# include # include # include # include # include # include # include using namespace std; # include "wedge_felippa_rule.hpp" //****************************************************************************80 void comp_next ( int n, int k, int a[], bool *more, int *h, int *t ) //****************************************************************************80 // // Purpose: // // COMP_NEXT computes the compositions of the integer N into K parts. // // Discussion: // // A composition of the integer N into K parts is an ordered sequence // of K nonnegative integers which sum to N. The compositions (1,2,1) // and (1,1,2) are considered to be distinct. // // The routine computes one composition on each call until there are no more. // For instance, one composition of 6 into 3 parts is // 3+2+1, another would be 6+0+0. // // On the first call to this routine, set MORE = FALSE. The routine // will compute the first element in the sequence of compositions, and // return it, as well as setting MORE = TRUE. If more compositions // are desired, call again, and again. Each time, the routine will // return with a new composition. // // However, when the LAST composition in the sequence is computed // and returned, the routine will reset MORE to FALSE, signaling that // the end of the sequence has been reached. // // This routine originally used a SAVE statement to maintain the // variables H and T. I have decided that it is safer // to pass these variables as arguments, even though the user should // never alter them. This allows this routine to safely shuffle // between several ongoing calculations. // // // There are 28 compositions of 6 into three parts. This routine will // produce those compositions in the following order: // // I A // - --------- // 1 6 0 0 // 2 5 1 0 // 3 4 2 0 // 4 3 3 0 // 5 2 4 0 // 6 1 5 0 // 7 0 6 0 // 8 5 0 1 // 9 4 1 1 // 10 3 2 1 // 11 2 3 1 // 12 1 4 1 // 13 0 5 1 // 14 4 0 2 // 15 3 1 2 // 16 2 2 2 // 17 1 3 2 // 18 0 4 2 // 19 3 0 3 // 20 2 1 3 // 21 1 2 3 // 22 0 3 3 // 23 2 0 4 // 24 1 1 4 // 25 0 2 4 // 26 1 0 5 // 27 0 1 5 // 28 0 0 6 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the integer whose compositions are desired. // // Input, int K, the number of parts in the composition. // // Input/output, int A[K], the parts of the composition. // // Input/output, bool *MORE. // Set MORE = FALSE on first call. It will be reset to TRUE on return // with a new composition. Each new call returns another composition until // MORE is set to FALSE when the last composition has been computed // and returned. // // Input/output, int *H, *T, two internal parameters needed for the // computation. The user should allocate space for these in the calling // program, include them in the calling sequence, but never alter them! // { int i; if ( !( *more ) ) { *t = n; *h = 0; a[0] = n; for ( i = 1; i < k; i++ ) { a[i] = 0; } } else { if ( 1 < *t ) { *h = 0; } *h = *h + 1; *t = a[*h-1]; a[*h-1] = 0; a[0] = *t - 1; a[*h] = a[*h] + 1; } *more = ( a[k-1] != n ); return; } //****************************************************************************80 void line_o01 ( double w[], double x[] ) //****************************************************************************80 // // Purpose: // // LINE_O01 returns a 1 point quadrature rule for the unit line. // // Discussion: // // The integration region is: // // - 1.0 <= X <= 1.0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 April 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Output, double W[1], the weights. // // Output, double X[1], the abscissas. // { int order = 1; double w_save[1] = { 1.0 }; double x_save[1] = { 0.0 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( order, x_save, x ); return; } //****************************************************************************80 void line_o02 ( double w[], double x[] ) //****************************************************************************80 // // Purpose: // // LINE_O02 returns a 2 point quadrature rule for the unit line. // // Discussion: // // The integration region is: // // - 1.0 <= X <= 1.0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 April 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Output, double W[2], the weights. // // Output, double X[2], the abscissas. // { int order = 2; double w_save[2] = { 0.5, 0.5 }; double x_save[2] = { -0.57735026918962576451, 0.57735026918962576451 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( order, x_save, x ); return; } //****************************************************************************80 void line_o03 ( double w[], double x[] ) //****************************************************************************80 // // Purpose: // // LINE_O03 returns a 3 point quadrature rule for the unit line. // // Discussion: // // The integration region is: // // - 1.0 <= X <= 1.0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 April 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Output, double W[3], the weights. // // Output, double X[3], the abscissas. // { int order = 3; double w_save[3] = { 0.27777777777777777777, 0.44444444444444444444, 0.27777777777777777777 }; double x_save[3] = { -0.77459666924148337704, 0.00000000000000000000, 0.77459666924148337704 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( order, x_save, x ); return; } //****************************************************************************80 void line_o04 ( double w[], double x[] ) //****************************************************************************80 // // Purpose: // // LINE_O04 returns a 4 point quadrature rule for the unit line. // // Discussion: // // The integration region is: // // - 1.0 <= X <= 1.0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 April 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Output, double W[4], the weights. // // Output, double X[4], the abscissas. // { int order = 4; double w_save[4] = { 0.173927422568727, 0.326072577431273, 0.326072577431273, 0.173927422568727 }; double x_save[4] = { -0.86113631159405257522, -0.33998104358485626480, 0.33998104358485626480, 0.86113631159405257522 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( order, x_save, x ); return; } //****************************************************************************80 void line_o05 ( double w[], double x[] ) //****************************************************************************80 // // Purpose: // // LINE_O05 returns a 5 point quadrature rule for the unit line. // // Discussion: // // The integration region is: // // - 1.0 <= X <= 1.0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 April 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Output, double W[5], the weights. // // Output, double X[5], the abscissas. // { int order = 5; double w_save[5] = { 0.118463442528095, 0.239314335249683, 0.284444444444444, 0.239314335249683, 0.118463442528095 }; double x_save[5] = { -0.90617984593866399280, -0.53846931010568309104, 0.00000000000000000000, 0.53846931010568309104, 0.90617984593866399280 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( order, x_save, x ); return; } //****************************************************************************80 double *monomial_value ( int m, int n, int e[], double x[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_VALUE evaluates a monomial. // // Discussion: // // This routine evaluates a monomial of the form // // product ( 1 <= i <= m ) x(i)^e(i) // // The combination 0.0^0 is encountered is treated as 1.0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 August 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of evaluation points. // // Input, int E[M], the exponents. // // Input, double X[M*N], the point coordinates. // // Output, double MONOMIAL_VALUE[N], the monomial values. // { int i; int j; double *v; v = new double[n]; for ( j = 0; j < n; j++) { v[j] = 1.0; } //v = r8vec_ones_new ( n ); for ( i = 0; i < m; i++ ) { if ( 0 != e[i] ) { for ( j = 0; j < n; j++ ) { v[j] = v[j] * pow ( x[i+j*m], e[i] ); } } } return v; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 void r8vec_copy ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COPY copies an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Input, double A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 July 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double *r8vec_ones_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ONES_NEW creates a vector of 1's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ONES_NEW[N], a vector of 1's. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 1.0; } return a; } //****************************************************************************80 void subcomp_next ( int n, int k, int a[], bool *more, int *h, int *t ) //****************************************************************************80 // // Purpose: // // SUBCOMP_NEXT computes the next subcomposition of N into K parts. // // Discussion: // // A composition of the integer N into K parts is an ordered sequence // of K nonnegative integers which sum to a value of N. // // A subcomposition of the integer N into K parts is a composition // of M into K parts, where 0 <= M <= N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the integer whose subcompositions are desired. // // Input, int K, the number of parts in the subcomposition. // // Input/output, int A[K], the parts of the subcomposition. // // Input/output, bool *MORE, set by the user to start the computation, // and by the routine to terminate it. // // Input/output, int *H, *T, two internal parameters needed for the // computation. The user should allocate space for these in the calling // program, include them in the calling sequence, but never alter them! // { int i; static bool more2 = false; static int n2 = 0; // // The first computation. // if ( !( *more ) ) { n2 = 0; for ( i = 0; i < k; i++ ) { a[i] = 0; } more2 = false; *h = 0; *t = 0; *more = true; } // // Do the next element at the current value of N. // else if ( more2 ) { comp_next ( n2, k, a, &more2, h, t ); } else { more2 = false; n2 = n2 + 1; comp_next ( n2, k, a, &more2, h, t ); } // // Termination occurs if MORE2 = FALSE and N2 = N. // if ( !more2 && n2 == n ) { *more = false; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void triangle_o01 ( double w[], double xy[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_O01 returns a 1 point quadrature rule for the unit triangle. // // Discussion: // // This rule is precise for monomials through degree 1. // // The integration region is: // // 0 <= X // 0 <= Y // X + Y <= 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 April 2009 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Output, double W[1], the weights. // // Output, double XY[2*1], the abscissas. // { int order = 1; double w_save[1] = { 1.0 }; double xy_save[2*1] = { 0.33333333333333333333, 0.33333333333333333333 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( 2*order, xy_save, xy ); return; } //****************************************************************************80 void triangle_o03 ( double w[], double xy[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_O03 returns a 3 point quadrature rule for the unit triangle. // // Discussion: // // This rule is precise for monomials through degree 2. // // The integration region is: // // 0 <= X // 0 <= Y // X + Y <= 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 April 2009 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Output, double W[3], the weights. // // Output, double XY[2*3], the abscissas. // { int order = 3; double w_save[3] = { 0.33333333333333333333, 0.33333333333333333333, 0.33333333333333333333 }; double xy_save[2*3] = { 0.66666666666666666667, 0.16666666666666666667, 0.16666666666666666667, 0.66666666666666666667, 0.16666666666666666667, 0.16666666666666666667 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( 2*order, xy_save, xy ); return; } //****************************************************************************80 void triangle_o03b ( double w[], double xy[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_O03B returns a 3 point quadrature rule for the unit triangle. // // Discussion: // // This rule is precise for monomials through degree 2. // // The integration region is: // // 0 <= X // 0 <= Y // X + Y <= 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 April 2009 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Output, double W[3], the weights. // // Output, double XY[2*3], the abscissas. // { int order = 3; double w_save[3] = { 0.33333333333333333333, 0.33333333333333333333, 0.33333333333333333333 }; double xy_save[2*3] = { 0.0, 0.5, 0.5, 0.0, 0.5, 0.5 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( 2*order, xy_save, xy ); return; } //****************************************************************************80 void triangle_o06 ( double w[], double xy[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_O06 returns a 6 point quadrature rule for the unit triangle. // // Discussion: // // This rule is precise for monomials through degree 4. // // The integration region is: // // 0 <= X // 0 <= Y // X + Y <= 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 April 2009 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Output, double W[6], the weights. // // Output, double XY[2*6], the abscissas. // { int order = 6; double w_save[6] = { 0.22338158967801146570, 0.22338158967801146570, 0.22338158967801146570, 0.10995174365532186764, 0.10995174365532186764, 0.10995174365532186764 }; double xy_save[2*6] = { 0.10810301816807022736, 0.44594849091596488632, 0.44594849091596488632, 0.10810301816807022736, 0.44594849091596488632, 0.44594849091596488632, 0.81684757298045851308, 0.091576213509770743460, 0.091576213509770743460, 0.81684757298045851308, 0.091576213509770743460, 0.091576213509770743460 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( 2*order, xy_save, xy ); return; } //****************************************************************************80 void triangle_o06b ( double w[], double xy[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_O06B returns a 6 point quadrature rule for the unit triangle. // // Discussion: // // This rule is precise for monomials through degree 3. // // The integration region is: // // 0 <= X // 0 <= Y // X + Y <= 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 April 2009 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Output, double W[6], the weights. // // Output, double XY[2*6], the abscissas. // { int order = 6; double w_save[6] = { 0.30000000000000000000, 0.30000000000000000000, 0.30000000000000000000, 0.033333333333333333333, 0.033333333333333333333, 0.033333333333333333333 }; double xy_save[2*6] = { 0.66666666666666666667, 0.16666666666666666667, 0.16666666666666666667, 0.66666666666666666667, 0.16666666666666666667, 0.16666666666666666667, 0.0, 0.5, 0.5, 0.0, 0.5, 0.5 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( 2*order, xy_save, xy ); return; } //****************************************************************************80 void triangle_o07 ( double w[], double xy[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_O07 returns a 7 point quadrature rule for the unit triangle. // // Discussion: // // This rule is precise for monomials through degree 5. // // The integration region is: // // 0 <= X // 0 <= Y // X + Y <= 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 April 2009 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Output, double W[7], the weights. // // Output, double XY[2*7], the abscissas. // { int order = 7; double w_save[7] = { 0.12593918054482715260, 0.12593918054482715260, 0.12593918054482715260, 0.13239415278850618074, 0.13239415278850618074, 0.13239415278850618074, 0.22500000000000000000 }; double xy_save[2*7] = { 0.79742698535308732240, 0.10128650732345633880, 0.10128650732345633880, 0.79742698535308732240, 0.10128650732345633880, 0.10128650732345633880, 0.059715871789769820459, 0.47014206410511508977, 0.47014206410511508977, 0.059715871789769820459, 0.47014206410511508977, 0.47014206410511508977, 0.33333333333333333333, 0.33333333333333333333 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( 2*order, xy_save, xy ); return; } //****************************************************************************80 void triangle_o12 ( double w[], double xy[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_O12 returns a 12 point quadrature rule for the unit triangle. // // Discussion: // // This rule is precise for monomials through degree 6. // // The integration region is: // // 0 <= X // 0 <= Y // X + Y <= 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 April 2009 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Output, double W[12], the weights. // // Output, double XY[2*12], the abscissas. // { int order = 12; double w_save[12] = { 0.050844906370206816921, 0.050844906370206816921, 0.050844906370206816921, 0.11678627572637936603, 0.11678627572637936603, 0.11678627572637936603, 0.082851075618373575194, 0.082851075618373575194, 0.082851075618373575194, 0.082851075618373575194, 0.082851075618373575194, 0.082851075618373575194 }; double xy_save[2*12] = { 0.87382197101699554332, 0.063089014491502228340, 0.063089014491502228340, 0.87382197101699554332, 0.063089014491502228340, 0.063089014491502228340, 0.50142650965817915742, 0.24928674517091042129, 0.24928674517091042129, 0.50142650965817915742, 0.24928674517091042129, 0.24928674517091042129, 0.053145049844816947353, 0.31035245103378440542, 0.31035245103378440542, 0.053145049844816947353, 0.053145049844816947353, 0.63650249912139864723, 0.31035245103378440542, 0.63650249912139864723, 0.63650249912139864723, 0.053145049844816947353, 0.63650249912139864723, 0.31035245103378440542 }; r8vec_copy ( order, w_save, w ); r8vec_copy ( 2*order, xy_save, xy ); return; } //****************************************************************************80 double wedge_integral ( int expon[3] ) //****************************************************************************80 // // Purpose: // // WEDGE_INTEGRAL: monomial integral in a unit wedge. // // Discussion: // // This routine returns the integral of // // product ( 1 <= I <= 3 ) X(I)^EXPON(I) // // over the unit wedge. // // The integration region is: // // 0 <= X // 0 <= Y // X + Y <= 1 // -1 <= Z <= 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int EXPON[3], the exponents. // // Output, double WEDGE_INTEGRAL, the integral of the monomial. // { int i; int k; double value; // // The first computation ends with VALUE = 1.0; // value = 1.0; k = expon[0]; for ( i = 1; i <= expon[1]; i++ ) { k = k + 1; value = value * ( double ) ( i ) / ( double ) ( k ); } k = k + 1; value = value / ( double ) ( k ); k = k + 1; value = value / ( double ) ( k ); // // Now account for integration in Z. // if ( expon[2] == - 1 ) { cerr << "\n"; cerr << "WEDGE_INTEGRAL - Fatal error!\n"; cerr << " EXPON[2] = -1 is not a legal input.\n"; exit ( 1 ); } else if ( ( expon[2] % 2 ) == 1 ) { value = 0.0; } else { value = value * 2.0 / ( double ) ( expon[2] + 1 ); } return value; } //****************************************************************************80 void wedge_rule ( int line_order, int triangle_order, double w[], double xyz[] ) //****************************************************************************80 // // Purpose: // // WEDGE_RULE returns a quadrature rule for the unit wedge. // // Discussion: // // It is usually sensible to take LINE_ORDER and TRIG_ORDER so that // the line and triangle rules are roughly the same precision. For that // criterion, we recommend the following combinations: // // TRIANGLE_ORDER LINE_ORDER Precision // -------------- ---------- --------- // 1 1 1 x 1 // 3 2 2 x 3 // -3 2 2 x 3 // 6 3 4 x 5 // -6 2 3 x 3 // 7 3 5 x 5 // 12 4 6 x 7 // // The integration region is: // // 0 <= X // 0 <= Y // X + Y <= 1 // -1 <= Z <= 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 April 2009 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Input, int LINE_ORDER, the index of the line rule. // The index of the rule is equal to the order of the rule. // 1 <= LINE_ORDER <= 5. // // Input, int TRIANGLE_ORDER, the indes of the triangle rule. // The index of the rule is 1, 3, -3, 6, -6, 7 or 12. // // Output, double W[LINE_ORDER*abs(TRIANGLE_ORDER)], the weights. // // Output, double XYZ[3*LINE_ORDER*abs(TRIANGLE_ORDER)], the abscissas. // { int i; int j; int k; double *line_w; double *line_x; double *triangle_w; double *triangle_xy; line_w = new double[line_order]; line_x = new double[line_order]; if ( line_order == 1 ) { line_o01 ( line_w, line_x ); } else if ( line_order == 2 ) { line_o02 ( line_w, line_x ); } else if ( line_order == 3 ) { line_o03 ( line_w, line_x ); } else if ( line_order == 4 ) { line_o04 ( line_w, line_x ); } else if ( line_order == 5 ) { line_o05 ( line_w, line_x ); } else { cerr << "\n"; cerr << "WEDGE_RULE - Fatal error!\n"; cerr << " Illegal value of LINE_ORDER.\n"; exit ( 1 ); } triangle_w = new double[abs(triangle_order)]; triangle_xy = new double[2 * abs(triangle_order)]; if ( triangle_order == 1 ) { triangle_o01 ( triangle_w, triangle_xy ); } else if ( triangle_order == 3 ) { triangle_o03 ( triangle_w, triangle_xy ); } else if ( triangle_order == - 3 ) { triangle_o03b ( triangle_w, triangle_xy ); } else if ( triangle_order == 6 ) { triangle_o06 ( triangle_w, triangle_xy ); } else if ( triangle_order == - 6 ) { triangle_o06b ( triangle_w, triangle_xy ); } else if ( triangle_order == 7 ) { triangle_o07 ( triangle_w, triangle_xy ); } else if ( triangle_order == 12 ) { triangle_o12 ( triangle_w, triangle_xy ); } else { cerr << "\n"; cerr << "WEDGE_RULE - Fatal error!\n"; cerr << " Illegal value of TRIANGLE_ORDER.\n"; exit ( 1 ); } k = 0; for ( i = 0; i < line_order; i++ ) { for ( j = 0; j < abs ( triangle_order ); j++ ) { w[k] = line_w[i] * triangle_w[j]; xyz[0+k*3] = triangle_xy[0+j*2]; xyz[1+k*3] = triangle_xy[1+j*2]; xyz[2+k*3] = line_x[i]; k = k + 1; } } delete [] line_w; delete [] line_x; delete [] triangle_w; delete [] triangle_xy; return; } //****************************************************************************80 double wedge_volume ( ) //****************************************************************************80 // // Purpose: // // WEDGE_VOLUME: volume of a unit wedge. // // Discussion: // // The integration region is: // // 0 <= X // 0 <= Y // X + Y <= 1 // -1 <= Z <= 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 April 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double WEDGE_VOLUME, the volume. // { double value; value = 1.0; return value; }