Sequential and OpenMP versions of Linpack Solver

SGEFA_OPENMP is a C++ program which reimplements the SGEFA/SGESL linear algebra routines from LINPACK for use with OpenMP.

Right now, running for N = 10, 100 and 1000, but only using a 2 Processor Apple G5, the parallel code is not doing well at all. I will try to find out what is holding it back.


The computer code and data files described and made available on this web page are distributed under the GNU LGPL license.


SGEFA_OPENMP is available in a C version and a C++ version and a FORTRAN77 version and a FORTRAN90 version.

Related Data and Programs:

BLAS1_S, a C++ library which contains basic linear algebra routines for vector-vector operations, using single precision real arithmetic.

DIJKSTRA_OPENMP, a C++ program which uses OpenMP to parallelize a simple example of Dijkstra's minimum distance algorithm for graphs.

FFT_OPENMP, a C++ program which demonstrates the computation of a Fast Fourier Transform in parallel, using OpenMP.

HEATED_PLATE_OPENMP, a C++ program which solves the steady (time independent) heat equation in a 2D rectangular region, using OpenMP to run in parallel.

HELLO_OPENMP, a C++ program which prints out "Hello, world!" using the OpenMP parallel programming environment.

LINPACK, a C++ library which factors and solves systems of linear equations in a variety of formats and arithmetic types.

LINPACK_BENCH, a C++ program which measures the time taken by LINPACK to solve a particular linear system.

MD_OPENMP, a C++ program which carries out a molecular dynamics simulation using OpenMP.

MULTITASK_OPENMP, a C++ program which demonstrates how to "multitask", that is, to execute several unrelated and distinct tasks simultaneously, using OpenMP for parallel execution.

MXM_OPENMP, a C++ program which computes a dense matrix product C=A*B, using OpenMP for parallel execution.

OPENMP, C++ programs which illustrate the use of the OpenMP application program interface for carrying out parallel computations in a shared memory environment.

OPENMP_RCC, C++ programs which illustrate how a C program, using OpenMP, can be compiled and run in batch mode on the FSU High Performance Computing (HPC) cluster operated by the Research Computing Center (RCC).

POISSON_OPENMP, a C++ program which computes an approximate solution to the Poisson equation in a rectangle, using the Jacobi iteration to solve the linear system, and OpenMP to carry out the Jacobi iteration in parallel.

PRIME_OPENMP, a C++ program which counts the number of primes between 1 and N, using OpenMP for parallel execution.

QUAD_OPENMP, a C++ program which approximates an integral using a quadrature rule, and carries out the computation in parallel using OpenMP.

RANDOM_OPENMP, a C++ program which illustrates how a parallel program using OpenMP can generate multiple distinct streams of random numbers.

SATISFY_OPENMP, a C++ program which demonstrates, for a particular circuit, an exhaustive search for solutions of the circuit satisfy problem, using OpenMP for parallel execution.

SCHEDULE_OPENMP, a C++ program which demonstrates the default, static, and dynamic methods of "scheduling" loop iterations in OpenMP to avoid work imbalance.

ZIGGURAT_OPENMP, a C++ program which demonstrates how the ZIGGURAT library can be used to generate random numbers in an OpenMP parallel program.


  1. Peter Arbenz, Wesley Petersen,
    Introduction to Parallel Computing - A practical guide with examples in C,
    Oxford University Press,
    ISBN: 0-19-851576-6,
    LC: QA76.58.P47.
  2. Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, Ramesh Menon,
    Parallel Programming in OpenMP,
    Morgan Kaufmann, 2001,
    ISBN: 1-55860-671-8,
    LC: QA76.642.P32.
  3. Barbara Chapman, Gabriele Jost, Ruud vanderPas, David Kuck,
    Using OpenMP: Portable Shared Memory Parallel Processing,
    MIT Press, 2007,
    ISBN13: 978-0262533027,
    LC: QA76.642.C49.
  4. Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979,
    ISBN13: 978-0-898711-72-1,
    LC: QA214.L56.
  5. Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Algorithm 539: Basic Linear Algebra Subprograms for Fortran Usage,
    ACM Transactions on Mathematical Software,
    Volume 5, Number 3, September 1979, pages 308-323.

Source Code:

Examples and Tests:

SGEFA_LOCAL runs the program locally.

List of Routines:

You can go up one level to the C++ source codes.

Last revised on 24 April 2008.