, w ) c*********************************************************************72 c cc HERMITE_EK_COMPUTE computes a Gauss-Hermite quadrature rule. c c Discussion: c c The code uses an algorithm by Elhay and Kautsky. c c The abscissas are the zeros of the N-th order Hermite polynomial. c c The integral: c c integral ( -oo < x < +oo ) exp ( - x * x ) * f(x) dx c c The quadrature rule: c c sum ( 1 <= i <= n ) w(i) * f ( x(i) ) c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 23 April 2011 c c Author: c c Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. c This version by John Burkardt. c c Reference: c c Sylvan Elhay, Jaroslav Kautsky, c Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of c Interpolatory Quadrature, c ACM Transactions on Mathematical Software, c Volume 13, Number 4, December 1987, pages 399-415. c c Parameters: c c Input, integer N, the number of abscissas. c c Output, double precision X(N), the abscissas. c c Output, double precision W(N), the weights. c implicit none integer n double precision bj(n) integer i double precision r8_gamma double precision w(n) double precision x(n) double precision zemu c c Define the zero-th moment. c zemu = r8_gamma ( 1.0D+00 / 2.0D+00 ) c c Define the Jacobi matrix. c do i = 1, n bj(i) = sqrt ( dble ( i ) / 2.0D+00 ) end do do i = 1, n x(i) = 0.0D+00 end do w(1) = sqrt ( zemu ) do i = 2, n w(i) = 0.0D+00 end do c c Diagonalize the Jacobi matrix. c call imtqlx ( n, x, bj, w ) do i = 1, n w(i) = w(i)**2 end do return end subroutine imtqlx ( n, d, e, z ) c*********************************************************************72 c cc IMTQLX diagonalizes a symmetric tridiagonal matrix. c c Discussion: c c This routine is a slightly modified version of the EISPACK routine to c perform the implicit QL algorithm on a symmetric tridiagonal matrix. c c The authors thank the authors of EISPACK for permission to use this c routine. c c It has been modified to produce the product Q' * Z, where Z is an input c vector and Q is the orthogonal matrix diagonalizing the input matrix. c The changes consist (essentially) of applying the orthogonal c transformations directly to Z as they are generated. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 23 April 2011 c c Author: c c Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. c This version by John Burkardt. c c Reference: c c Sylvan Elhay, Jaroslav Kautsky, c Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of c Interpolatory Quadrature, c ACM Transactions on Mathematical Software, c Volume 13, Number 4, December 1987, pages 399-415. c c Roger Martin, James Wilkinson, c The Implicit QL Algorithm, c Numerische Mathematik, c Volume 12, Number 5, December 1968, pages 377-383. c c Parameters: c c Input, integer N, the order of the matrix. c c Input/output, double precision D(N), the diagonal entries of the matrix. c On output, the information in D has been overwritten. c c Input/output, double precision E(N), the subdiagonal entries of the c matrix, in entries E(1) through E(N-1). On output, the information in c E has been overwritten. c c Input/output, double precision Z(N). On input, a vector. On output, c the value of Q' * Z, where Q is the matrix that diagonalizes the c input symmetric tridiagonal matrix. c implicit none integer n double precision b double precision c double precision d(n) double precision e(n) double precision f double precision g integer i integer ii integer itn parameter ( itn = 30 ) integer j integer k integer l integer m integer mml double precision p double precision prec double precision r double precision r8_epsilon double precision s double precision test double precision z(n) prec = r8_epsilon ( ) if ( n .eq. 1 ) then return end if e(n) = 0.0D+00 do l = 1, n j = 0 10 continue do m = l, n if ( m == n ) then go to 20 end if test = prec * ( abs ( d(m) ) + abs ( d(m+1) ) ) if ( abs ( e(m) ) .le. test ) then go to 20 end if end do 20 continue p = d(l) if ( m .eq. l ) then go to 30 end if if ( itn .le. j ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'IMTQLX - Fatal error!' write ( *, '(a)' ) ' Iteration limit exceeded.' write ( *, '(a,i8)' ) ' J = ', j write ( *, '(a,i8)' ) ' L = ', l write ( *, '(a,i8)' ) ' M = ', m write ( *, '(a,i8)' ) ' N = ', n stop end if j = j + 1 g = ( d(l+1) - p ) / ( 2.0D+00 * e(l) ) r = sqrt ( g * g + 1.0D+00 ) g = d(m) - p + e(l) / ( g + sign ( r, g ) ) s = 1.0D+00 c = 1.0D+00 p = 0.0D+00 mml = m - l do ii = 1, mml i = m - ii f = s * e(i) b = c * e(i) if ( abs ( g ) .le. abs ( f ) ) then c = g / f r = sqrt ( c * c + 1.0D+00 ) e(i+1) = f * r s = 1.0D+00 / r c = c * s else s = f / g r = sqrt ( s * s + 1.0D+00 ) e(i+1) = g * r c = 1.0D+00 / r s = s * c end if g = d(i+1) - p r = ( d(i) - g ) * s + 2.0D+00 * c * b p = s * r d(i+1) = g + p g = c * r - b f = z(i+1) z(i+1) = s * z(i) + c * f z(i) = c * z(i) - s * f end do d(l) = d(l) - p e(l) = g e(m) = 0.0D+00 go to 10 30 continue end do c c Sorting. c do ii = 2, n i = ii - 1 k = i p = d(i) do j = ii, n if ( d(j) .lt. p ) then k = j p = d(j) end if end do if ( k .ne. i ) then d(k) = d(i) d(i) = p p = z(i) z(i) = z(k) z(k) = p end if end do return end function r8_add ( x, y ) c*********************************************************************72 c cc R8_ADD adds two R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 11 August 2010 c c Author: c c John Burkardt c c Parameters: c c Input, double precision X, Y, the numbers to be added. c c Output, double precision R8_ADD, the sum of X and Y. c implicit none double precision r8_add double precision x double precision y r8_add = x + y return end function r8_epsilon ( ) c*********************************************************************72 c cc r8_epsilon() returns the R8 roundoff unit. c c Discussion: c c The roundoff unit is a number R which is a power of 2 with the c property that, to the precision of the computer's arithmetic, c 1 .lt. 1 + R c but c 1 = ( 1 + R / 2 ) c c FORTRAN90 provides the superior library routine c c EPSILON ( X ) c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 06 March 2006 c c Author: c c John Burkardt c c Parameters: c c Output, double precision R8_EPSILON, the R8 roundoff unit. c implicit none double precision one double precision r8_add double precision r8_epsilon double precision temp double precision test double precision value one = dble ( 1 ) value = one temp = value / 2.0D+00 test = r8_add ( one, temp ) 10 continue if ( one .lt. test ) then value = temp temp = value / 2.0D+00 test = r8_add ( one, temp ) go to 10 end if r8_epsilon = value return end function r8_gamma ( x ) c*********************************************************************72 c cc R8_GAMMA evaluates Gamma(X) for a real argument. c c Discussion: c c This routine calculates the gamma function for a real argument X. c Computation is based on an algorithm outlined in reference 1. c The program uses rational functions that approximate the gamma c function to at least 20 significant decimal digits. Coefficients c for the approximation over the interval (1,2) are unpublished. c Those for the approximation for 12 <= X are from reference 2. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 18 January 2008 c c Author: c c Original FORTRAN77 version by William Cody, Laura Stoltz. c This version by John Burkardt. c c Reference: c c William Cody, c An Overview of Software Development for Special Functions, c in Numerical Analysis Dundee, 1975, c edited by GA Watson, c Lecture Notes in Mathematics 506, c Springer, 1976. c c John Hart, Ward Cheney, Charles Lawson, Hans Maehly, c Charles Mesztenyi, John Rice, Henry Thatcher, c Christoph Witzgall, c Computer Approximations, c Wiley, 1968, c LC: QA297.C64. c c Parameters: c c Input, double precision X, the argument of the function. c c Output, double precision R8_GAMMA, the value of the function. c implicit none double precision c(7) double precision eps double precision fact integer i integer n double precision p(8) logical parity double precision pi double precision q(8) double precision r8_gamma double precision res double precision sqrtpi double precision sum double precision x double precision xbig double precision xden double precision xinf double precision xminin double precision xnum double precision y double precision y1 double precision ysq double precision z c c Mathematical constants c data sqrtpi /0.9189385332046727417803297D+00/ data pi /3.1415926535897932384626434D+00/ c c Machine dependent parameters c data xbig / 171.624D+00 / data xminin / 2.23D-308 / data eps /2.22D-16/ data xinf /1.79D+308/ c c Numerator and denominator coefficients for rational minimax c approximation over (1,2). c data p/ & -1.71618513886549492533811d+00, & 2.47656508055759199108314d+01, & -3.79804256470945635097577d+02, & 6.29331155312818442661052d+02, & 8.66966202790413211295064d+02, & -3.14512729688483675254357d+04, & -3.61444134186911729807069d+04, & 6.64561438202405440627855d+04/ data q/ & -3.08402300119738975254353d+01, & 3.15350626979604161529144d+02, & -1.01515636749021914166146d+03, & -3.10777167157231109440444d+03, & 2.25381184209801510330112d+04, & 4.75584627752788110767815d+03, & -1.34659959864969306392456d+05, & -1.15132259675553483497211d+05/ c c Coefficients for minimax approximation over (12, INF). c data c/ & -1.910444077728D-03, & 8.4171387781295D-04, & -5.952379913043012D-04, & 7.93650793500350248D-04, & -2.777777777777681622553D-03, & 8.333333333333333331554247D-02, & 5.7083835261D-03/ parity = .false. fact = 1.0D+00 n = 0 y = x c c Argument is negative. c if ( y .le. 0.0D+00 ) then y = - x y1 = aint ( y ) res = y - y1 if ( res .ne. 0.0D+00 ) then if ( y1 .ne. aint ( y1 * 0.5D+00 ) * 2.0D+00 ) then parity = .true. end if fact = - pi / sin ( pi * res ) y = y + 1.0D+00 else res = xinf r8_gamma = res return end if end if c c Argument is positive. c if ( y .lt. eps ) then c c Argument < EPS. c if ( xminin .le. y ) then res = 1.0D+00 / y else res = xinf r8_gamma = res return end if else if ( y .lt. 12.0D+00 ) then y1 = y c c 0.0 < argument < 1.0. c if ( y .lt. 1.0D+00 ) then z = y y = y + 1.0D+00 c c 1.0 < argument < 12.0. c Reduce argument if necessary. c else n = int ( y ) - 1 y = y - dble ( n ) z = y - 1.0D+00 end if c c Evaluate approximation for 1.0 < argument < 2.0. c xnum = 0.0D+00 xden = 1.0D+00 do i = 1, 8 xnum = ( xnum + p(i) ) * z xden = xden * z + q(i) end do res = xnum / xden + 1.0D+00 c c Adjust result for case 0.0 < argument < 1.0. c if ( y1 .lt. y ) then res = res / y1 c c Adjust result for case 2.0 < argument < 12.0. c else if ( y .lt. y1 ) then do i = 1, n res = res * y y = y + 1.0D+00 end do end if else c c Evaluate for 12.0 <= argument. c if ( y .le. xbig ) then ysq = y * y sum = c(7) do i = 1, 6 sum = sum / ysq + c(i) end do sum = sum / y - y + sqrtpi sum = sum + ( y - 0.5D+00 ) * log ( y ) res = exp ( sum ) else res = xinf r8_gamma = res return end if end if c c Final adjustments and return. c if ( parity ) then res = - res end if if ( fact .ne. 1.0D+00 ) then res = fact / res end if r8_gamma = res return end subroutine r8mat_print ( m, n, a, title ) c*********************************************************************72 c cc R8MAT_PRINT prints an R8MAT. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 20 May 2004 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the number of rows in A. c c Input, integer N, the number of columns in A. c c Input, double precision A(M,N), the matrix. c c Input, character ( len = * ) TITLE, a title. c implicit none integer m integer n double precision a(m,n) character ( len = * ) title call r8mat_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_print_some ( m, n, a, ilo, jlo, ihi, jhi, & title ) c*********************************************************************72 c cc R8MAT_PRINT_SOME prints some of an R8MAT. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 25 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the number of rows and columns. c c Input, double precision A(M,N), an M by N matrix to be printed. c c Input, integer ILO, JLO, the first row and column to print. c c Input, integer IHI, JHI, the last row and column to print. c c Input, character ( len = * ) TITLE, a title. c implicit none integer incx parameter ( incx = 5 ) integer m integer n double precision a(m,n) character * ( 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo character * ( * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) if ( m .le. 0 .or. n .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' (None)' return end if do j2lo = max ( jlo, 1 ), min ( jhi, n ), incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)') j end do write ( *, '('' Col '',5a14)' ) ( ctemp(j), j = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ' i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,a,5a14)' ) i, ':', ( ctemp(j), j = 1, inc ) end do end do return end subroutine r8mat_write ( output_filename, m, n, table ) c*********************************************************************72 c cc R8MAT_WRITE writes a R8MAT file. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 22 October 2009 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) OUTPUT_FILENAME, the output file name. c c Input, integer M, the spatial dimension. c c Input, integer N, the number of points. c c Input, double precision TABLE(M,N), the data. c implicit none integer m integer n integer j character * ( * ) output_filename integer output_unit character * ( 30 ) string double precision table(m,n) c c Open the file. c call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace' ) c c Create the format string. c if ( 0 .lt. m .and. 0 .lt. n ) then write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) & '(', m, 'g', 24, '.', 16, ')' c c Write the data. c do j = 1, n write ( output_unit, string ) table(1:m,j) end do end if c c Close the file. c close ( unit = output_unit ) return end subroutine r8vec_even ( n, alo, ahi, a ) c*********************************************************************72 c cc R8VEC_EVEN returns an R8VEC of evenly spaced values. c c Discussion: c c An R8VEC is a vector of R8 values. c c If N is 1, then the midpoint is returned. c c Otherwise, the two endpoints are returned, and N-2 evenly c spaced points between them. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 09 December 2004 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of values. c c Input, double precision ALO, AHI, the low and high values. c c Output, double precision A(N), N evenly spaced values. c Normally, A(1) = ALO and A(N) = AHI. c However, if N = 1, then A(1) = 0.5*(ALO+AHI). c implicit none integer n double precision a(n) double precision ahi double precision alo integer i if ( n .eq. 1 ) then a(1) = 0.5D+00 * ( alo + ahi ) else do i = 1, n a(i) = ( dble ( n - i ) * alo & + dble ( i - 1 ) * ahi ) & / dble ( n - 1 ) end do end if return end subroutine r8vec_print ( n, a, title ) c*********************************************************************72 c cc R8VEC_PRINT prints an R8VEC. c c Discussion: c c An R8VEC is a vector of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of components of the vector. c c Input, double precision A(N), the vector to be printed. c c Input, character * ( * ) TITLE, a title. c implicit none integer n double precision a(n) integer i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,a,1x,g16.8)' ) i, ':', a(i) end do return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Discussion: c c This FORTRAN77 version is made available for cases where the c FORTRAN90 version cannot be used. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end