# include # include # include # include # include # include # include using namespace std; # include "table_io.hpp" //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } return ( ch1 == ch2 ); } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the // character was 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; exit ( 1 ); } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int comment_num; ifstream input; string line; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } for ( ; ; ) { getline ( input, line ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int *i4mat_border_add ( int m, int n, int table[] ) //****************************************************************************80 // // Purpose: // // I4MAT_BORDER_ADD adds a "border" to an I4MAT. // // Discussion: // // An I4MAT is an array of I4's. // // We suppose the input data gives values of a quantity on nodes // in the interior of a 2D grid, and we wish to create a new table // with additional positions for the nodes that would be on the // border of the 2D grid. // // 0 0 0 0 0 0 // * * * * 0 * * * * 0 // * * * * --> 0 * * * * 0 // * * * * 0 * * * * 0 // 0 0 0 0 0 0 // // The illustration suggests the situation in which a 3 by 4 array // is input, and a 5 by 6 array is to be output. // // The old data is shifted to its correct positions in the new array. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, int TABLE[M*N], the data. // // Output, int TABLE2[(M+2)*(N+2)], the augmented data. // { int i; int j; int *table2; table2 = new int[(m+2)*(n+2)]; for ( j = 0; j < n+2; j++ ) { for ( i = 0; i < m+2; i++ ) { if ( i == 0 || i == m+1 || j == 0 || j == n+1 ) { table2[i+j*(m+2)] = 0; } else { table2[i+j*(m+2)] = table[(i-1)+(j-1)*m]; } } } return table2; } //****************************************************************************80 int *i4mat_border_cut ( int m, int n, int table[] ) //****************************************************************************80 // // Purpose: // // I4MAT_BORDER_CUT cuts the "border" of an I4MAT. // // Discussion: // // An I4MAT is an array of I4's. // // We suppose the input data gives values of a quantity on nodes // on a 2D grid, and we wish to create a new table corresponding only // to those nodes in the interior of the 2D grid. // // 0 0 0 0 0 0 // 0 * * * * 0 * * * * // 0 * * * * 0 -> * * * * // 0 * * * * 0 * * * * // 0 0 0 0 0 0 // // The illustration suggests the situation in which a 5 by 6 array // is input, and a 3 by 4 array is to be output. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, int TABLE[M*N], the data. // // Output, int TABLE2[(M-2)*(N-2)], the "interior" data. // { int i; int j; int *table2; if ( m <= 2 || n <= 2 ) { return NULL; } table2 = new int[(m-2)*(n-2)]; for ( j = 0; j < n-2; j++ ) { for ( i = 0; i < m-2; i++ ) { table2[i+j*(m-2)] = table[(i+1)+(j+1)*m]; } } return table2; } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // An I4MAT is an array of I4's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int &m, int &n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Discussion: // // An I4MAT is an array of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &M, the number of spatial dimensions. // // Output, int &N, the number of points // { m = file_column_count ( input_filename ); if ( m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } n = file_row_count ( input_filename ); if ( n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 int *i4mat_indicator_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_INDICATOR_NEW sets up an "indicator" I4MAT. // // Discussion: // // An I4MAT is an array of I4's. // // The value of each entry suggests its location, as in: // // 11 12 13 14 // 21 22 23 24 // 31 32 33 34 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Output, int I4MAT_INDICATOR_NEW[M*N], the indicator matrix. // { int fac; int i; int j; int *table; table = new int[m*n]; fac = ( int ) pow ( 10.0, ( i4_log_10 ( n ) + 1 ) ); for ( i = 1; i <= m; i++ ) { for ( j = 1; j <= n; j++ ) { table[i-1+(j-1)*m] = fac * i + j; } } return table; } //****************************************************************************80 void i4mat_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4MAT_PRINT prints an I4MAT, with an optional title. // // Discussion: // // An I4MAT is an array of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { i4mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_PRINT_SOME prints some of an I4MAT. // // Discussion: // // An I4MAT is an array of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of INCX. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; if ( n < j2hi ) { j2hi = n; } if ( jhi < j2hi ) { j2hi = jhi; } cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(6) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // if ( 1 < ilo ) { i2lo = 1; } else { i2lo = ilo; } if ( ihi < m ) { i2hi = ihi; } else { i2hi = m; } for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to INCX) entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 int *i4mat_read ( string input_filename, int &m, int &n ) //****************************************************************************80 // // Purpose: // // I4MAT_READ reads the information from an I4MAT file. // // Discussion: // // An I4MAT is an array of I4's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &M, the number of spatial dimensions. // // Output, int &N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_READ[M*N], the data. // { int *table; i4mat_header_read ( input_filename, m, n ); table = i4mat_data_read ( input_filename, m, n ); return table; } //****************************************************************************80 void i4mat_write ( string output_filename, int m, int n, int table[] ) //****************************************************************************80 // // Purpose: // // I4MAT_WRITE writes an I4MAT file with no header. // // Discussion: // // An I4MAT is an array of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, int TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "I4MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(10) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 void i4vec_data_read ( string input_filename, int n, int table[] ) //****************************************************************************80 // // Purpose: // // I4VEC_DATA_READ reads data from an I4VEC file. // // Discussion: // // An I4VEC is a vector of I4's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly one value. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int TABLE[N], the data. // { ifstream input; int j; string line; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4VEC_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } table[j] = atoi ( line.c_str ( ) ); j = j + 1; } input.close ( ); return; } //****************************************************************************80 int *i4vec_data_read_new ( string input_filename, int n ) //****************************************************************************80 // // Purpose: // // I4VEC_DATA_READ_NEW reads data from an I4VEC file. // // Discussion: // // An I4VEC is a vector of I4's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly one value. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4VEC_DATA_READ_NEW[N], the data. // { ifstream input; int j; string line; int *table; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4VEC_DATA_READ_NEW - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new int[n]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } table[j] = atoi ( line.c_str ( ) ); j = j + 1; } input.close ( ); return table; } //****************************************************************************80 void i4vec_write ( string output_filename, int n, int table[] ) //****************************************************************************80 // // Purpose: // // I4VEC_WRITE writes an I4VEC to a file. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int N, the number of points. // // Input, int TABLE[N], the data. // { int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "I4VEC_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { output << table[j] << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 bool *l4vec_data_read_new ( string input_filename, int n ) //****************************************************************************80 // // Purpose: // // L4VEC_DATA_READ_NEW reads data from an L4VEC file. // // Discussion: // // An L4VEC is a vector of L4's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly one // logical value. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 December 2010 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, bool L4VEC_DATA_READ_NEW[N], the data. // { ifstream input; int j; string line; bool *table; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "L4VEC_DATA_READ_NEW - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new bool[n]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } table[j] = s_to_l4 ( line ); j = j + 1; } input.close ( ); return table; } //****************************************************************************80 void l4vec_header_read ( string input_filename, int &n ) //****************************************************************************80 // // Purpose: // // L4VEC_HEADER_READ reads the header from an L4VEC file. // // Discussion: // // An L4VEC is a vector of L4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 December 2010 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &N, the number of points // { n = file_row_count ( input_filename ); if ( n <= 0 ) { cerr << "\n"; cerr << "L4VEC_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 void l4vec_write ( string output_filename, int n, bool table[] ) //****************************************************************************80 // // Purpose: // // L4VEC_WRITE writes an L4VEC to a file. // // Discussion: // // An L4VEC is a vector of L4's. // // An L4 is a boolean value (FALSE = 0 or TRUE = 1). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 December 2010 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int N, the number of points. // // Input, bool TABLE[N], the data. // { int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "L4VEC_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { if ( !table[j] ) { output << "0\n"; } else { output << "1\n"; } } // // Close the file. // output.close ( ); return; } //****************************************************************************80 float *r4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R4MAT_DATA_READ reads the data from an R4MAT file. // // Discussion: // // An R4MAT is an array of R4's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, float R4MAT_DATA_READ[M*N], the data. // { bool error; ifstream input; int i; int j; string line; float *table; float *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new float[m*n]; x = new float[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r4mat_header_read ( string input_filename, int &m, int &n ) //****************************************************************************80 // // Purpose: // // R4MAT_HEADER_READ reads the header from an R4MAT file. // // Discussion: // // An R4MAT is an array of R4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &M, the number of spatial dimensions. // // Output, int &N, the number of points. // { m = file_column_count ( input_filename ); if ( m <= 0 ) { cerr << "\n"; cerr << "R4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } n = file_row_count ( input_filename ); if ( n <= 0 ) { cerr << "\n"; cerr << "R4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 float *r4mat_indicator_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // R4MAT_INDICATOR_NEW sets up an "indicator" R4MAT. // // Discussion: // // An R4MAT is an array of R4's. // // The value of each entry suggests its location, as in: // // 11 12 13 14 // 21 22 23 24 // 31 32 33 34 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Output, float R4MAT_INDICATOR_NEW[M*N], the indicator matrix. // { int fac; int i; int j; float *table; table = new float[m*n]; fac = ( int ) pow ( 10.0, ( i4_log_10 ( n ) + 1 ) ); for ( i = 1; i <= m; i++ ) { for ( j = 1; j <= n; j++ ) { table[i-1+(j-1)*m] = ( float ) ( fac * i + j ); } } return table; } //****************************************************************************80 void r4mat_print ( int m, int n, float a[], string title ) //****************************************************************************80 // // Purpose: // // R4MAT_PRINT prints an R4MAT, with an optional title. // // Discussion: // // An R4MAT is an array of R4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, float A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r4mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r4mat_print_some ( int m, int n, float a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R4MAT_PRINT_SOME prints some of an R4MAT. // // Discussion: // // An R4MAT is an array of R4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, float A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 float *r4mat_read ( string input_filename, int &m, int &n ) //****************************************************************************80 // // Purpose: // // R4MAT_READ reads information from an R4MAT file. // // Discussion: // // An R4MAT is an array of R4's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &M, the number of spatial dimensions. // // Output, int &N, the number of points. The program // will stop reading data once N values have been read. // // Output, float R4MAT_READ[M*N], the data. // { float *table; r4mat_header_read ( input_filename, m, n ); table = r4mat_data_read ( input_filename, m, n ); return table; } //****************************************************************************80 void r4mat_transpose_print ( int m, int n, float a[], string title ) //****************************************************************************80 // // Purpose: // // R4MAT_TRANSPOSE_PRINT prints an R4MAT, transposed. // // Discussion: // // An R4MAT is an array of R4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, float A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r4mat_transpose_print_some ( int m, int n, float a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R4MAT_TRANSPOSE_PRINT_SOME prints some of an R4MAT, transposed. // // Discussion: // // An R4MAT is an array of R4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, float A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 float *r4mat_uniform_01 ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R4MAT_UNIFORM_01 returns a unit pseudorandom R4MAT. // // Discussion: // // An R4MAT is an array of R4's. // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, float R4MAT_UNIFORM_01[M*N], a matrix of pseudorandom values. // { int i; int j; int k; float *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R4MAT_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new float[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r[i+j*m] = ( float ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r4mat_write ( string output_filename, int m, int n, float table[] ) //****************************************************************************80 // // Purpose: // // R4MAT_WRITE writes an R4MAT file. // // Discussion: // // An R4MAT is an array of R4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, float TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R4MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 double *r8mat_border_add ( int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_BORDER_ADD adds a "border" to an R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // We suppose the input data gives values of a quantity on nodes // in the interior of a 2D grid, and we wish to create a new table // with additional positions for the nodes that would be on the // border of the 2D grid. // // 0 0 0 0 0 0 // * * * * 0 * * * * 0 // * * * * --> 0 * * * * 0 // * * * * 0 * * * * 0 // 0 0 0 0 0 0 // // The illustration suggests the situation in which a 3 by 4 array // is input, and a 5 by 6 array is to be output. // // The old data is shifted to its correct positions in the new array. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // // Output, double TABLE2[(M+2)*(N+2)], the augmented data. // { int i; int j; double *table2; table2 = new double[(m+2)*(n+2)]; for ( j = 0; j < n+2; j++ ) { for ( i = 0; i < m+2; i++ ) { if ( i == 0 || i == m+1 || j == 0 || j == n+1 ) { table2[i+j*(m+2)] = 0.0; } else { table2[i+j*(m+2)] = table[(i-1)+(j-1)*m]; } } } return table2; } //****************************************************************************80 double *r8mat_border_cut ( int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_BORDER_CUT cuts the "border" of an R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // We suppose the input data gives values of a quantity on nodes // on a 2D grid, and we wish to create a new table corresponding only // to those nodes in the interior of the 2D grid. // // 0 0 0 0 0 0 // 0 * * * * 0 * * * * // 0 * * * * 0 -> * * * * // 0 * * * * 0 * * * * // 0 0 0 0 0 0 // // The illustration suggests the situation in which a 5 by 6 array // is input, and a 3 by 4 array is to be output. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // // Output, double TABLE2[(M-2)*(N-2)], the "interior" data. // { int i; int j; double *table2; if ( m <= 2 || n <= 2 ) { return NULL; } table2 = new double[(m-2)*(n-2)]; for ( j = 0; j < n-2; j++ ) { for ( i = 0; i < m-2; i++ ) { table2[i+j*(m-2)] = table[(i+1)+(j+1)*m]; } } return table2; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int &m, int &n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &M, the number of spatial dimensions. // // Output, int &N, the number of points. // { m = file_column_count ( input_filename ); if ( m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } n = file_row_count ( input_filename ); if ( n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 double *r8mat_indicator_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_INDICATOR_NEW sets up an "indicator" R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // The value of each entry suggests its location, as in: // // 11 12 13 14 // 21 22 23 24 // 31 32 33 34 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Output, double R8MAT_INDICATOR_NEW[M*N], the indicator matrix. // { int fac; int i; int j; double *table; table = new double[m*n]; fac = ( int ) pow ( 10.0, ( i4_log_10 ( n ) + 1 ) ); for ( i = 1; i <= m; i++ ) { for ( j = 1; j <= n; j++ ) { table[i-1+(j-1)*m] = ( double ) ( fac * i + j ); } } return table; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT, with an optional title. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; if ( n < j2hi ) { j2hi = n; } if ( jhi < j2hi ) { j2hi = jhi; } cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j - 1 << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // if ( 1 < ilo ) { i2lo = ilo; } else { i2lo = 1; } if ( ihi < m ) { i2hi = ihi; } else { i2hi = m; } for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8mat_read ( string input_filename, int &m, int &n ) //****************************************************************************80 // // Purpose: // // R8MAT_READ reads information from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &M, the number of spatial dimensions. // // Output, int &N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_READ[M*N], the data. // { double *table; r8mat_header_read ( input_filename, m, n ); table = r8mat_data_read ( input_filename, m, n ); return table; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 April 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int i2lo_hi; int i2lo_lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } if ( ilo < 1 ) { i2lo_lo = 1; } else { i2lo_lo = ilo; } if ( ihi < m ) { i2lo_hi = m; } else { i2lo_hi = ihi; } for ( i2lo = i2lo_lo; i2lo <= i2lo_hi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; if ( m < i2hi ) { i2hi = m; } if ( ihi < i2hi ) { i2hi = ihi; } inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i - 1 << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; if ( jlo < 1 ) { j2lo = 1; } else { j2lo = jlo; } if ( n < jhi ) { j2hi = n; } else { j2hi = jhi; } for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j - 1 << ":"; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8mat_uniform_01 ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01 returns a unit pseudorandom R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, double R8MAT_UNIFORM_01[M*N], a matrix of pseudorandom values. // { int i; int j; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r[i+j*m] = ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 November 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << table[i+j*m]; // output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 void r8vec_data_read ( string input_filename, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DATA_READ reads the data from an R8VEC file. // // Discussion: // // An R8VEC is a vector of R8's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double TABLE[N], the data. // { ifstream input; int j; string line; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8VEC_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } table[j] = atof ( line.c_str ( ) ); j = j + 1; } input.close ( ); return; } //****************************************************************************80 double *r8vec_data_read_new ( string input_filename, int n ) //****************************************************************************80 // // Purpose: // // R8VEC_DATA_READ_NEW reads the data from an R8VEC file. // // Discussion: // // An R8VEC is a vector of R8's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8VEC_DATA_READ_NEW[N], the data. // { ifstream input; int j; string line; double *table; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8VEC_DATA_READ_NEW - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new double[n]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } table[j] = atof ( line.c_str ( ) ); j = j + 1; } input.close ( ); return table; } //****************************************************************************80 void r8vec_header_read ( string input_filename, int &n ) //****************************************************************************80 // // Purpose: // // R8VEC_HEADER_READ reads the header from an R8VEC file. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2012 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &N, the number of points. // { n = file_row_count ( input_filename ); if ( n <= 0 ) { cerr << "\n"; cerr << "R8VEC_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 void r8vec_write ( string output_filename, int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_WRITE writes an R8VEC file. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 November 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int N, the number of points. // // Input, double X[N], the data. // { int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8VEC_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { output << " " << x[j] << "\n"; // output << " " << setw(24) << setprecision(16) << x[j] << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 void r8vec2_write ( string output_filename, int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // R8VEC2_WRITE writes an R8VEC2 file. // // Discussion: // // An R8VEC2 is a pair of vectors of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int N, the number of points. // // Input, double X[N], Y[N], the data. // { int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8VEC2_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { output << " " << setw(24) << setprecision(16) << x[j] << " " << setw(24) << setprecision(16) << y[j] << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 bool s_to_l4 ( string s ) //****************************************************************************80 // // Purpose: // // S_TO_L4 reads an L4 from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 December 2010 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Output, bool S_TO_L4, the logical value. // { int i; bool l; int length; length = s.length ( ); if ( length < 1 ) { cerr << "\n"; cerr << "S_TO_L4 - Fatal error!\n"; cerr << " Input string is empty.\n"; exit ( 1 ); } for ( i = 0; i < length; i++ ) { if ( s[i] == '0' || s[i] == 'f' || s[i] == 'F' ) { l = false; return l; } else if ( s[i] == '1' || s[i] == 't' || s[i] == 'T' ) { l = true; return l; } } cerr << "\n"; cerr << "S_TO_L4 - Fatal error!\n"; cerr << " Input did not contain boolean data.\n"; exit ( 1 ); } //****************************************************************************80 float s_to_r4 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R4 reads an R4 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0^(-9.23) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, float S_TO_R4, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; float r; const float r4_ten = 10.0; float rbot; float rexp; float rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = r4_ten * rtop + ( float ) ndig; } else if ( ihave == 5 ) { rtop = r4_ten * rtop + ( float ) ndig; rbot = r4_ten * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( r4_ten, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( r4_ten, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r4vec ( string s, int n, float rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R4VEC reads an R4VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2011 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, float RVEC[N], the values read from the string. // // Output, bool S_TO_R4VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0^(-9.23) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }