# include "sandia_rules.hpp" # include # include # include # include # include namespace webbur { //****************************************************************************80 void binary_vector_next ( int n, int bvec[] ) //****************************************************************************80 // // Purpose: // // BINARY_VECTOR_NEXT generates the next binary vector. // // Discussion: // // A binary vector is a vector whose entries are 0 or 1. // // The user inputs an initial zero vector to start. The program returns // the "next" vector. // // The vectors are produced in the order: // // ( 0, 0, 0, ..., 0 ) // ( 1, 0, 0, ..., 0 ) // ( 0, 1, 0, ..., 0 ) // ( 1, 1, 0, ..., 0 ) // ( 0, 0, 1, ..., 0 ) // ( 1, 0, 1, ..., 0 ) // ... // ( 1, 1, 1, ..., 1) // // and the "next" vector after (1,1,...,1) is (0,0,...,0). That is, // we allow wrap around. // // Example: // // N = 3 // // Input Output // ----- ------ // 0 0 0 => 1 0 0 // 1 0 0 => 0 1 0 // 0 1 0 => 1 1 0 // 1 1 0 => 0 0 1 // 0 0 1 => 1 0 1 // 1 0 1 => 0 1 1 // 0 1 1 => 1 1 1 // 1 1 1 => 0 0 0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the vectors. // // Input/output, int BVEC[N], on output, the successor // to the input vector. // { int i; for ( i = 0; i < n; i++ ) { if ( bvec[i] == 1 ) { bvec[i] = 0; } else { bvec[i] = 1; break; } } return; } //****************************************************************************80 void ccn_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CCN_COMPUTE computes a nested Clenshaw Curtis quadrature rule. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::ccn_compute_points ( n, x ); webbur::ccn_compute_weights ( n, w ); return; } //****************************************************************************80 void ccn_compute_np ( int n, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CCN_COMPUTE_NP computes a nested Clenshaw Curtis quadrature rule. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::ccn_compute_points ( n, x ); webbur::ccn_compute_weights ( n, w ); return; } //****************************************************************************80 void ccn_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // CCN_COMPUTE_POINTS: compute nested Clenshaw Curtis points. // // Discussion: // // We want to compute the following sequence: // // 1/2, // 0, 1 // 1/4, 3/4 // 1/8, 3/8, 5/8, 7/8, // 1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16, 15/16, and so on. // // But we would prefer that the numbers in each row be regrouped in pairs // that are symmetric about 1/2, with the number above 1/2 coming first. // Thus, the last row might become: // (9/16, 7/16), (11/16, 5/16), ..., (15/16, 1/16). // // Once we have our sequence, we apply the Chebyshev transformation // which maps [0,1] to [-1,+1]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements to compute. // // Output, double X[N], the elements of the sequence. // { int d; int i; int k; int m; double pi = 3.141592653589793; int td; int tu; // // Handle first three entries specially. // if ( 1 <= n ) { x[0] = 0.5; } if ( 2 <= n ) { x[1] = 1.0; } if ( 3 <= n ) { x[2] = 0.0; } m = 3; d = 2; while ( m < n ) { tu = d + 1; td = d - 1; k = webbur::i4_min ( d, n - m ); for ( i = 1; i <= k; i++ ) { if ( ( i % 2 ) == 1 ) { x[m+i-1] = tu / 2.0 / ( double ) ( k ); tu = tu + 2; } else { x[m+i-1] = td / 2.0 / ( double ) ( k ); td = td - 2; } } m = m + k; d = d * 2; } // // Apply the Chebyshev transformation. // for ( i = 0; i < n; i++ ) { x[i] = std::cos ( x[i] * pi ); } x[0] = 0.0; if ( 2 <= n ) { x[1] = -1.0; } if ( 3 <= n ) { x[2] = +1.0; } return; } //****************************************************************************80 void ccn_compute_points_np ( int n, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // CCN_COMPUTE_POINTS_NP: nested Clenshaw Curtis quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // { webbur::ccn_compute_points ( n, x ); return; } //****************************************************************************80 void ccn_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // CCN_COMPUTE_WEIGHTS: weights for nested Clenshaw Curtis rule. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the rule. // // Output, double W[N], the weights. // { double *x; double x_max; double x_min; x = new double[n]; webbur::ccn_compute_points ( n, x ); // // Get the weights. // x_min = -1.0; x_max = +1.0; webbur::nc_compute ( n, x_min, x_max, x, w ); delete [] x; return; } //****************************************************************************80 void ccn_compute_weights_np ( int n, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // CCN_COMPUTE_WEIGHTS_NP: nested Clenshaw Curtis quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[N], the weights. // { webbur::ccn_compute_weights ( n, w ); return; } //****************************************************************************80 void chebyshev1_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV1_COMPUTE computes a Chebyshev type 1 quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) F(X) / sqrt ( 1 - x^2 ) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { int i; double pi = 3.141592653589793; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "CHEBYSHEV1_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::exit ( 1 ); } for ( i = 0; i < n; i++ ) { w[i] = pi / ( double ) ( n ); } for ( i = 0; i < n; i++ ) { x[i] = std::cos ( pi * ( double ) ( 2 * n - 1 - 2 * i ) / ( double ) ( 2 * n ) ); } if ( ( n % 2 ) == 1 ) { x[(n-1)/2] = 0.0; } return; } //****************************************************************************80 void chebyshev1_compute_np ( int n, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV1_COMPUTE_NP computes a Chebyshev type 1 quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) F(X) / sqrt ( 1 - x^2 ) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::chebyshev1_compute ( n, x, w ); return; } //****************************************************************************80 void chebyshev1_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV1_COMPUTE_POINTS computes Chebyshev type 1 quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // { int i; double pi = 3.141592653589793; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "CHEBYSHEV1_COMPUTE_POINTS - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::exit ( 1 ); } for ( i = 0; i < n; i++ ) { x[i] = std::cos ( pi * ( double ) ( 2 * n - 1 - 2 * i ) / ( double ) ( 2 * n ) ); } if ( ( n % 2 ) == 1 ) { x[(n-1)/2] = 0.0; } return; } //****************************************************************************80 void chebyshev1_compute_points_np ( int n, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV1_COMPUTE_POINTS_NP computes Chebyshev type 1 quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // { webbur::chebyshev1_compute_points ( n, x ); return; } //****************************************************************************80 void chebyshev1_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV1_COMPUTE_WEIGHTS computes Chebyshev type 1 quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double W[N], the weights. // { int i; double pi = 3.141592653589793; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "CHEBYSHEV1_COMPUTE_WEIGHTS - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::exit ( 1 ); } for ( i = 0; i < n; i++ ) { w[i] = pi / ( double ) ( n ); } return; } //****************************************************************************80 void chebyshev1_compute_weights_np ( int n, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV1_COMPUTE_WEIGHTS_NP: Chebyshev type 1 quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[N], the weights. // { webbur::chebyshev1_compute_weights ( n, w ); return; } //****************************************************************************80 double chebyshev1_integral ( int expon ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV1_INTEGRAL evaluates a monomial Chebyshev type 1 integral. // // Discussion: // // The integral: // // integral ( -1 <= x <= +1 ) x^n / sqrt ( 1 - x^2 ) dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // // Output, double CHEBYSHEV1_INTEGRAL, the value of the exact integral. // { double bot; double exact; int i; double pi = 3.141592653589793; double top; // // Get the exact value of the integral. // if ( ( expon % 2 ) == 0 ) { top = 1; bot = 1; for ( i = 2; i <= expon; i = i + 2 ) { top = top * ( i - 1 ); bot = bot * i; } exact = pi * ( double ) ( top ) / ( double ) ( bot ); } else { exact = 0.0; } return exact; } //****************************************************************************80 void chebyshev2_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV2_COMPUTE computes a Chebyshev type 2 quadrature rule. // // Discussion: // // The integral: // // integral ( -1 <= x <= 1 ) f(x) sqrt ( 1 - x^2 ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double angle; int i; double pi = 3.141592653589793; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "CHEBYSHEV2_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::exit ( 1 ); } for ( i = 0; i < n; i++ ) { angle = pi * ( double ) ( n - i ) / ( double ) ( n + 1 ); w[i] = pi / ( double ) ( n + 1 ) * std::pow ( std::sin ( angle ), 2 ); x[i] = std::cos ( angle ); } if ( ( n % 2 ) == 1 ) { x[(n-1)/2] = 0.0; } return; } //****************************************************************************80 void chebyshev2_compute_np ( int n, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV2_COMPUTE_NP computes a Chebyshev type 2 quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) F(X) sqrt ( 1 - x^2 ) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::chebyshev2_compute ( n, x, w ); return; } //****************************************************************************80 void chebyshev2_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV2_COMPUTE_POINTS computes Chebyshev type 2 quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // { double angle; int i; double pi = 3.141592653589793; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "CHEBYSHEV2_COMPUTE_POINTS - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::exit ( 1 ); } for ( i = 0; i < n; i++ ) { angle = pi * ( double ) ( n - i ) / ( double ) ( n + 1 ); x[i] = std::cos ( angle ); } if ( ( n % 2 ) == 1 ) { x[(n-1)/2] = 0.0; } return; } //****************************************************************************80 void chebyshev2_compute_points_np ( int n, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV2_COMPUTE_POINTS_NP computes Chebyshev type 2 quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // { webbur::chebyshev2_compute_points ( n, x ); return; } //****************************************************************************80 void chebyshev2_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV2_COMPUTE_WEIGHTS computes Chebyshev type 2 quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double W[N], the weights. // { double angle; int i; double pi = 3.141592653589793; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "CHEBYSHEV2_COMPUTE_WEIGHTS - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::exit ( 1 ); } for ( i = 0; i < n; i++ ) { angle = pi * ( double ) ( n - i ) / ( double ) ( n + 1 ); w[i] = pi / ( double ) ( n + 1 ) * std::pow ( std::sin ( angle ), 2 ); } return; } //****************************************************************************80 void chebyshev2_compute_weights_np ( int n, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV2_COMPUTE_WEIGHTS_NP: Chebyshev type 2 quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[N], the weights. // { webbur::chebyshev2_compute_weights ( n, w ); return; } //****************************************************************************80 double chebyshev2_integral ( int expon ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV2_INTEGRAL evaluates a monomial Chebyshev type 2 integral. // // Discussion: // // The integral: // // integral ( -1 <= x <= +1 ) x^n * sqrt ( 1 - x^2 ) dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // // Output, double CHEBYSHEV2_INTEGRAL, the value of the exact integral. // { double bot; double exact; int i; double pi = 3.141592653589793; double top; // // Get the exact value of the integral. // if ( ( expon % 2 ) == 0 ) { top = 1; bot = 1; for ( i = 2; i <= expon; i = i + 2 ) { top = top * ( i - 1 ); bot = bot * i; } bot = bot * ( double ) ( expon + 2 ); exact = pi * ( double ) ( top ) / ( double ) ( bot ); } else { exact = 0.0; } return exact; } //****************************************************************************80 void clenshaw_curtis_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CLENSHAW_CURTIS_COMPUTE computes a Clenshaw Curtis quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 March 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double b; int i; int j; double pi = 3.141592653589793; double theta; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "CLENSHAW_CURTIS_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::exit ( 1 ); } else if ( n == 1 ) { x[0] = 0.0; w[0] = 2.0; } else { for ( i = 0; i < n; i++ ) { x[i] = std::cos ( ( double ) ( n - 1 - i ) * pi / ( double ) ( n - 1 ) ); } x[0] = -1.0; if ( ( n % 2 ) == 1 ) { x[(n-1)/2] = 0.0; } x[n-1] = +1.0; for ( i = 0; i < n; i++ ) { theta = ( double ) ( i ) * pi / ( double ) ( n - 1 ); w[i] = 1.0; for ( j = 1; j <= ( n - 1 ) / 2; j++ ) { if ( 2 * j == ( n - 1 ) ) { b = 1.0; } else { b = 2.0; } w[i] = w[i] - b * std::cos ( 2.0 * ( double ) ( j ) * theta ) / ( double ) ( 4 * j * j - 1 ); } } w[0] = w[0] / ( double ) ( n - 1 ); for ( i = 1; i < n - 1; i++ ) { w[i] = 2.0 * w[i] / ( double ) ( n - 1 ); } w[n-1] = w[n-1] / ( double ) ( n - 1 ); } return; } //****************************************************************************80 void clenshaw_curtis_compute_np ( int n, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CLENSHAW_CURTIS_COMPUTE_NP computes a Clenshaw Curtis quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::clenshaw_curtis_compute ( n, x, w ); return; } //****************************************************************************80 void clenshaw_curtis_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // CLENSHAW_CURTIS_COMPUTE_POINTS computes Clenshaw Curtis quadrature points. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // This rule is defined on [-1,1]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double X[N], the abscissas. // { int index; double pi = 3.141592653589793; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "CLENSHAW_CURTIS_COMPUTE_POINTS - Fatal error!\n"; std::cerr << " N < 1.\n"; std::exit ( 1 ); } else if ( n == 1 ) { x[0] = 0.0; } else { for ( index = 1; index <= n; index++ ) { x[index-1] = std::cos ( ( double ) ( n - index ) * pi / ( double ) ( n - 1 ) ); } x[0] = -1.0; if ( ( n % 2 ) == 1 ) { x[(n-1)/2] = 0.0; } x[n-1] = +1.0; } return; } //****************************************************************************80 void clenshaw_curtis_compute_points_np ( int n, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // CLENSHAW_CURTIS_COMPUTE_POINTS_NP: Clenshaw Curtis quadrature points. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // This rule is defined on [-1,1]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // { webbur::clenshaw_curtis_compute_points ( n, x ); return; } //****************************************************************************80 void clenshaw_curtis_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // CLENSHAW_CURTIS_COMPUTE_WEIGHTS computes Clenshaw Curtis quadrature weights. // // Discussion: // // The user must preallocate space for the output array W. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Charles Clenshaw, Alan Curtis, // A Method for Numerical Integration on an Automatic Computer, // Numerische Mathematik, // Volume 2, Number 1, December 1960, pages 197-205. // // Parameters: // // Input, int N, the order. // // Output, double W[N], the weights. // { double b; int i; int j; double pi = 3.141592653589793; double theta; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "CLENSHAW_CURTIS_COMPUTE_WEIGHTS - Fatal error!\n"; std::cerr << " N < 1.\n"; std::exit ( 1 ); } else if ( n == 1 ) { w[0] = 2.0; return; } for ( i = 1; i <= n; i++ ) { theta = ( double ) ( i - 1 ) * pi / ( double ) ( n - 1 ); w[i-1] = 1.0; for ( j = 1; j <= ( n - 1 ) / 2; j++ ) { if ( 2 * j == ( n - 1 ) ) { b = 1.0; } else { b = 2.0; } w[i-1] = w[i-1] - b * std::cos ( 2.0 * ( double ) ( j ) * theta ) / ( double ) ( 4 * j * j - 1 ); } } w[0] = w[0] / ( double ) ( n - 1 ); for ( i = 1; i < n - 1; i++ ) { w[i] = 2.0 * w[i] / ( double ) ( n - 1 ); } w[n-1] = w[n-1] / ( double ) ( n - 1 ); return; } //****************************************************************************80 void clenshaw_curtis_compute_weights_np ( int n, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // CLENSHAW_CURTIS_COMPUTE_WEIGHTS_NP: Clenshaw Curtis quadrature weights. // // Discussion: // // The user must preallocate space for the output array W. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Charles Clenshaw, Alan Curtis, // A Method for Numerical Integration on an Automatic Computer, // Numerische Mathematik, // Volume 2, Number 1, December 1960, pages 197-205. // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[N], the weights. // { webbur::clenshaw_curtis_compute_weights ( n, w ); return; } //****************************************************************************80 void comp_next ( int n, int k, int a[], bool *more, int *h, int *t ) //****************************************************************************80 // // Purpose: // // COMP_NEXT computes the compositions of the integer N into K parts. // // Discussion: // // A composition of the integer N into K parts is an ordered sequence // of K nonnegative integers which sum to N. The compositions (1,2,1) // and (1,1,2) are considered to be distinct. // // The routine computes one composition on each call until there are no more. // For instance, one composition of 6 into 3 parts is // 3+2+1, another would be 6+0+0. // // On the first call to this routine, set MORE = FALSE. The routine // will compute the first element in the sequence of compositions, and // return it, as well as setting MORE = TRUE. If more compositions // are desired, call again, and again. Each time, the routine will // return with a new composition. // // However, when the LAST composition in the sequence is computed // and returned, the routine will reset MORE to FALSE, signaling that // the end of the sequence has been reached. // // This routine originally used a SAVE statement to maintain the // variables H and T. I have decided that it is safer // to pass these variables as arguments, even though the user should // never alter them. This allows this routine to safely shuffle // between several ongoing calculations. // // // There are 28 compositions of 6 into three parts. This routine will // produce those compositions in the following order: // // I A // - --------- // 1 6 0 0 // 2 5 1 0 // 3 4 2 0 // 4 3 3 0 // 5 2 4 0 // 6 1 5 0 // 7 0 6 0 // 8 5 0 1 // 9 4 1 1 // 10 3 2 1 // 11 2 3 1 // 12 1 4 1 // 13 0 5 1 // 14 4 0 2 // 15 3 1 2 // 16 2 2 2 // 17 1 3 2 // 18 0 4 2 // 19 3 0 3 // 20 2 1 3 // 21 1 2 3 // 22 0 3 3 // 23 2 0 4 // 24 1 1 4 // 25 0 2 4 // 26 1 0 5 // 27 0 1 5 // 28 0 0 6 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the integer whose compositions are desired. // // Input, int K, the number of parts in the composition. // // Input/output, int A[K], the parts of the composition. // // Input/output, bool *MORE. // Set MORE = FALSE on first call. It will be reset to TRUE on return // with a new composition. Each new call returns another composition until // MORE is set to FALSE when the last composition has been computed // and returned. // // Input/output, int *H, *T, two internal parameters needed for the // computation. The user should allocate space for these in the calling // program, include them in the calling sequence, but never alter them! // { int i; if ( !( *more ) ) { *t = n; *h = 0; a[0] = n; for ( i = 1; i < k; i++ ) { a[i] = 0; } } else { if ( 1 < *t ) { *h = 0; } *h = *h + 1; *t = a[*h-1]; a[*h-1] = 0; a[0] = *t - 1; a[*h] = a[*h] + 1; } *more = ( a[k-1] != n ); return; } //****************************************************************************80 double cpu_time ( ) //****************************************************************************80 // // Purpose: // // CPU_TIME reports the elapsed CPU time. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 July 2010 // // Author: // // John Burkardt // // Parameters: // // Output, double CPU_TIME, the current total elapsed CPU time in second. // { double value; value = ( double ) std::clock ( ) / ( double ) CLOCKS_PER_SEC; return value; } //****************************************************************************80 void dif_deriv ( int nd, double xd[], double yd[], int *ndp, double xdp[], double ydp[] ) //****************************************************************************80 // // Purpose: // // DIF_DERIV computes the derivative of a polynomial in divided difference form. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2011 // // Author: // // John Burkardt // // Reference: // // Carl deBoor, // A Practical Guide to Splines, // Springer, 2001, // ISBN: 0387953663, // LC: QA1.A647.v27. // // Parameters: // // Input, int ND, the size of the input table. // // Input, double XD[ND], the abscissas for the divided // difference table. // // Input, double YD[ND], the divided difference table. // // Output, int *NDP, the size of the output table, which is ND-1. // // Input, double XDP[NP], the abscissas for the divided // difference table for the derivative. // // Output, double YDP[NDP], the divided difference // table for the derivative. // { int i; double *xd_temp; double *yd_temp; // // Using a temporary copy of the difference table, shift the // abscissas to zero. // xd_temp = new double[nd]; yd_temp = new double[nd]; for ( i = 0; i < nd; i++ ) { xd_temp[i] = xd[i]; } for ( i = 0; i < nd; i++ ) { yd_temp[i] = yd[i]; } webbur::dif_shift_zero ( nd, xd_temp, yd_temp ); // // Construct the derivative. // *ndp = nd - 1; for ( i = 0; i < *ndp; i++ ) { xdp[i] = 0.0; } for ( i = 0; i < *ndp; i++ ) { ydp[i] = ( double ) ( i + 1 ) * yd_temp[i+1]; } delete [] xd_temp; delete [] yd_temp; return; } //****************************************************************************80 void dif_shift_x ( int nd, double xd[], double yd[], double xv ) //****************************************************************************80 // // Purpose: // // DIF_SHIFT_X replaces one abscissa of a divided difference table with a new one. // // Discussion: // // This routine shifts the representation of a divided difference polynomial by // dropping the last X value in XD, and adding a new X value to the // beginning of the Xd array, suitably modifying the coefficients stored // in YD. // // The representation of the polynomial is changed, but the polynomial itself // should be identical. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2011 // // Author: // // John Burkardt // // Reference: // // Carl deBoor, // A Practical Guide to Splines, // Springer, 2001, // ISBN: 0387953663, // LC: QA1.A647.v27. // // Parameters: // // Input, int ND, the number of divided difference coefficients, and // the number of entries in XD. // // Input/output, double XD[ND], the X values used in the representation of // the divided difference polynomial. After a call to this routine, the // last entry of XD has been dropped, the other // entries have shifted up one index, and XV has been inserted at the // beginning of the array. // // Input/output, double YD[ND], the divided difference coefficients // corresponding to the XD array. On output, this array has been // adjusted. // // Input, double XV, a new X value which is to be used in the representation // of the polynomial. On output, XD[0] equals XV and the representation // of the polynomial has been suitably changed. // Note that XV does not have to be distinct from any of the original XD // values. // { int i; // // Recompute the divided difference coefficients. // for ( i = nd - 2; 0 <= i; i-- ) { yd[i] = yd[i] + ( xv - xd[i] ) * yd[i+1]; } // // Shift the X values up one position and insert XV. // for ( i = nd - 1; 0 < i; i-- ) { xd[i] = xd[i-1]; } xd[0] = xv; return; } //****************************************************************************80 void dif_shift_zero ( int nd, double xd[], double yd[] ) //****************************************************************************80 // // Purpose: // // DIF_SHIFT_ZERO shifts a divided difference table so that all abscissas are zero. // // Discussion: // // When the abscissas are changed, the coefficients naturally // must also be changed. // // The resulting pair (XD, YD) still represents the // same polynomial, but the entries in YD are now the // standard polynomial coefficients. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2011 // // Author: // // John Burkardt // // Reference: // // Carl deBoor, // A Practical Guide to Splines, // Springer, 2001, // ISBN: 0387953663, // LC: QA1.A647.v27. // // Parameters: // // Input, int ND, the length of the XD and YD arrays. // // Input/output, double XD[ND], the X values that correspond to the // divided difference table. On output, XD contains only zeroes. // // Input/output, double YD[ND], the divided difference table // for the polynomial. On output, YD is also // the coefficient array for the standard representation // of the polynomial. // { int i; double xv; xv = 0.0; for ( i = 1; i <= nd; i++ ) { webbur::dif_shift_x ( nd, xd, yd, xv ); } return; } //****************************************************************************80 void dif_to_r8poly ( int nd, double xd[], double yd[], double c[] ) //****************************************************************************80 // // Purpose: // // DIF_TO_R8POLY converts a divided difference table to a standard polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 February 2011 // // Author: // // John Burkardt // // Reference: // // Carl deBoor, // A Practical Guide to Splines, // Springer, 2001, // ISBN: 0387953663, // LC: QA1.A647.v27. // // Parameters: // // Input, int ND, the number of coefficients, and abscissas. // // Input, double XD[ND], the X values used in the divided difference // representation of the polynomial. // // Input, double YD[ND], the divided difference table. // // Output, double C[ND], the standard form polyomial coefficients. // C[0] is the constant term, and C[ND-1] is the coefficient // of X^(ND-1). // { int i; int j; for ( i = 0; i < nd; i++ ) { c[i] = yd[i]; } // // Recompute the divided difference coefficients. // for ( j = 1; j <= nd - 1; j++ ) { for ( i = 1; i <= nd - j; i++ ) { c[nd-i-1] = c[nd-i-1] - xd[nd-i-j] * c[nd-i]; } } return; } //****************************************************************************80 void fejer2_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // FEJER2_COMPUTE computes a Fejer type 2 rule. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // The rule is defined on [-1,1]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { int i; int j; double p; double pi = 3.141592653589793; double theta; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "FEJER2_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::exit ( 1 ); } else if ( n == 1 ) { x[0] = 0.0; w[0] = 2.0; return; } for ( i = 0; i < n; i++ ) { x[i] = std::cos ( ( double ) ( n - i ) * pi / ( double ) ( n + 1 ) ); } if ( ( n % 2 ) == 1 ) { x[(n-1)/2] = 0.0; } if ( n == 2 ) { w[0] = 1.0; w[1] = 1.0; } else { for ( i = 0; i < n; i++ ) { theta = ( double ) ( n - i ) * pi / ( double ) ( n + 1 ); w[i] = 1.0; for ( j = 1; j <= ( ( n - 1 ) / 2 ); j++ ) { w[i] = w[i] - 2.0 * std::cos ( 2.0 * ( double ) ( j ) * theta ) / ( double ) ( 4 * j * j - 1 ); } p = 2.0 * ( double ) ( ( ( n + 1 ) / 2 ) ) - 1.0; w[i] = w[i] - std::cos ( ( p + 1.0 ) * theta ) / p; } for ( i = 0; i < n; i++ ) { w[i] = 2.0 * w[i] / ( double ) ( n + 1 ); } } return; } //****************************************************************************80 void fejer2_compute_np ( int n, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // FEJER2_COMPUTE_NP computes a Fejer type 2 rule. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // The rule is defined on [-1,1]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::fejer2_compute ( n, x, w ); return; } //****************************************************************************80 void fejer2_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // FEJER2_COMPUTE_POINTS computes Fejer type 2 quadrature points. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // The rule is defined on [-1,1]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // { int i; double pi = 3.141592653589793; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "FEJER2_COMPUTE_POINTS - Fatal error!\n"; std::cerr << " N < 1.\n"; std::exit ( 1 ); } else if ( n == 1 ) { x[0] = 0.0; } else { for ( i = 1; i <= n; i++ ) { x[i-1] = std::cos ( ( double ) ( n + 1 - i ) * pi / ( double ) ( n + 1 ) ); } if ( ( n % 2 ) == 1 ) { x[(n-1)/2] = 0.0; } } return; } //****************************************************************************80 void fejer2_compute_points_np ( int n, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // FEJER2_COMPUTE_POINTS_NP computes Fejer type 2 quadrature points. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // The rule is defined on [-1,1]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // { webbur::fejer2_compute_points ( n, x ); return; } //****************************************************************************80 void fejer2_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // FEJER2_COMPUTE_WEIGHTS computes Fejer type 2 quadrature weights. // // Discussion: // // The user must preallocate space for the output array W. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Walter Gautschi, // Numerical Quadrature in the Presence of a Singularity, // SIAM Journal on Numerical Analysis, // Volume 4, Number 3, 1967, pages 357-362. // // Joerg Waldvogel, // Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules, // BIT Numerical Mathematics, // Volume 43, Number 1, 2003, pages 1-18. // // Parameters: // // Input, int N, the order. // // Output, double W[N], the weights. // { int i; int j; double p; double pi = 3.141592653589793; double theta; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "FEJER2_COMPUTE_WEIGHTS - Fatal error!\n"; std::cerr << " N < 1.\n"; std::exit ( 1 ); } else if ( n == 1 ) { w[0] = 2.0; } else if ( n == 2 ) { w[0] = 1.0; w[1] = 1.0; } else { for ( i = 1; i <= n; i++ ) { theta = ( double ) ( n + 1 - i ) * pi / ( double ) ( n + 1 ); w[i-1] = 1.0; for ( j = 1; j <= ( ( n - 1 ) / 2 ); j++ ) { w[i-1] = w[i-1] - 2.0 * std::cos ( 2.0 * ( double ) ( j ) * theta ) / ( double ) ( 4 * j * j - 1 ); } p = 2.0 * ( double ) ( ( ( n + 1 ) / 2 ) ) - 1.0; w[i-1] = w[i-1] - std::cos ( ( p + 1.0 ) * theta ) / p; } for ( i = 0; i < n; i++ ) { w[i] = 2.0 * w[i] / ( double ) ( n + 1 ); } } return; } //****************************************************************************80 void fejer2_compute_weights_np ( int n, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // FEJER2_COMPUTE_WEIGHTS_NP computes Fejer type 2 quadrature weights. // // Discussion: // // The user must preallocate space for the output array W. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Walter Gautschi, // Numerical Quadrature in the Presence of a Singularity, // SIAM Journal on Numerical Analysis, // Volume 4, Number 3, 1967, pages 357-362. // // Joerg Waldvogel, // Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules, // BIT Numerical Mathematics, // Volume 43, Number 1, 2003, pages 1-18. // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[N], the weights. // { webbur::fejer2_compute_weights ( n, w ); return; } //****************************************************************************80 void gegenbauer_compute ( int order, double alpha, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_COMPUTE computes a Gegenbauer quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) (1-X^2)^ALPHA * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // Thanks to Janiki Raman for pointing out a problem in an earlier // version of the code that occurred when ALPHA was -0.5. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, double ALPHA, the exponent of (1-X^2). -1.0 < ALPHA is required. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double an; double *c; double cc; double delta; double dp2; int i; double p1; double prod; double r1; double r2; double r3; double temp; double x0; // // Check ORDER. // if ( order < 1 ) { std::cerr << "\n"; std::cerr << "GEGENBAUER_COMPUTE - Fatal error!\n"; std::cerr << " 1 <= ORDER is required.\n"; std::exit ( 1 ); } c = new double[order]; // // Check ALPHA. // if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "GEGENBAUER_COMPUTE - Fatal error!\n"; std::cerr << " -1.0 < ALPHA is required.\n"; std::exit ( 1 ); } // // Set the recursion coefficients. // c[0] = 0.0; if ( 2 <= order ) { c[1] = 1.0 / ( 2.0 * alpha + 3.0 ); } for ( i = 3; i <= order; i++ ) { c[i-1] = ( double ) ( i - 1 ) * ( alpha + alpha + ( double ) ( i - 1 ) ) / ( ( alpha + alpha + ( double ) ( 2 * i - 1 ) ) * ( alpha + alpha + ( double ) ( 2 * i - 3 ) ) ); } delta = webbur::r8_gamma ( alpha + 1.0 ) * webbur::r8_gamma ( alpha + 1.0 ) / webbur::r8_gamma ( alpha + alpha + 2.0 ); prod = 1.0; for ( i = 2; i <= order; i++ ) { prod = prod * c[i-1]; } cc = delta * std::pow ( 2.0, alpha + alpha + 1.0 ) * prod; for ( i = 1; i <= order; i++ ) { if ( i == 1 ) { an = alpha / ( double ) ( order ); r1 = ( 1.0 + alpha ) * ( 2.78 / ( 4.0 + ( double ) ( order * order ) ) + 0.768 * an / ( double ) ( order ) ); r2 = 1.0 + 2.44 * an + 1.282 * an * an; x0 = ( r2 - r1 ) / r2; } else if ( i == 2 ) { r1 = ( 4.1 + alpha ) / ( ( 1.0 + alpha ) * ( 1.0 + 0.156 * alpha ) ); r2 = 1.0 + 0.06 * ( ( double ) ( order ) - 8.0 ) * ( 1.0 + 0.12 * alpha ) / ( double ) ( order ); r3 = 1.0 + 0.012 * alpha * ( 1.0 + 0.25 * r8_abs ( alpha ) ) / ( double ) ( order ); x0 = x0 - r1 * r2 * r3 * ( 1.0 - x0 ); } else if ( i == 3 ) { r1 = ( 1.67 + 0.28 * alpha ) / ( 1.0 + 0.37 * alpha ); r2 = 1.0 + 0.22 * ( ( double ) ( order ) - 8.0 ) / ( double ) ( order ); r3 = 1.0 + 8.0 * alpha / ( ( 6.28 + alpha ) * ( double ) ( order * order ) ); x0 = x0 - r1 * r2 * r3 * ( x[0] - x0 ); } else if ( i < order - 1 ) { x0 = 3.0 * x[i-2] - 3.0 * x[i-3] + x[i-4]; } else if ( i == order - 1 ) { r1 = ( 1.0 + 0.235 * alpha ) / ( 0.766 + 0.119 * alpha ); r2 = 1.0 / ( 1.0 + 0.639 * ( ( double ) ( order ) - 4.0 ) / ( 1.0 + 0.71 * ( ( double ) ( order ) - 4.0 ) ) ); r3 = 1.0 / ( 1.0 + 20.0 * alpha / ( ( 7.5 + alpha ) * ( double ) ( order * order ) ) ); x0 = x0 + r1 * r2 * r3 * ( x0 - x[i-3] ); } else if ( i == order ) { r1 = ( 1.0 + 0.37 * alpha ) / ( 1.67 + 0.28 * alpha ); r2 = 1.0 / ( 1.0 + 0.22 * ( ( double ) ( order ) - 8.0 ) / ( double ) ( order ) ); r3 = 1.0 / ( 1.0 + 8.0 * alpha / ( ( 6.28 + alpha ) * ( double ) ( order * order ) ) ); x0 = x0 + r1 * r2 * r3 * ( x0 - x[i-3] ); } webbur::gegenbauer_root ( &x0, order, alpha, &dp2, &p1, c ); x[i-1] = x0; w[i-1] = cc / ( dp2 * p1 ); } // // Reverse the order of the values. // for ( i = 1; i <= order/2; i++ ) { temp = x[i-1]; x[i-1] = x[order-i]; x[order-i] = temp; } for ( i = 1; i <=order/2; i++ ) { temp = w[i-1]; w[i-1] = w[order-i]; w[order-i] = temp; } delete [] c; return; } //****************************************************************************80 void gegenbauer_compute_np ( int order, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_COMPUTE_NP computes a Gegenbauer quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) (1-X^2)^ALPHA * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // Thanks to Janiki Raman for pointing out a problem in an earlier // version of the code that occurred when ALPHA was -0.5. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, int NP, the number of parameters. // // Input, double P[NP], contains parameters. // P[0] = ALPHA = the exponent of (1-X^2). -1.0 < ALPHA is required. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double alpha; alpha = p[0]; webbur::gegenbauer_compute ( order, alpha, x, w ); return; } //****************************************************************************80 void gegenbauer_compute_points ( int order, double alpha, double x[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_COMPUTE_POINTS computes Gegenbauer quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, double ALPHA, the exponent of (1-X^2). -1.0 < ALPHA is required. // // Output, double X[ORDER], the abscissas. // { double *w; w = new double[order]; webbur::gegenbauer_compute ( order, alpha, x, w ); delete [] w; return; } //****************************************************************************80 void gegenbauer_compute_points_np ( int order, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_COMPUTE_POINTS_NP computes Gegenbauer quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, int NP, the number of parameters. // // Input, double P[NP], contains parameters. // P[0] = ALPHA = the exponent of (1-X^2). -1.0 < ALPHA is required. // // Output, double X[ORDER], the abscissas. // { double alpha; alpha = p[0]; webbur::gegenbauer_compute_points ( order, alpha, x ); return; } //****************************************************************************80 void gegenbauer_compute_weights ( int order, double alpha, double w[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_COMPUTE_WEIGHTS computes Gegenbauer quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, double ALPHA, the exponent of (1-X^2). -1.0 < ALPHA is required. // // Output, double W[ORDER], the weights. // { double *x; x = new double[order]; webbur::gegenbauer_compute ( order, alpha, x, w ); delete [] x; return; } //****************************************************************************80 void gegenbauer_compute_weights_np ( int order, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_COMPUTE_WEIGHTS_NP computes Gegenbauer quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, double P[1], contains parameters. // P[0] = ALPHA = the exponent of (1-X^2). -1.0 < ALPHA is required. // // Output, double W[ORDER], the weights. // { double alpha; alpha = p[0]; webbur::gegenbauer_compute_weights ( order, alpha, w ); return; } //****************************************************************************80 double gegenbauer_integral ( int expon, double alpha ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_INTEGRAL integrates a monomial with Gegenbauer weight. // // Discussion: // // VALUE = Integral ( -1 <= X <= +1 ) x^EXPON (1-x^2)^ALPHA dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // // Input, double ALPHA, the exponent of (1-X^2) in the weight factor. // // Output, double GEGENBAUER_INTEGRAL, the value of the integral. // { double arg1; double arg2; double arg3; double arg4; double c; double value; double value1; if ( ( expon % 2 ) == 1 ) { value = 0.0; return value; } c = ( double ) ( expon ); arg1 = - alpha; arg2 = 1.0 + c; arg3 = 2.0 + alpha + c; arg4 = - 1.0; value1 = webbur::r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); value = webbur::r8_gamma ( 1.0 + c ) * 2.0 * webbur::r8_gamma ( 1.0 + alpha ) * value1 / webbur::r8_gamma ( 2.0 + alpha + c ); return value; } //****************************************************************************80 void gegenbauer_recur ( double *p2, double *dp2, double *p1, double x, int order, double alpha, double c[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_RECUR evaluates a Gegenbauer polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 February 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Output, double *P2, the value of J(ORDER)(X). // // Output, double *DP2, the value of J'(ORDER)(X). // // Output, double *P1, the value of J(ORDER-1)(X). // // Input, double X, the point at which polynomials are evaluated. // // Input, int ORDER, the order of the polynomial. // // Input, double ALPHA, the exponents of (1-X^2). // // Input, double C[ORDER], the recursion coefficients. // { double dp0; double dp1; int i; double p0; *p1 = 1.0; dp1 = 0.0; *p2 = x; *dp2 = 1.0; for ( i = 2; i <= order; i++ ) { p0 = *p1; dp0 = dp1; *p1 = *p2; dp1 = *dp2; *p2 = x * ( *p1 ) - c[i-1] * p0; *dp2 = x * dp1 + ( *p1 ) - c[i-1] * dp0; } return; } //****************************************************************************80 void gegenbauer_root ( double *x, int order, double alpha, double *dp2, double *p1, double c[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_ROOT improves an approximate root of a Gegenbauer polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 February 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input/output, double *X, the approximate root, which // should be improved on output. // // Input, int ORDER, the order of the polynomial. // // Input, double ALPHA, the exponents of (1-X^2). // // Output, double *DP2, the value of J'(ORDER)(X). // // Output, double *P1, the value of J(ORDER-1)(X). // // Input, double C[ORDER], the recursion coefficients. // { double d; double eps; double p2; int step; int step_max = 10; eps = webbur::r8_epsilon ( ); for ( step = 1; step <= step_max; step++ ) { webbur::gegenbauer_recur ( &p2, dp2, p1, *x, order, alpha, c ); d = p2 / ( *dp2 ); *x = *x - d; if ( webbur::r8_abs ( d ) <= eps * ( webbur::r8_abs ( *x ) + 1.0 ) ) { return; } } return; } //****************************************************************************80 void gen_hermite_compute ( int n, double alpha, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GEN_HERMITE_COMPUTE computes a generalized Gauss-Hermite quadrature rule. // // Discussion: // // The code uses an algorithm by Elhay and Kautsky. // // The integral: // // integral ( -oo < x < +oo ) |x|^alpha exp(-x^2) f(x) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 April 2011 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int N, the number of abscissas. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double *bj; int i; double i_r8; double zemu; // // Define the zero-th moment. // zemu = webbur::r8_gamma ( ( alpha + 1.0 ) / 2.0 ); // // Define the Jacobi matrix. // bj = new double[n]; for ( i = 0; i < n; i++ ) { i_r8 = ( double ) ( i + 1 ); if ( ( i % 2 ) == 0 ) { bj[i] = ( i_r8 + alpha ) / 2.0; } else { bj[i] = i_r8 / 2.0; } } for ( i = 0; i < n; i++ ) { bj[i] = std::sqrt ( bj[i] ); } for ( i = 0; i < n; i++ ) { x[i] = 0.0; } w[0] = std::sqrt ( zemu ); for ( i = 1; i < n; i++ ) { w[i] = 0.0; } // // Diagonalize the Jacobi matrix. // webbur::imtqlx ( n, x, bj, w ); for ( i = 0; i < n; i++ ) { w[i] = w[i] * w[i]; } delete [] bj; return; } //****************************************************************************80 void gen_hermite_compute_np ( int order, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GEN_HERMITE_COMPUTE_NP computes a Generalized Hermite quadrature rule. // // Discussion: // // The integral: // // Integral ( -oo < x < +oo ) |x|^ALPHA exp(-x^2) f(x) dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, int NP, the number of parameters. // // Input, double P[NP], contains parameters. // P[0] = ALPHA, the exponent of the X factor. -1.0 < ALPHA. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double alpha; alpha = p[0]; webbur::gen_hermite_compute ( order, alpha, x, w ); return; } //****************************************************************************80 void gen_hermite_compute_points ( int order, double alpha, double x[] ) //****************************************************************************80 // // Purpose: // // GEN_HERMITE_COMPUTE_POINTS computes Generalized Hermite quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, double ALPHA, the exponent of the X factor. // -1.0 < ALPHA. // // Output, double X[ORDER], the abscissas. // { double *w; w = new double[order]; webbur::gen_hermite_compute ( order, alpha, x, w ); delete [] w; return; } //****************************************************************************80 void gen_hermite_compute_points_np ( int order, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // GEN_HERMITE_COMPUTE_POINTS_NP: Generalized Hermite quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], contains parameters. // P[0] = ALPHA, the exponent of the X factor. -1.0 < ALPHA. // // Output, double X[ORDER], the abscissas. // { double alpha; alpha = p[0]; webbur::gen_hermite_compute_points ( order, alpha, x ); return; } //****************************************************************************80 void gen_hermite_compute_weights ( int order, double alpha, double w[] ) //****************************************************************************80 // // Purpose: // // GEN_HERMITE_COMPUTE_WEIGHTS computes Generalized Hermite quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, double ALPHA, the exponent of the X factor. // -1.0 < ALPHA. // // Output, double W[ORDER], the weights. // { double *x; x = new double[order]; webbur::gen_hermite_compute ( order, alpha, x, w ); delete [] x; return; } //****************************************************************************80 void gen_hermite_compute_weights_np ( int order, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // GEN_HERMITE_COMPUTE_WEIGHTS_NP: Generalized Hermite quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], contains parameters. // P[0] = ALPHA, the exponent of the X factor. -1.0 < ALPHA. // // Output, double W[ORDER], the weights. // { double alpha; alpha = p[0]; webbur::gen_hermite_compute_weights ( order, alpha, w ); return; } //****************************************************************************80 void gen_hermite_dr_compute ( int order, double alpha, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GEN_HERMITE_DR_COMPUTE computes a Generalized Hermite quadrature rule. // // Discussion: // // The integral: // // Integral ( -oo < x < +oo ) |x|^ALPHA exp(-x^2) f(x) dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, double ALPHA, the exponent of the X factor. // -1.0 < ALPHA. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double alpha_laguerre; double arg; int i; int order_laguerre; double *w_laguerre; double *x_laguerre; if ( order < 1 ) { std::cerr << "\n"; std::cerr << "GEN_HERMITE_DR_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of ORDER = " << order << "\n"; std::exit ( 1 ); } if ( order == 1 ) { arg = ( alpha + 1.0 ) / 2.0; x[0] = 0.0; w[0] = webbur::r8_gamma ( arg ); return; } if ( ( order % 2 ) == 0 ) { order_laguerre = order / 2; alpha_laguerre = ( alpha - 1.0 ) / 2.0; } else { order_laguerre = ( order - 1 ) / 2; alpha_laguerre = ( alpha + 1.0 ) / 2.0; } w_laguerre = new double[order_laguerre]; x_laguerre = new double[order_laguerre]; webbur::gen_laguerre_ss_compute ( order_laguerre, alpha_laguerre, x_laguerre, w_laguerre ); if ( ( order % 2 ) == 0 ) { for ( i = 0; i < order_laguerre; i++ ) { x[i] = - std::sqrt ( x_laguerre[order_laguerre-1-i] ); } for ( i = 0; i < order_laguerre; i++ ) { x[order_laguerre+i] = std::sqrt ( x_laguerre[i] ); } for ( i = 0; i < order_laguerre; i++ ) { w[i] = 0.5 * w_laguerre[order_laguerre-1-i]; } for ( i = 0; i < order_laguerre; i++ ) { w[order_laguerre+i] = 0.5 * w_laguerre[i]; } } else if ( ( order % 2 ) == 1 ) { for ( i = 0; i < order_laguerre; i++ ) { x[i] = - std::sqrt ( x_laguerre[order_laguerre-1-i] ); } x[order_laguerre] = 0.0; for ( i = 0; i < order_laguerre; i++ ) { x[order_laguerre+1+i] = std::sqrt ( x_laguerre[i] ); } for ( i = 0; i < order_laguerre; i++ ) { w[i] = 0.5 * w_laguerre[order_laguerre-1-i] / x_laguerre[order_laguerre-1-i]; } arg = ( alpha + 1.0 ) / 2.0; w[order_laguerre] = webbur::r8_gamma ( arg ); for ( i = 0; i < order_laguerre; i++ ) { w[order_laguerre] = w[order_laguerre] - w_laguerre[i] / x_laguerre[i]; } for ( i = 0; i < order_laguerre; i++ ) { w[order_laguerre+1+i] = 0.5 * w_laguerre[i] / x_laguerre[i]; } } delete [] w_laguerre; delete [] x_laguerre; return; } //****************************************************************************80 double gen_hermite_integral ( int expon, double alpha ) //****************************************************************************80 // // Purpose: // // GEN_HERMITE_INTEGRAL evaluates a monomial Generalized Hermite integral. // // Discussion: // // H(n,alpha) = Integral ( -oo < x < +oo ) x^n |x|^alpha exp(-x^2) dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent of the monomial. // 0 <= EXPON. // // Input, double ALPHA, the exponent of |X| in the weight function. // -1.0 < ALPHA. // // Output, double GEN_HERMITE_INTEGRAL, the value of the integral. // { double a; double arg; double value; if ( ( expon % 2 ) == 1 ) { value = 0.0; } else { a = alpha + ( double ) ( expon ); if ( a <= - 1.0 ) { value = - webbur::r8_huge ( ); } else { arg = ( a + 1.0 ) / 2.0; value = webbur::r8_gamma ( arg ); } } return value; } //****************************************************************************80 void gen_laguerre_compute ( int n, double alpha, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GEN_LAGUERRE_COMPUTE: generalized Gauss-Laguerre quadrature rule. // // Discussion: // // The integral: // // integral ( 0 <= x < +oo ) exp ( - x ) * x^alpha * f(x) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // The integral: // // integral ( 0 <= x < +oo ) x^alpha * f(x) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * exp ( x(i) ) * f ( x(i) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 April 2011 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int N, the order. // // Input, double ALPHA, the exponent of the X factor. // ALPHA must be nonnegative. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double *bj; int i; double i_r8; double zemu; // // Define the zero-th moment. // zemu = webbur::r8_gamma ( alpha + 1.0 ); // // Define the Jacobi matrix. // bj = new double[n]; for ( i = 0; i < n; i++ ) { i_r8 = ( double ) ( i + 1 ); bj[i] = std::sqrt ( i_r8 * ( i_r8 + alpha ) ); } for ( i = 0; i < n; i++ ) { i_r8 = ( double ) ( i + 1 ); x[i] = 2.0 * i_r8 - 1.0 + alpha; } w[0] = std::sqrt ( zemu ); for ( i = 1; i < n; i++ ) { w[i] = 0.0; } // // Diagonalize the Jacobi matrix. // imtqlx ( n, x, bj, w ); for ( i = 0; i < n; i++ ) { w[i] = w[i] * w[i]; } delete [] bj; return; } //****************************************************************************80 void gen_laguerre_compute_np ( int order, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GEN_LAGUERRE_COMPUTE_NP computes a Generalized Laguerre quadrature rule. // // Discussion: // // In the simplest case, ALPHA is 0, and we are approximating the // integral from 0 to +oo of exp(-X) * F(X). When this is so, // it is easy to modify the rule to approximate the integral from // A to +oo as well. // // If ALPHA is nonzero, then there is no simple way to extend the // rule to approximate the integral from A to +oo. The simplest // procedures would be to approximate the integral from 0 to A. // // If the integral to approximate is: // // Integral ( A <= X < +oo ) exp ( - X ) * F(X) dX // or // Integral ( 0 <= X < +oo ) exp ( - X ) * X^ALPHA * F(X) dX // // then the quadrature rule is: // // exp ( - A ) * Sum ( 1 <= I <= ORDER ) W(I) * F ( A+X(I) ) // or // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // // If the integral to approximate is: // // Integral ( A <= X < +oo ) F(X) dX // or // Integral ( 0 <= X < +oo ) X^ALPHA * F(X) dX // // then the quadrature rule is: // // exp ( - A ) * Sum ( 1 <= I <= ORDER ) // W(I) * exp(A+X(I)) * F ( A+X(I) ) // or // Sum ( 1 <= I <= ORDER ) W(I) * exp(X(I)) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, double P[1], contains parameters. // P[0] = ALPHA, the exponent of the X factor. // Set ALPHA = 0.0 for the simplest rule. // ALPHA must be nonnegative. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double alpha; alpha = p[0]; webbur::gen_laguerre_compute ( order, alpha, x, w ); return; } //****************************************************************************80 void gen_laguerre_compute_points ( int order, double alpha, double x[] ) //****************************************************************************80 // // Purpose: // // GEN_LAGUERRE_COMPUTE_POINTS: Generalized Laguerre quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 March 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, double ALPHA, the exponent of the X factor. // Set ALPHA = 0.0 for the simplest rule. // ALPHA must be nonnegative. // // Output, double X[ORDER], the abscissas. // { double *w; w = new double[order]; webbur::gen_laguerre_compute ( order, alpha, x, w ); delete [] w; return; } //****************************************************************************80 void gen_laguerre_compute_points_np ( int order, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // GEN_LAGUERRE_COMPUTE_POINTS_NP: Generalized Laguerre quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], contains parameters. // P[0] = ALPHA, the exponent of the X factor. // Set ALPHA = 0.0 for the simplest rule. // ALPHA must be nonnegative. // // Output, double X[ORDER], the abscissas. // { double alpha; alpha = p[0]; webbur::gen_laguerre_compute_points ( order, alpha, x ); return; } //****************************************************************************80 void gen_laguerre_compute_weights ( int order, double alpha, double w[] ) //****************************************************************************80 // // Purpose: // // GEN_LAGUERRE_COMPUTE_WEIGHTS: Generalized Laguerre quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, double ALPHA, the exponent of the X factor. // Set ALPHA = 0.0 for the simplest rule. // ALPHA must be nonnegative. // // Output, double W[ORDER], the weights. // { double *x; x = new double[order]; webbur::gen_laguerre_compute ( order, alpha, x, w ); delete [] x; return; } //****************************************************************************80 void gen_laguerre_compute_weights_np ( int order, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // GEN_LAGUERRE_COMPUTE_WEIGHTS_NP: Generalized Laguerre quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], contains parameters. // P[0] = ALPHA, the exponent of the X factor. // Set ALPHA = 0.0 for the simplest rule. // ALPHA must be nonnegative. // // Output, double W[ORDER], the weights. // { double alpha; alpha = p[0]; webbur::gen_laguerre_compute_weights ( order, alpha, w ); return; } //****************************************************************************80 double gen_laguerre_integral ( int expon, double alpha ) //****************************************************************************80 // // Purpose: // // GEN_LAGUERRE_INTEGRAL evaluates a monomial Generalized Laguerre integral. // // Discussion: // // L(n,alpha) = Integral ( 0 <= x < +oo ) x^n * x^alpha exp(-x) dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent of the monomial. // 0 <= EXPON. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Output, double GEN_LAGUERRE_INTEGRAL, the value of the integral. // { double arg; double value; arg = alpha + ( double ) ( expon + 1.0 ); value = webbur::r8_gamma ( arg ); return value; } //****************************************************************************80 void gen_laguerre_ss_compute ( int order, double alpha, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GEN_LAGUERRE_SS_COMPUTE computes a Generalized Laguerre quadrature rule. // // Discussion: // // In the simplest case, ALPHA is 0, and we are approximating the // integral from 0 to +oo of exp(-X) * F(X). When this is so, // it is easy to modify the rule to approximate the integral from // A to +oo as well. // // If ALPHA is nonzero, then there is no simple way to extend the // rule to approximate the integral from A to +oo. The simplest // procedures would be to approximate the integral from 0 to A. // // If the integral to approximate is: // // Integral ( A <= X < +oo ) exp ( - X ) * F(X) dX // or // Integral ( 0 <= X < +oo ) exp ( - X ) * X^ALPHA * F(X) dX // // then the quadrature rule is: // // exp ( - A ) * Sum ( 1 <= I <= ORDER ) W(I) * F ( A+X(I) ) // or // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // // If the integral to approximate is: // // Integral ( A <= X < +oo ) F(X) dX // or // Integral ( 0 <= X < +oo ) X^ALPHA * F(X) dX // // then the quadrature rule is: // // exp ( - A ) * Sum ( 1 <= I <= ORDER ) // W(I) * exp(A+X(I)) * F ( A+X(I) ) // or // Sum ( 1 <= I <= ORDER ) W(I) * exp(X(I)) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, double ALPHA, the exponent of the X factor. // Set ALPHA = 0.0 for the simplest rule. // ALPHA must be nonnegative. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double *b; double *c; double cc; double dp2; int i; double p1; double prod; double r1; double r2; double ratio; double x0; if ( order < 1 ) { std::cerr << "\n"; std::cerr << "GEN_LAGUERRE_SS_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of ORDER = " << order << "\n"; std::exit ( 1 ); } b = new double[order]; c = new double[order]; // // Set the recursion coefficients. // for ( i = 0; i < order; i++ ) { b[i] = ( alpha + ( double ) ( 2 * i + 1 ) ); } for ( i = 0; i < order; i++ ) { c[i] = ( double ) ( i ) * ( alpha + ( double ) ( i ) ); } prod = 1.0; for ( i = 1; i < order; i++ ) { prod = prod * c[i]; } cc = webbur::r8_gamma ( alpha + 1.0 ) * prod; for ( i = 0; i < order; i++ ) { // // Compute an estimate for the root. // if ( i == 0 ) { x0 = ( 1.0 + alpha ) * ( 3.0+ 0.92 * alpha ) / ( 1.0 + 2.4 * ( double ) ( order ) + 1.8 * alpha ); } else if ( i == 1 ) { x0 = x0 + ( 15.0 + 6.25 * alpha ) / ( 1.0 + 0.9 * alpha + 2.5 * ( double ) ( order ) ); } else { r1 = ( 1.0 + 2.55 * ( double ) ( i - 1 ) ) / ( 1.9 * ( double ) ( i - 1 ) ); r2 = 1.26 * ( double ) ( i - 1 ) * alpha / ( 1.0 + 3.5 * ( double ) ( i - 1 ) ); ratio = ( r1 + r2 ) / ( 1.0 + 0.3 * alpha ); x0 = x0 + ratio * ( x0 - x[i-2] ); } // // Use iteration to find the root. // webbur::gen_laguerre_ss_root ( &x0, order, alpha, &dp2, &p1, b, c ); // // Set the abscissa and weight. // x[i] = x0; w[i] = ( cc / dp2 ) / p1; } delete [] b; delete [] c; return; } //****************************************************************************80 void gen_laguerre_ss_recur ( double *p2, double *dp2, double *p1, double x, int order, double alpha, double b[], double c[] ) //****************************************************************************80 // // Purpose: // // GEN_LAGUERRE_SS_RECUR evaluates a Generalized Laguerre polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 February 2008 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Output, double *P2, the value of L(ORDER)(X). // // Output, double *DP2, the value of L'(ORDER)(X). // // Output, double *P1, the value of L(ORDER-1)(X). // // Input, double X, the point at which polynomials are evaluated. // // Input, int ORDER, the order of the polynomial. // // Input, double ALPHA, the exponent of the X factor in the // integrand. // // Input, double B[ORDER], C[ORDER], the recursion coefficients. // { double dp0; double dp1; int i; double p0; *p1 = 1.0; dp1 = 0.0; *p2 = x - alpha - 1.0; *dp2 = 1.0; for ( i = 1; i < order; i++ ) { p0 = *p1; dp0 = dp1; *p1 = *p2; dp1 = *dp2; *p2 = ( x - b[i] ) * ( *p1 ) - c[i] * p0; *dp2 = ( x - b[i] ) * dp1 + ( *p1 ) - c[i] * dp0; } return; } //****************************************************************************80 void gen_laguerre_ss_root ( double *x, int order, double alpha, double *dp2, double *p1, double b[], double c[] ) //****************************************************************************80 // // Purpose: // // GEN_LAGUERRE_SS_ROOT improves a root of a Generalized Laguerre polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 February 2008 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input/output, double *X, the approximate root, which // should be improved on output. // // Input, int ORDER, the order of the polynomial. // // Input, double ALPHA, the exponent of the X factor. // // Output, double *DP2, the value of L'(ORDER)(X). // // Output, double *P1, the value of L(ORDER-1)(X). // // Input, double B[ORDER], C[ORDER], the recursion coefficients. // { double d; double eps; double p2; int step; int step_max = 10; eps = webbur::r8_epsilon ( ); for ( step = 1; step <= step_max; step++ ) { webbur::gen_laguerre_ss_recur ( &p2, dp2, p1, *x, order, alpha, b, c ); d = p2 / ( *dp2 ); *x = *x - d; if ( webbur::r8_abs ( d ) <= eps * ( webbur::r8_abs ( *x ) + 1.0 ) ) { break; } } return; } //****************************************************************************80 void hc_compute_weights_from_points ( int nhalf, double xhalf[], double w[] ) //****************************************************************************80 // // Purpose: // // HC_COMPUTE_WEIGHTS_FROM_POINTS: Hermite-Cubic weights, user-supplied points. // // Discussion: // // An interval [A,B] has been divided by NHALF points X; at each // point both function and derivative information is available. // // The piecewise cubic Hermite interpolant is constructed for this data. // // A quadrature rule is determined for the interpolant. // // There will be N=2*NHALF weights. If the quadrature rule is to be written // out, one would normally list each point twice, so that the number of points // and weights are equal. The listing of the same point value twice is an // implicit indication that both function and derivative values should be // used. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int NHALF, the number of points, not counting repetitions. // // Input, double XHALF[NHALF], the points, without repetition. // // Output, double W[2*NHALF], the weights. The first two weights are // associated with the first point, and so on. // { int j; w[0+0*2] = 0.5 * ( xhalf[1] - xhalf[0] ); w[1+0*2] = std::pow ( xhalf[1] - xhalf[0], 2 ) / 12.0; for ( j = 1; j < nhalf - 1; j++ ) { w[0+j*2] = 0.5 * ( xhalf[j+1] - xhalf[j-1] ); w[1+j*2] = ( xhalf[j+1] - xhalf[j-1] ) * ( xhalf[j+1] - 2.0 * xhalf[j] + xhalf[j-1] ) / 12.0; } w[0+(nhalf-1)*2] = 0.5 * ( xhalf[nhalf-1] - xhalf[nhalf-2] ); w[1+(nhalf-1)*2] = - std::pow ( xhalf[nhalf-2] - xhalf[nhalf-1], 2 ) / 12.0; return; } //****************************************************************************80 void hcc_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HCC_COMPUTE computes a Hermite-Cubic-Chebyshev-Spacing quadrature rule. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into Chebyshev-spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { int nhalf; double *xhalf; nhalf = n / 2; xhalf = new double[nhalf]; webbur::clenshaw_curtis_compute_points ( nhalf, xhalf ); webbur::r8vec_stutter ( nhalf, xhalf, 2, x ); webbur::hc_compute_weights_from_points ( nhalf, xhalf, w ); delete [] xhalf; return; } //****************************************************************************80 void hcc_compute_np ( int n, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HCC_COMPUTE_NP computes a Hermite-Cubic-Chebyshev-Spacing quadrature rule. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into Chebyshev-spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::hcc_compute ( n, x, w ); return; } //****************************************************************************80 void hcc_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // HCC_COMPUTE_POINTS computes Hermite-Cubic-Chebyshev-Spacing quadrature points. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into Chebyshev-spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double X[N], the abscissas. // { int nhalf; double *xhalf; if ( ( n % 2 ) != 0 ) { std::cerr << "\n"; std::cerr << "HCC_COMPUTE_POINTS - Fatal error!\n"; std::cerr << " Order of rule N is not even.\n"; std::exit ( 1 ); } nhalf = n / 2; xhalf = new double[nhalf]; webbur::clenshaw_curtis_compute_points ( nhalf, xhalf ); webbur::r8vec_stutter ( nhalf, xhalf, 2, x ); delete [] xhalf; return; } //****************************************************************************80 void hcc_compute_points_np ( int n, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // HCC_COMPUTE_POINTS_NP: Hermite-Cubic-Chebyshev-Spacing quadrature points. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into Chebyshev-spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // { webbur::hcc_compute_points ( n, x ); return; } //****************************************************************************80 void hcc_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // HCC_COMPUTE_WEIGHTS: Hermite-Cubic-Chebyshev-Spacing quadrature weights. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into Chebyshev-spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double W[N], the weights. // { int nhalf; double *xhalf; if ( ( n % 2 ) != 0 ) { std::cerr << "\n"; std::cerr << "HCC_COMPUTE_WEIGHTS - Fatal error!\n"; std::cerr << " Order of rule N is not even.\n"; std::exit ( 1 ); } nhalf = n / 2; xhalf = new double[nhalf]; webbur::hc_compute_weights_from_points ( nhalf, xhalf, w ); delete [] xhalf; return; } //****************************************************************************80 void hcc_compute_weights_np ( int n, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // HCC_COMPUTE_WEIGHTS_NP: Hermite-Cubic-Chebyshev-Spacing quadrature weights. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into Chebyshev-spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[N], the weights. // { webbur::hcc_compute_weights ( n, w ); return; } //****************************************************************************80 void hce_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HCE_COMPUTE computes a Hermite-Cubic-Equal-Spacing quadrature rule. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into equally spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double a_high = 1.0; double a_low = 0.0; int nhalf; double *xhalf; a_low = 0.0; a_high = 1.0; nhalf = n / 2; xhalf = webbur::r8vec_linspace_new ( nhalf, a_low, a_high ); webbur::r8vec_stutter ( nhalf, xhalf, 2, x ); webbur::hc_compute_weights_from_points ( nhalf, xhalf, w ); delete [] xhalf; return; } //****************************************************************************80 void hce_compute_np ( int n, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HCE_COMPUTE_NP computes a Hermite-Cubic-Equal-Spacing quadrature rule. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into equally spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::hce_compute ( n, x, w ); return; } //****************************************************************************80 void hce_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // HCE_COMPUTE_POINTS computes Hermite-Cubic-Equal-Spacing quadrature points. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into equally spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double X[N], the abscissas. // { int i; int j; int m; double x_value; if ( ( n % 2 ) != 0 ) { std::cerr << "\n"; std::cerr << "HCE_COMPUTE_POINTS - Fatal error!\n"; std::cerr << " Order of rule N is not even.\n"; std::exit ( 1 ); } m = n / 2; for ( j = 0; j < m; j++ ) { x_value = ( double ) ( 2 * j + 1 - m ) / ( double ) ( m - 1 ); for ( i = 0; i < 2; i++ ) { x[i+j*2] = x_value; } } return; } //****************************************************************************80 void hce_compute_points_np ( int n, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // HCE_COMPUTE_POINTS_NP: Hermite-Cubic-Equal-Spacing quadrature points. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into equally spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // { webbur::hce_compute_points ( n, x ); return; } //****************************************************************************80 void hce_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // HCE_COMPUTE_WEIGHTS: Hermite-Cubic-Equal-Spacing quadrature weights. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into equally spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double W[N], the weights. // { int nhalf; double *xhalf; if ( ( n % 2 ) != 0 ) { std::cerr << "\n"; std::cerr << "HCE_COMPUTE_WEIGHTS - Fatal error!\n"; std::cerr << " Order of rule N is not even.\n"; std::exit ( 1 ); } nhalf = n / 2; xhalf = new double[nhalf]; webbur::hc_compute_weights_from_points ( nhalf, xhalf, w ); delete [] xhalf; return; } //****************************************************************************80 void hce_compute_weights_np ( int n, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // HCE_COMPUTE_WEIGHTS_NP: Hermite-Cubic-Equal-Spacing quadrature weights. // // Discussion: // // For the HCE rule, we assume that an interval has been divided by // M nodes X into equally spaced subintervals, and that at each // abscissa both function and derivative information is available. // The piecewise cubic Hermite interpolant is constructed for this data. // The quadrature rule uses N = 2 * M abscissas, where each node is // listed twice, and the weights occur in pairs, with the first multiplying // the function value and the second the derivative. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[N], the weights. // { webbur::hce_compute_weights ( n, w ); return; } //****************************************************************************80 void hermite_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_COMPUTE computes a Gauss-Hermite quadrature rule. // // Discussion: // // The code uses an algorithm by Elhay and Kautsky. // // The abscissas are the zeros of the N-th order Hermite polynomial. // // The integral: // // integral ( -oo < x < +oo ) exp ( - x * x ) * f(x) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 May 2012 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int N, the number of abscissas. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double arg; double *bj; int i; double zemu; // // Define the zero-th moment. // arg = 0.5; zemu = webbur::r8_gamma ( arg ); // // Define the Jacobi matrix. // bj = new double[n]; for ( i = 0; i < n; i++ ) { bj[i] = std::sqrt ( ( double ) ( i + 1 ) / 2.0 ); } for ( i = 0; i < n; i++ ) { x[i] = 0.0; } w[0] = std::sqrt ( zemu ); for ( i = 1; i < n; i++ ) { w[i] = 0.0; } // // Diagonalize the Jacobi matrix. // webbur::imtqlx ( n, x, bj, w ); // // If N is odd, force the middle X to be exactly zero. // if ( ( n % 2 ) == 1 ) { x[(n-1)/2] = 0.0; } for ( i = 0; i < n; i++ ) { w[i] = w[i] * w[i]; } delete [] bj; return; } //****************************************************************************80 void hermite_compute_np ( int order, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_COMPUTE_NP computes a Hermite quadrature rule. // // Discussion: // // The abscissas are the zeros of the N-th order Hermite polynomial. // // The integral: // // Integral ( -oo < X < +oo ) exp ( - X * X ) * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { webbur::hermite_compute ( order, x, w ); return; } //****************************************************************************80 void hermite_compute_points ( int order, double x[] ) //****************************************************************************80 // // Purpose: // // HERMITE_COMPUTE_POINTS computes Hermite quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Output, double X[ORDER], the abscissas. // { double *w; w = new double[order]; webbur::hermite_compute ( order, x, w ); delete [] w; return; } //****************************************************************************80 void hermite_compute_points_np ( int order, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // HERMITE_COMPUTE_POINTS_NP computes Hermite quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[ORDER], the abscissas. // { webbur::hermite_compute_points ( order, x ); return; } //****************************************************************************80 void hermite_compute_weights ( int order, double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_COMPUTE_WEIGHTS computes Hermite quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Output, double W[ORDER], the weights. // { double *x; x = new double[order]; webbur::hermite_compute ( order, x, w ); delete [] x; return; } //****************************************************************************80 void hermite_compute_weights_np ( int order, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_COMPUTE_WEIGHTS_NP computes Hermite quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[ORDER], the weights. // { webbur::hermite_compute_weights ( order, w ); return; } //****************************************************************************80 void hermite_genz_keister_lookup ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_GENZ_KEISTER_LOOKUP looks up a Genz-Keister Hermite rule. // // Discussion: // // The integral: // // integral ( -oo <= x <= +oo ) f(x) exp ( - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // A nested family of rules for the Hermite integration problem // was produced by Genz and Keister. The structure of the nested // family was denoted by 1+2+6+10+16, that is, it comprised rules // of successive orders O = 1, 3, 9, 19, and 35. // // The precisions of these rules are P = 1, 5, 15, 29, and 51. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 June 2010 // // Author: // // John Burkardt // // Reference: // // Alan Genz, Bradley Keister, // Fully symmetric interpolatory rules for multiple integrals // over infinite regions with Gaussian weight, // Journal of Computational and Applied Mathematics, // Volume 71, 1996, pages 299-309 // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // N must be 1, 3, 9, 19, 35, 37, 41 or 43. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::hermite_genz_keister_lookup_points ( n, x ); webbur::hermite_genz_keister_lookup_weights ( n, w ); return; } //****************************************************************************80 void hermite_genz_keister_lookup_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // HERMITE_GENZ_KEISTER_LOOKUP_POINTS looks up Genz-Keister Hermite abscissas. // // Discussion: // // The integral: // // integral ( -oo <= x <= +oo ) f(x) exp ( - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // A nested family of rules for the Hermite integration problem // was produced by Genz and Keister. The structure of the nested // family was denoted by 1+2+6+10+?, that is, it comprised rules // of successive orders O = 1, 3, 9, 19, and a final rule of order // 35, 37, 41 or 43. // // The precisions of these rules are P = 1, 5, 15, 29, // with the final rule of precision 51, 55, 63 or 67. // // Three related families begin the same way, but end with a different final // rule. As a convenience, this function includes these final rules as well: // // Designation Orders Precisions // // 1+2+6+10+16, 1,3,9,19,35 1,5,15,29,51 // 1+2+6+10+18 1,3,9,19,37 1,5,15,29,55 // 1+2+6+10+22 1,3,9,19,41 1,5,15,29,63 // 1+2+6+10+24 1,3,9,19,43 1,5,15,29,67 // // Some of the data in this function was kindly supplied directly by // Alan Genz on 24 April 2011. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 October 2011 // // Author: // // John Burkardt // // Reference: // // Alan Genz, Bradley Keister, // Fully symmetric interpolatory rules for multiple integrals // over infinite regions with Gaussian weight, // Journal of Computational and Applied Mathematics, // Volume 71, 1996, pages 299-309 // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // N must be 1, 3, 9, 19, 35, 37, 41, or 43. // // Output, double X[N], the abscissas. // { if ( n == 1 ) { x[ 0] = 0.0000000000000000E+00; } else if ( n == 3 ) { x[ 0] = -1.2247448713915889E+00; x[ 1] = 0.0000000000000000E+00; x[ 2] = 1.2247448713915889E+00; } else if ( n == 9 ) { x[ 0] = -2.9592107790638380E+00; x[ 1] = -2.0232301911005157E+00; x[ 2] = -1.2247448713915889E+00; x[ 3] = -5.2403354748695763E-01; x[ 4] = 0.0000000000000000E+00; x[ 5] = 5.2403354748695763E-01; x[ 6] = 1.2247448713915889E+00; x[ 7] = 2.0232301911005157E+00; x[ 8] = 2.9592107790638380E+00; } else if ( n == 19 ) { x[ 0] = -4.4995993983103881E+00; x[ 1] = -3.6677742159463378E+00; x[ 2] = -2.9592107790638380E+00; x[ 3] = -2.2665132620567876E+00; x[ 4] = -2.0232301911005157E+00; x[ 5] = -1.8357079751751868E+00; x[ 6] = -1.2247448713915889E+00; x[ 7] = -8.7004089535290285E-01; x[ 8] = -5.2403354748695763E-01; x[ 9] = 0.0000000000000000E+00; x[10] = 5.2403354748695763E-01; x[11] = 8.7004089535290285E-01; x[12] = 1.2247448713915889E+00; x[13] = 1.8357079751751868E+00; x[14] = 2.0232301911005157E+00; x[15] = 2.2665132620567876E+00; x[16] = 2.9592107790638380E+00; x[17] = 3.6677742159463378E+00; x[18] = 4.4995993983103881E+00; } else if ( n == 35 ) { x[ 0] = -6.3759392709822356E+00; x[ 1] = -5.6432578578857449E+00; x[ 2] = -5.0360899444730940E+00; x[ 3] = -4.4995993983103881E+00; x[ 4] = -4.0292201405043713E+00; x[ 5] = -3.6677742159463378E+00; x[ 6] = -3.3491639537131945E+00; x[ 7] = -2.9592107790638380E+00; x[ 8] = -2.5705583765842968E+00; x[ 9] = -2.2665132620567876E+00; x[10] = -2.0232301911005157E+00; x[11] = -1.8357079751751868E+00; x[12] = -1.5794121348467671E+00; x[13] = -1.2247448713915889E+00; x[14] = -8.7004089535290285E-01; x[15] = -5.2403354748695763E-01; x[16] = -1.7606414208200893E-01; x[17] = 0.0000000000000000E+00; x[18] = 1.7606414208200893E-01; x[19] = 5.2403354748695763E-01; x[20] = 8.7004089535290285E-01; x[21] = 1.2247448713915889E+00; x[22] = 1.5794121348467671E+00; x[23] = 1.8357079751751868E+00; x[24] = 2.0232301911005157E+00; x[25] = 2.2665132620567876E+00; x[26] = 2.5705583765842968E+00; x[27] = 2.9592107790638380E+00; x[28] = 3.3491639537131945E+00; x[29] = 3.6677742159463378E+00; x[30] = 4.0292201405043713E+00; x[31] = 4.4995993983103881E+00; x[32] = 5.0360899444730940E+00; x[33] = 5.6432578578857449E+00; x[34] = 6.3759392709822356E+00; } else if ( n == 37 ) { x[ 0] = -6.853200069757519; x[ 1] = -6.124527854622158; x[ 2] = -5.521865209868350; x[ 3] = -4.986551454150765; x[ 4] = -4.499599398310388; x[ 5] = -4.057956316089741; x[ 6] = -3.667774215946338; x[ 7] = -3.315584617593290; x[ 8] = -2.959210779063838; x[ 9] = -2.597288631188366; x[10] = -2.266513262056788; x[11] = -2.023230191100516; x[12] = -1.835707975175187; x[13] = -1.561553427651873; x[14] = -1.224744871391589; x[15] = -0.870040895352903; x[16] = -0.524033547486958; x[17] = -0.214618180588171; x[18] = 0.000000000000000; x[19] = 0.214618180588171; x[20] = 0.524033547486958; x[21] = 0.870040895352903; x[22] = 1.224744871391589; x[23] = 1.561553427651873; x[24] = 1.835707975175187; x[25] = 2.023230191100516; x[26] = 2.266513262056788; x[27] = 2.597288631188366; x[28] = 2.959210779063838; x[29] = 3.315584617593290; x[30] = 3.667774215946338; x[31] = 4.057956316089741; x[32] = 4.499599398310388; x[33] = 4.986551454150765; x[34] = 5.521865209868350; x[35] = 6.124527854622158; x[36] = 6.853200069757519; } else if ( n == 41 ) { x[ 0] = -7.251792998192644; x[ 1] = -6.547083258397540; x[ 2] = -5.961461043404500; x[ 3] = -5.437443360177798; x[ 4] = -4.953574342912980; x[ 5] = -4.4995993983103881; x[ 6] = -4.070919267883068; x[ 7] = -3.6677742159463378; x[ 8] = -3.296114596212218; x[ 9] = -2.9592107790638380; x[10] = -2.630415236459871; x[11] = -2.2665132620567876; x[12] = -2.043834754429505; x[13] = -2.0232301911005157; x[14] = -1.8357079751751868; x[15] = -1.585873011819188; x[16] = -1.2247448713915889; x[17] = -0.87004089535290285; x[18] = -0.52403354748695763; x[19] = -0.195324784415805; x[20] = 0.0000000000000000; x[21] = 0.195324784415805; x[22] = 0.52403354748695763; x[23] = 0.87004089535290285; x[24] = 1.2247448713915889; x[25] = 1.585873011819188; x[26] = 1.8357079751751868; x[27] = 2.0232301911005157; x[28] = 2.043834754429505; x[29] = 2.2665132620567876; x[30] = 2.630415236459871; x[31] = 2.9592107790638380; x[32] = 3.296114596212218; x[33] = 3.6677742159463378; x[34] = 4.070919267883068; x[35] = 4.4995993983103881; x[36] = 4.953574342912980; x[37] = 5.437443360177798; x[38] = 5.961461043404500; x[39] = 6.547083258397540; x[40] = 7.251792998192644; } else if ( n == 43 ) { x[ 0] = -10.167574994881873; x[ 1] = -7.231746029072501; x[ 2] = -6.535398426382995; x[ 3] = -5.954781975039809; x[ 4] = -5.434053000365068; x[ 5] = -4.952329763008589; x[ 6] = -4.4995993983103881; x[ 7] = -4.071335874253583; x[ 8] = -3.6677742159463378; x[ 9] = -3.295265921534226; x[10] = -2.9592107790638380; x[11] = -2.633356763661946; x[12] = -2.2665132620567876; x[13] = -2.089340389294661; x[14] = -2.0232301911005157; x[15] = -1.8357079751751868; x[16] = -1.583643465293944; x[17] = -1.2247448713915889; x[18] = -0.87004089535290285; x[19] = -0.52403354748695763; x[20] = -0.196029453662011; x[21] = 0.0000000000000000; x[22] = 0.196029453662011; x[23] = 0.52403354748695763; x[24] = 0.87004089535290285; x[25] = 1.2247448713915889; x[26] = 1.583643465293944; x[27] = 1.8357079751751868; x[28] = 2.0232301911005157; x[29] = 2.089340389294661; x[30] = 2.2665132620567876; x[31] = 2.633356763661946; x[32] = 2.9592107790638380; x[33] = 3.295265921534226; x[34] = 3.6677742159463378; x[35] = 4.071335874253583; x[36] = 4.4995993983103881; x[37] = 4.952329763008589; x[38] = 5.434053000365068; x[39] = 5.954781975039809; x[40] = 6.535398426382995; x[41] = 7.231746029072501; x[42] = 10.167574994881873; } else { std::cerr << "\n"; std::cerr << "HERMITE_GENZ_KEISTER_LOOKUP_POINTS - Fatal error!\n"; std::cerr << " Illegal input value of N.\n"; std::cerr << " N must be 1, 3, 9, 19, 35, 37, 41 or 43.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void hermite_genz_keister_lookup_points_np ( int n, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // HERMITE_GENZ_KEISTER_LOOKUP_POINTS_NP looks up Genz-Keister Hermite abscissas. // // Discussion: // // The integral: // // integral ( -oo <= x <= +oo ) f(x) exp ( - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // A nested family of rules for the Hermite integration problem // was produced by Genz and Keister. The structure of the nested // family was denoted by 1+2+6+10+?, that is, it comprised rules // of successive orders O = 1, 3, 9, 19, and a final rule of order // 35, 37, 41 or 43. // // The precisions of these rules are P = 1, 5, 15, 29, // with the final rule of precision 51, 55, 63 or 67. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 October 2011 // // Author: // // John Burkardt // // Reference: // // Alan Genz, Bradley Keister, // Fully symmetric interpolatory rules for multiple integrals // over infinite regions with Gaussian weight, // Journal of Computational and Applied Mathematics, // Volume 71, 1996, pages 299-309 // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // N must be 1, 3, 9, 19, 35, 37, 41 or 43. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // { webbur::hermite_genz_keister_lookup_points ( n, x ); return; } //****************************************************************************80 void hermite_genz_keister_lookup_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_GENZ_KEISTER_LOOKUP_WEIGHTS looks up Genz-Keister Hermite weights. // // Discussion: // // The integral: // // integral ( -oo <= x <= +oo ) f(x) exp ( - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // A nested family of rules for the Hermite integration problem // was produced by Genz and Keister. The structure of the nested // family was denoted by 1+2+6+10+?, that is, it comprised rules // of successive orders O = 1, 3, 9, 19, and a final rule of order // 35, 37, 41 or 43. // // The precisions of these rules are P = 1, 5, 15, 29, // with the final rule of precision 51, 55, 63 or 67. // // Three related families begin the same way, but end with a different final // rule. As a convenience, this function includes these final rules as well: // // Designation Orders Precisions // // 1+2+6+10+16, 1,3,9,19,35 1,5,15,29,51 // 1+2+6+10+18 1,3,9,19,37 1,5,15,29,55 // 1+2+6+10+22 1,3,9,19,41 1,5,15,29,63 // 1+2+6+10+24 1,3,9,19,43 1,5,15,29,67 // // Some of the data in this function was kindly supplied directly by // Alan Genz on 24 April 2011. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 October 2011 // // Author: // // John Burkardt // // Reference: // // Alan Genz, Bradley Keister, // Fully symmetric interpolatory rules for multiple integrals // over infinite regions with Gaussian weight, // Journal of Computational and Applied Mathematics, // Volume 71, 1996, pages 299-309 // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // N must be 1, 3, 9, 19, 35, 37, 41, or 43. // // Output, double W[N], the weights. // { if ( n == 1 ) { w[ 0] = 1.7724538509055159E+00; } else if ( n == 3 ) { w[ 0] = 2.9540897515091930E-01; w[ 1] = 1.1816359006036772E+00; w[ 2] = 2.9540897515091930E-01; } else if ( n == 9 ) { w[ 0] = 1.6708826306882348E-04; w[ 1] = 1.4173117873979098E-02; w[ 2] = 1.6811892894767771E-01; w[ 3] = 4.7869428549114124E-01; w[ 4] = 4.5014700975378197E-01; w[ 5] = 4.7869428549114124E-01; w[ 6] = 1.6811892894767771E-01; w[ 7] = 1.4173117873979098E-02; w[ 8] = 1.6708826306882348E-04; } else if ( n == 19 ) { w[ 0] = 1.5295717705322357E-09; w[ 1] = 1.0802767206624762E-06; w[ 2] = 1.0656589772852267E-04; w[ 3] = 5.1133174390883855E-03; w[ 4] = -1.1232438489069229E-02; w[ 5] = 3.2055243099445879E-02; w[ 6] = 1.1360729895748269E-01; w[ 7] = 1.0838861955003017E-01; w[ 8] = 3.6924643368920851E-01; w[ 9] = 5.3788160700510168E-01; w[10] = 3.6924643368920851E-01; w[11] = 1.0838861955003017E-01; w[12] = 1.1360729895748269E-01; w[13] = 3.2055243099445879E-02; w[14] = -1.1232438489069229E-02; w[15] = 5.1133174390883855E-03; w[16] = 1.0656589772852267E-04; w[17] = 1.0802767206624762E-06; w[18] = 1.5295717705322357E-09; } else if ( n == 35 ) { w[ 0] = 1.8684014894510604E-18; w[ 1] = 9.6599466278563243E-15; w[ 2] = 5.4896836948499462E-12; w[ 3] = 8.1553721816916897E-10; w[ 4] = 3.7920222392319532E-08; w[ 5] = 4.3737818040926989E-07; w[ 6] = 4.8462799737020461E-06; w[ 7] = 6.3328620805617891E-05; w[ 8] = 4.8785399304443770E-04; w[ 9] = 1.4515580425155904E-03; w[10] = 4.0967527720344047E-03; w[11] = 5.5928828911469180E-03; w[12] = 2.7780508908535097E-02; w[13] = 8.0245518147390893E-02; w[14] = 1.6371221555735804E-01; w[15] = 2.6244871488784277E-01; w[16] = 3.3988595585585218E-01; w[17] = 9.1262675363737921E-04; w[18] = 3.3988595585585218E-01; w[19] = 2.6244871488784277E-01; w[20] = 1.6371221555735804E-01; w[21] = 8.0245518147390893E-02; w[22] = 2.7780508908535097E-02; w[23] = 5.5928828911469180E-03; w[24] = 4.0967527720344047E-03; w[25] = 1.4515580425155904E-03; w[26] = 4.8785399304443770E-04; w[27] = 6.3328620805617891E-05; w[28] = 4.8462799737020461E-06; w[29] = 4.3737818040926989E-07; w[30] = 3.7920222392319532E-08; w[31] = 8.1553721816916897E-10; w[32] = 5.4896836948499462E-12; w[33] = 9.6599466278563243E-15; w[34] = 1.8684014894510604E-18; } else if ( n == 37 ) { w[ 0] = 0.337304188079177058E-20; w[ 1] = 0.332834739632930463E-16; w[ 2] = 0.323016866782871498E-13; w[ 3] = 0.809333688669950037E-11; w[ 4] = 0.748907559239519284E-09; w[ 5] = 0.294146671497083432E-07; w[ 6] = 0.524482423744884136E-06; w[ 7] = 0.586639457073896277E-05; w[ 8] = 0.571885531470621903E-04; w[ 9] = 0.41642095727577091E-03; w[10] = 0.174733389581099482E-02; w[11] = 0.313373786000304381E-02; w[12] = 0.768092665770660459E-02; w[13] = 0.274962713372148476E-01; w[14] = 0.783630990508037449E-01; w[15] = 0.16611584261479281E+00; w[16] = 0.253636910481387185E+00; w[17] = 0.261712932511430884E+00; w[18] = 0.171719680968980257E+00; w[19] = 0.261712932511430884E+00; w[20] = 0.253636910481387185E+00; w[21] = 0.16611584261479281E+00; w[22] = 0.783630990508037449E-01; w[23] = 0.274962713372148476E-01; w[24] = 0.768092665770660459E-02; w[25] = 0.313373786000304381E-02; w[26] = 0.174733389581099482E-02; w[27] = 0.41642095727577091E-03; w[28] = 0.571885531470621903E-04; w[29] = 0.586639457073896277E-05; w[30] = 0.524482423744884136E-06; w[31] = 0.294146671497083432E-07; w[32] = 0.748907559239519284E-09; w[33] = 0.809333688669950037E-11; w[34] = 0.323016866782871498E-13; w[35] = 0.332834739632930463E-16; w[36] = 0.337304188079177058E-20; } else if ( n == 41 ) { w[ 0] = 0.117725656974405367E-22; w[ 1] = 0.152506745534300636E-18; w[ 2] = 0.202183949965101288E-15; w[ 3] = 0.724614869051195508E-13; w[ 4] = 0.103121966469463034E-10; w[ 5] = 0.710371395169350952E-09; w[ 6] = 0.264376044449260516E-07; w[ 7] = 0.558982787078644997E-06; w[ 8] = 0.675628907134744976E-05; w[ 9] = 0.512198007019776873E-04; w[10] = 0.335013114947200879E-03; w[11] = 0.249379691096933139E-02; w[12] = - 0.25616995850607458E-01; w[13] = 0.317007878644325588E-01; w[14] = 0.125041498584003435E-02; w[15] = 0.293244560924894295E-01; w[16] = 0.799536390803302298E-01; w[17] = 0.164543666806555251E+00; w[18] = 0.258718519718241095E+00; w[19] = 0.293588795735908566E+00; w[20] = 0.997525375254611951E-01; w[21] = 0.293588795735908566E+00; w[22] = 0.258718519718241095E+00; w[23] = 0.164543666806555251E+00; w[24] = 0.799536390803302298E-01; w[25] = 0.293244560924894295E-01; w[26] = 0.125041498584003435E-02; w[27] = 0.317007878644325588E-01; w[28] = - 0.25616995850607458E-01; w[29] = 0.249379691096933139E-02; w[30] = 0.335013114947200879E-03; w[31] = 0.512198007019776873E-04; w[32] = 0.675628907134744976E-05; w[33] = 0.558982787078644997E-06; w[34] = 0.264376044449260516E-07; w[35] = 0.710371395169350952E-09; w[36] = 0.103121966469463034E-10; w[37] = 0.724614869051195508E-13; w[38] = 0.202183949965101288E-15; w[39] = 0.152506745534300636E-18; w[40] = 0.117725656974405367E-22; } else if ( n == 43 ) { w[ 0] = 0.968100020641528185E-37; w[ 1] = 0.15516931262860431E-22; w[ 2] = 0.175937309107750992E-18; w[ 3] = 0.217337608710893738E-15; w[ 4] = 0.747837010380540069E-13; w[ 5] = 0.104028132097205732E-10; w[ 6] = 0.70903573389336778E-09; w[ 7] = 0.263481722999966618E-07; w[ 8] = 0.560127964848432175E-06; w[ 9] = 0.680410934802210232E-05; w[10] = 0.508343873102544037E-04; w[11] = 0.32753080006610181E-03; w[12] = 0.267479828788552937E-02; w[13] = - 0.687704270963253854E-02; w[14] = 0.119383201790913588E-01; w[15] = 0.248083722871002796E-02; w[16] = 0.29000335749726387E-01; w[17] = 0.798689557875757008E-01; w[18] = 0.164609842422580606E+00; w[19] = 0.258535954731607738E+00; w[20] = 0.292243810406117141E+00; w[21] = 0.102730713753441829E+00; w[22] = 0.292243810406117141E+00; w[23] = 0.258535954731607738E+00; w[24] = 0.164609842422580606E+00; w[25] = 0.798689557875757008E-01; w[26] = 0.29000335749726387E-01; w[27] = 0.248083722871002796E-02; w[28] = 0.119383201790913588E-01; w[29] = - 0.687704270963253854E-02; w[30] = 0.267479828788552937E-02; w[31] = 0.32753080006610181E-03; w[32] = 0.508343873102544037E-04; w[33] = 0.680410934802210232E-05; w[34] = 0.560127964848432175E-06; w[35] = 0.263481722999966618E-07; w[36] = 0.70903573389336778E-09; w[37] = 0.104028132097205732E-10; w[38] = 0.747837010380540069E-13; w[39] = 0.217337608710893738E-15; w[40] = 0.175937309107750992E-18; w[41] = 0.15516931262860431E-22; w[42] = 0.968100020641528185E-37; } else { std::cerr << "\n"; std::cerr << "HERMITE_GENZ_KEISTER_LOOKUP_WEIGHTS - Fatal error!\n"; std::cerr << " Illegal input value of N.\n"; std::cerr << " N must be 1, 3, 9, 19, 35, 37, 41 or 43.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void hermite_genz_keister_lookup_weights_np ( int n, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_GENZ_KEISTER_LOOKUP_WEIGHTS_NP looks up Genz-Keister Hermite weights. // // Discussion: // // The integral: // // integral ( -oo <= x <= +oo ) f(x) exp ( - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // A nested family of rules for the Hermite integration problem // was produced by Genz and Keister. The structure of the nested // family was denoted by 1+2+6+10+?, that is, it comprised rules // of successive orders O = 1, 3, 9, 19, and a final rule of order // 35, 37, 41 or 43. // // The precisions of these rules are P = 1, 5, 15, 29, // with the final rule of precision 51, 55, 63 or 67. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 October 2011 // // Author: // // John Burkardt // // Reference: // // Alan Genz, Bradley Keister, // Fully symmetric interpolatory rules for multiple integrals // over infinite regions with Gaussian weight, // Journal of Computational and Applied Mathematics, // Volume 71, 1996, pages 299-309 // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // N must be 1, 3, 9, 19, 35, 37, 41 or 43. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[N], the weights. // { webbur::hermite_genz_keister_lookup_weights ( n, w ); return; } //****************************************************************************80 void hermite_gk18_lookup_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // HERMITE_GK18_LOOKUP_POINTS: abscissas of a Hermite Genz-Keister 18 rule. // // Discussion: // // The integral: // // integral ( -oo <= x <= +oo ) f(x) exp ( - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // A nested family of rules for the Hermite integration problem // was produced by Genz and Keister. The structure of the nested // family was denoted by 1+2+6+10+18, that is, it comprised rules // of successive orders O = 1, 3, 9, 19, and 37. // // The precisions of these rules are P = 1, 5, 15, 29, and 55. // // Some of the data in this function was kindly supplied directly by // Alan Genz on 24 April 2011. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 April 2011 // // Author: // // John Burkardt // // Reference: // // Alan Genz, Bradley Keister, // Fully symmetric interpolatory rules for multiple integrals // over infinite regions with Gaussian weight, // Journal of Computational and Applied Mathematics, // Volume 71, 1996, pages 299-309 // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // N must be 1, 3, 9, 19, or 37. // // Output, double X[N], the abscissas. // { if ( n == 1 ) { x[ 0] = 0.0000000000000000E+00; } else if ( n == 3 ) { x[ 0] = -1.2247448713915889E+00; x[ 1] = 0.0000000000000000E+00; x[ 2] = 1.2247448713915889E+00; } else if ( n == 9 ) { x[ 0] = -2.9592107790638380E+00; x[ 1] = -2.0232301911005157E+00; x[ 2] = -1.2247448713915889E+00; x[ 3] = -5.2403354748695763E-01; x[ 4] = 0.0000000000000000E+00; x[ 5] = 5.2403354748695763E-01; x[ 6] = 1.2247448713915889E+00; x[ 7] = 2.0232301911005157E+00; x[ 8] = 2.9592107790638380E+00; } else if ( n == 19 ) { x[ 0] = -4.4995993983103881E+00; x[ 1] = -3.6677742159463378E+00; x[ 2] = -2.9592107790638380E+00; x[ 3] = -2.2665132620567876E+00; x[ 4] = -2.0232301911005157E+00; x[ 5] = -1.8357079751751868E+00; x[ 6] = -1.2247448713915889E+00; x[ 7] = -8.7004089535290285E-01; x[ 8] = -5.2403354748695763E-01; x[ 9] = 0.0000000000000000E+00; x[10] = 5.2403354748695763E-01; x[11] = 8.7004089535290285E-01; x[12] = 1.2247448713915889E+00; x[13] = 1.8357079751751868E+00; x[14] = 2.0232301911005157E+00; x[15] = 2.2665132620567876E+00; x[16] = 2.9592107790638380E+00; x[17] = 3.6677742159463378E+00; x[18] = 4.4995993983103881E+00; } else if ( n == 35 ) { x[ 0] = -6.853200069757519; x[ 1] = -6.124527854622158; x[ 2] = -5.521865209868350; x[ 3] = -4.986551454150765; x[ 4] = -4.499599398310388; x[ 5] = -4.057956316089741; x[ 6] = -3.667774215946338; x[ 7] = -3.315584617593290; x[ 8] = -2.959210779063838; x[ 9] = -2.597288631188366; x[10] = -2.266513262056788; x[11] = -2.023230191100516; x[12] = -1.835707975175187; x[13] = -1.561553427651873; x[14] = -1.224744871391589; x[15] = -0.870040895352903; x[16] = -0.524033547486958; x[17] = -0.214618180588171; x[18] = 0.000000000000000; x[19] = 0.214618180588171; x[20] = 0.524033547486958; x[21] = 0.870040895352903; x[22] = 1.224744871391589; x[23] = 1.561553427651873; x[24] = 1.835707975175187; x[25] = 2.023230191100516; x[26] = 2.266513262056788; x[27] = 2.597288631188366; x[28] = 2.959210779063838; x[29] = 3.315584617593290; x[30] = 3.667774215946338; x[31] = 4.057956316089741; x[32] = 4.499599398310388; x[33] = 4.986551454150765; x[34] = 5.521865209868350; x[35] = 6.124527854622158; x[36] = 6.853200069757519; } else { std::cerr << "\n"; std::cerr << "HERMITE_GK18_LOOKUP_POINTS - Fatal error!\n"; std::cerr << " Illegal input value of N.\n"; std::cerr << " N must be 1, 3, 9, 19, or 37.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void hermite_gk22_lookup_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // HERMITE_GK22_LOOKUP_POINTS looks up Hermite Genz-Keister 22 points. // // Discussion: // // The integral: // // integral ( -oo <= x <= +oo ) f(x) exp ( - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // A nested family of rules for the Hermite integration problem // was produced by Genz and Keister. The structure of the nested // family was denoted by 1+2+6+10+16, that is, it comprised rules // of successive orders O = 1, 3, 9, 19, and 41. // // The precisions of these rules are P = 1, 5, 15, 29, and 63. // // Some of the data in this function was kindly supplied directly by // Alan Genz on 24 April 2011. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 April 2011 // // Author: // // John Burkardt // // Reference: // // Alan Genz, Bradley Keister, // Fully symmetric interpolatory rules for multiple integrals // over infinite regions with Gaussian weight, // Journal of Computational and Applied Mathematics, // Volume 71, 1996, pages 299-309 // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // N must be 1, 3, 9, 19, or 41. // // Output, double X[N], the abscissas. // { if ( n == 1 ) { x[ 0] = 0.0000000000000000E+00; } else if ( n == 3 ) { x[ 0] = -1.2247448713915889E+00; x[ 1] = 0.0000000000000000E+00; x[ 2] = 1.2247448713915889E+00; } else if ( n == 9 ) { x[ 0] = -2.9592107790638380E+00; x[ 1] = -2.0232301911005157E+00; x[ 2] = -1.2247448713915889E+00; x[ 3] = -5.2403354748695763E-01; x[ 4] = 0.0000000000000000E+00; x[ 5] = 5.2403354748695763E-01; x[ 6] = 1.2247448713915889E+00; x[ 7] = 2.0232301911005157E+00; x[ 8] = 2.9592107790638380E+00; } else if ( n == 19 ) { x[ 0] = -4.4995993983103881E+00; x[ 1] = -3.6677742159463378E+00; x[ 2] = -2.9592107790638380E+00; x[ 3] = -2.2665132620567876E+00; x[ 4] = -2.0232301911005157E+00; x[ 5] = -1.8357079751751868E+00; x[ 6] = -1.2247448713915889E+00; x[ 7] = -8.7004089535290285E-01; x[ 8] = -5.2403354748695763E-01; x[ 9] = 0.0000000000000000E+00; x[10] = 5.2403354748695763E-01; x[11] = 8.7004089535290285E-01; x[12] = 1.2247448713915889E+00; x[13] = 1.8357079751751868E+00; x[14] = 2.0232301911005157E+00; x[15] = 2.2665132620567876E+00; x[16] = 2.9592107790638380E+00; x[17] = 3.6677742159463378E+00; x[18] = 4.4995993983103881E+00; } else if ( n == 41 ) { x[ 0] = -7.251792998192644; x[ 1] = -6.547083258397540; x[ 2] = -5.961461043404500; x[ 3] = -5.437443360177798; x[ 4] = -4.953574342912980; x[ 5] = -4.4995993983103881; x[ 6] = -4.070919267883068; x[ 7] = -3.6677742159463378; x[ 8] = -3.296114596212218; x[ 9] = -2.9592107790638380; x[10] = -2.630415236459871; x[11] = -2.2665132620567876; x[12] = -2.043834754429505; x[13] = -2.0232301911005157; x[14] = -1.8357079751751868; x[15] = -1.585873011819188; x[16] = -1.2247448713915889; x[17] = -0.87004089535290285; x[18] = -0.52403354748695763; x[19] = -0.195324784415805; x[20] = 0.0000000000000000; x[21] = 0.195324784415805; x[22] = 0.52403354748695763; x[23] = 0.87004089535290285; x[24] = 1.2247448713915889; x[25] = 1.585873011819188; x[26] = 1.8357079751751868; x[27] = 2.0232301911005157; x[28] = 2.043834754429505; x[29] = 2.2665132620567876; x[30] = 2.630415236459871; x[31] = 2.9592107790638380; x[32] = 3.296114596212218; x[33] = 3.6677742159463378; x[34] = 4.070919267883068; x[35] = 4.4995993983103881; x[36] = 4.953574342912980; x[37] = 5.437443360177798; x[38] = 5.961461043404500; x[39] = 6.547083258397540; x[40] = 7.251792998192644; } else { std::cerr << "\n"; std::cerr << "HERMITE_GK22_LOOKUP_POINTS - Fatal error!\n"; std::cerr << " Illegal input value of N.\n"; std::cerr << " N must be 1, 3, 9, 19, or 41.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void hermite_gk24_lookup_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // HERMITE_GK24_LOOKUP_POINTS looks up Hermite Genz-Keister 24 points. // // Discussion: // // The integral: // // integral ( -oo <= x <= +oo ) f(x) exp ( - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // A nested family of rules for the Hermite integration problem // was produced by Genz and Keister. The structure of the nested // family was denoted by 1+2+6+10+16, that is, it comprised rules // of successive orders O = 1, 3, 9, 19, and 43. // // The precisions of these rules are P = 1, 5, 15, 29, and 67. // // Some of the data in this function was kindly supplied directly by // Alan Genz on 24 April 2011. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 April 2011 // // Author: // // John Burkardt // // Reference: // // Alan Genz, Bradley Keister, // Fully symmetric interpolatory rules for multiple integrals // over infinite regions with Gaussian weight, // Journal of Computational and Applied Mathematics, // Volume 71, 1996, pages 299-309 // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // N must be 1, 3, 9 19, or 43. // // Output, double X[N], the abscissas. // { if ( n == 1 ) { x[ 0] = 0.0000000000000000E+00; } else if ( n == 3 ) { x[ 0] = -1.2247448713915889E+00; x[ 1] = 0.0000000000000000E+00; x[ 2] = 1.2247448713915889E+00; } else if ( n == 9 ) { x[ 0] = -2.9592107790638380E+00; x[ 1] = -2.0232301911005157E+00; x[ 2] = -1.2247448713915889E+00; x[ 3] = -5.2403354748695763E-01; x[ 4] = 0.0000000000000000E+00; x[ 5] = 5.2403354748695763E-01; x[ 6] = 1.2247448713915889E+00; x[ 7] = 2.0232301911005157E+00; x[ 8] = 2.9592107790638380E+00; } else if ( n == 19 ) { x[ 0] = -4.4995993983103881E+00; x[ 1] = -3.6677742159463378E+00; x[ 2] = -2.9592107790638380E+00; x[ 3] = -2.2665132620567876E+00; x[ 4] = -2.0232301911005157E+00; x[ 5] = -1.8357079751751868E+00; x[ 6] = -1.2247448713915889E+00; x[ 7] = -8.7004089535290285E-01; x[ 8] = -5.2403354748695763E-01; x[ 9] = 0.0000000000000000E+00; x[10] = 5.2403354748695763E-01; x[11] = 8.7004089535290285E-01; x[12] = 1.2247448713915889E+00; x[13] = 1.8357079751751868E+00; x[14] = 2.0232301911005157E+00; x[15] = 2.2665132620567876E+00; x[16] = 2.9592107790638380E+00; x[17] = 3.6677742159463378E+00; x[18] = 4.4995993983103881E+00; } else if ( n == 43 ) { x[ 0] = -10.167574994881873; x[ 1] = -7.231746029072501; x[ 2] = -6.535398426382995; x[ 3] = -5.954781975039809; x[ 4] = -5.434053000365068; x[ 5] = -4.952329763008589; x[ 6] = -4.4995993983103881; x[ 7] = -4.071335874253583; x[ 8] = -3.6677742159463378; x[ 9] = -3.295265921534226; x[10] = -2.9592107790638380; x[11] = -2.633356763661946; x[12] = -2.2665132620567876; x[13] = -2.089340389294661; x[14] = -2.0232301911005157; x[15] = -1.8357079751751868; x[16] = -1.583643465293944; x[17] = -1.2247448713915889; x[18] = -0.87004089535290285; x[19] = -0.52403354748695763; x[20] = -0.196029453662011; x[21] = 0.0000000000000000; x[22] = 0.196029453662011; x[23] = 0.52403354748695763; x[24] = 0.87004089535290285; x[25] = 1.2247448713915889; x[26] = 1.583643465293944; x[27] = 1.8357079751751868; x[28] = 2.0232301911005157; x[29] = 2.089340389294661; x[30] = 2.2665132620567876; x[31] = 2.633356763661946; x[32] = 2.9592107790638380; x[33] = 3.295265921534226; x[34] = 3.6677742159463378; x[35] = 4.071335874253583; x[36] = 4.4995993983103881; x[37] = 4.952329763008589; x[38] = 5.434053000365068; x[39] = 5.954781975039809; x[40] = 6.535398426382995; x[41] = 7.231746029072501; x[42] = 10.167574994881873; } else { std::cerr << "\n"; std::cerr << "HERMITE_GK24_LOOKUP_POINTS - Fatal error!\n"; std::cerr << " Illegal input value of N.\n"; std::cerr << " N must be 1, 3, 9, 19, or 43.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 double hermite_integral ( int n ) //****************************************************************************80 // // Purpose: // // HERMITE_INTEGRAL evaluates a monomial Hermite integral. // // Discussion: // // H(n) = Integral ( -oo < x < +oo ) x^n exp(-x^2) dx // // H(n) is 0 for n odd. // // H(n) = (n-1)!! * sqrt(pi) / 2^(n/2) for n even. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the integral. // 0 <= N. // // Output, double VALUE, the value of the integral. // { double pi = 3.141592653589793; double value; if ( n < 0 ) { value = - webbur::r8_huge ( ); } else if ( ( n % 2 ) == 1 ) { value = 0.0; } else { value = webbur::r8_factorial2 ( n - 1 ) * std::sqrt ( pi ) / std::pow ( 2.0, n / 2 ); } return value; } //****************************************************************************80 void hermite_interpolant ( int n, double x[], double y[], double yp[], double xd[], double yd[], double xdp[], double ydp[] ) //****************************************************************************80 // // Purpose: // // HERMITE_INTERPOLANT sets up a divided difference table from Hermite data. // // Discussion: // // The polynomial represented by the divided difference table can be // evaluated by calling DIF_VALS. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 October 2011 // // Author: // // John Burkardt // // Reference: // // Carl deBoor, // A Practical Guide to Splines, // Springer, 2001, // ISBN: 0387953663, // LC: QA1.A647.v27. // // Parameters: // // Input, int N, of items of data // ( X(I), Y(I), YP(I) ). // // Input, double X[N], the abscissas. // These values must be distinct. // // Input, double Y[N], YP[N], the function and derivative values. // // Output, double XD[2*N], YD[2*N], the divided difference table // for the interpolant value. // // Output, double XDP[2*N-1], YDP[2*N-1], the divided difference // table for the interpolant derivative. // { int i; int j; int nd; int ndp; // // Copy the data. // nd = 2 * n; for ( i = 0; i < n; i++ ) { xd[0+i*2] = x[i]; xd[1+i*2] = x[i]; } // // Carry out the first step of differencing. // yd[0] = y[0]; for ( i = 1; i < n; i++ ) { yd[0+2*i] = ( y[i] - y[i-1] ) / ( x[i] - x[i-1] ); } for ( i = 0; i < n; i++ ) { yd[1+2*i] = yp[i]; } // // Carry out the remaining steps in the usual way. // for ( i = 2; i < nd; i++ ) { for ( j = nd - 1; i <= j; j-- ) { yd[j] = ( yd[j] - yd[j-1] ) / ( xd[j] - xd[j-i] ); } } // // Compute the difference table for the derivative. // webbur::dif_deriv ( nd, xd, yd, &ndp, xdp, ydp ); return; } //****************************************************************************80 void hermite_interpolant_rule ( int n, double a, double b, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_INTERPOLANT_RULE: quadrature rule for a Hermite interpolant. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 October 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of abscissas. // // Input, double A, B, the integration limits. // // Input, double X[N], the abscissas. // // Output, double W[2*N], the quadrature // coefficients, given as pairs for function and derivative values // at each abscissa. // { double a_value; double b_value; double *c; int i; int k; int nd; int ndp; double *xd; double *xdp; double *y; double *yd; double *ydp; double *yp; y = new double[n]; yp = new double[n]; nd = 2 * n; c = new double[nd]; xd = new double[nd]; yd = new double[nd]; ndp = 2 * n - 1; xdp = new double[ndp]; ydp = new double[ndp]; for ( i = 0; i < n; i++ ) { y[i] = 0.0; yp[i] = 0.0; } k = 0; for ( i = 0; i < n; i++ ) { y[i] = 1.0; webbur::hermite_interpolant ( n, x, y, yp, xd, yd, xdp, ydp ); webbur::dif_to_r8poly ( nd, xd, yd, c ); a_value = webbur::r8poly_ant_val ( n, c, a ); b_value = webbur::r8poly_ant_val ( n, c, b ); w[k] = b_value - a_value; y[i] = 0.0; k = k + 1; yp[i] = 1.0; webbur::hermite_interpolant ( n, x, y, yp, xd, yd, xdp, ydp ); webbur::dif_to_r8poly ( nd, xd, yd, c ); a_value = webbur::r8poly_ant_val ( n, c, a ); b_value = webbur::r8poly_ant_val ( n, c, b ); w[k] = b_value - a_value; yp[i] = 0.0; k = k + 1; } delete [] c; delete [] xd; delete [] xdp; delete [] y; delete [] yd; delete [] ydp; delete [] yp; return; } //****************************************************************************80 void hermite_interpolant_value ( int nd, double xd[], double yd[], double xdp[], double ydp[], int nv, double xv[], double yv[], double yvp[] ) //****************************************************************************80 // // Purpose: // // HERMITE_INTERPOLANT_VALUE evaluates the Hermite interpolant polynomial. // // Discussion: // // In fact, this function will evaluate an arbitrary polynomial that is // represented by a difference table. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 October 2011 // // Author: // // John Burkardt // // Reference: // // Carl deBoor, // A Practical Guide to Splines, // Springer, 2001, // ISBN: 0387953663, // LC: QA1.A647.v27. // // Parameters: // // Input, int ND, the order of the difference table. // // Input, double XD[ND], YD[ND], the difference table for the // interpolant value. // // Input, double XDP[ND-1], YDP[ND-1], the difference table for // the interpolant derivative. // // Input, int NV, the number of evaluation points. // // Input, double XV[NV], the evaluation points. // // Output, double YV[NV], YVP[NV], the value of the interpolant and // its derivative at the evaluation points. // { int i; int j; int ndp; ndp = nd - 1; for ( j = 0; j < nv; j++ ) { yv[j] = yd[nd-1]; for ( i = nd - 2; 0 <= i; i-- ) { yv[j] = yd[i] + ( xv[j] - xd[i] ) * yv[j]; } yvp[j] = ydp[ndp-1]; for ( i = ndp - 2; 0 <= i; i-- ) { yvp[j] = ydp[i] + ( xv[j] - xdp[i] ) * yvp[j]; } } return; } //****************************************************************************80 void hermite_lookup ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_LOOKUP looks up abscissas and weights for Gauss-Hermite quadrature. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798. // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3, // LC: QA47.M315. // // Parameters: // // Input, int N, the order. // N must be between 1 and 20. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::hermite_lookup_points ( n, x ); webbur::hermite_lookup_weights ( n, w ); return; } //****************************************************************************80 void hermite_lookup_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // HERMITE_LOOKUP_POINTS looks up abscissas for Hermite quadrature. // // Discussion: // // The integral: // // integral ( -oo < x < +oo ) exp ( - x * x ) * f(x) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ). // // Mathematica can numerically estimate the abscissas // of order N to P digits by the command: // // NSolve [ HermiteH [ n, x ] == 0, x, p ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798, // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3, // LC: QA47.M315. // // Parameters: // // Input, int N, the order. // N must be between 1 and 20. // // Output, double X[N], the abscissas. // { if ( n == 1 ) { x[0] = 0.0; } else if ( n == 2 ) { x[0] = - 0.707106781186547524400844362105E+00; x[1] = 0.707106781186547524400844362105E+00; } else if ( n == 3 ) { x[0] = - 0.122474487139158904909864203735E+01; x[1] = 0.0E+00; x[2] = 0.122474487139158904909864203735E+01; } else if ( n == 4 ) { x[0] = - 0.165068012388578455588334111112E+01; x[1] = - 0.524647623275290317884060253835E+00; x[2] = 0.524647623275290317884060253835E+00; x[3] = 0.165068012388578455588334111112E+01; } else if ( n == 5 ) { x[0] = - 0.202018287045608563292872408814E+01; x[1] = - 0.958572464613818507112770593893E+00; x[2] = 0.0E+00; x[3] = 0.958572464613818507112770593893E+00; x[4] = 0.202018287045608563292872408814E+01; } else if ( n == 6 ) { x[0] = - 0.235060497367449222283392198706E+01; x[1] = - 0.133584907401369694971489528297E+01; x[2] = - 0.436077411927616508679215948251E+00; x[3] = 0.436077411927616508679215948251E+00; x[4] = 0.133584907401369694971489528297E+01; x[5] = 0.235060497367449222283392198706E+01; } else if ( n == 7 ) { x[0] = - 0.265196135683523349244708200652E+01; x[1] = - 0.167355162876747144503180139830E+01; x[2] = - 0.816287882858964663038710959027E+00; x[3] = 0.0E+00; x[4] = 0.816287882858964663038710959027E+00; x[5] = 0.167355162876747144503180139830E+01; x[6] = 0.265196135683523349244708200652E+01; } else if ( n == 8 ) { x[0] = - 0.293063742025724401922350270524E+01; x[1] = - 0.198165675669584292585463063977E+01; x[2] = - 0.115719371244678019472076577906E+01; x[3] = - 0.381186990207322116854718885584E+00; x[4] = 0.381186990207322116854718885584E+00; x[5] = 0.115719371244678019472076577906E+01; x[6] = 0.198165675669584292585463063977E+01; x[7] = 0.293063742025724401922350270524E+01; } else if ( n == 9 ) { x[0] = - 0.319099320178152760723004779538E+01; x[1] = - 0.226658058453184311180209693284E+01; x[2] = - 0.146855328921666793166701573925E+01; x[3] = - 0.723551018752837573322639864579E+00; x[4] = 0.0E+00; x[5] = 0.723551018752837573322639864579E+00; x[6] = 0.146855328921666793166701573925E+01; x[7] = 0.226658058453184311180209693284E+01; x[8] = 0.319099320178152760723004779538E+01; } else if ( n == 10 ) { x[0] = - 0.343615911883773760332672549432E+01; x[1] = - 0.253273167423278979640896079775E+01; x[2] = - 0.175668364929988177345140122011E+01; x[3] = - 0.103661082978951365417749191676E+01; x[4] = - 0.342901327223704608789165025557E+00; x[5] = 0.342901327223704608789165025557E+00; x[6] = 0.103661082978951365417749191676E+01; x[7] = 0.175668364929988177345140122011E+01; x[8] = 0.253273167423278979640896079775E+01; x[9] = 0.343615911883773760332672549432E+01; } else if ( n == 11 ) { x[0] = - 0.366847084655958251845837146485E+01; x[1] = - 0.278329009978165177083671870152E+01; x[2] = - 0.202594801582575533516591283121E+01; x[3] = - 0.132655708449493285594973473558E+01; x[4] = - 0.656809566882099765024611575383E+00; x[5] = 0.0E+00; x[6] = 0.656809566882099765024611575383E+00; x[7] = 0.132655708449493285594973473558E+01; x[8] = 0.202594801582575533516591283121E+01; x[9] = 0.278329009978165177083671870152E+01; x[10] = 0.366847084655958251845837146485E+01; } else if ( n == 12 ) { x[0] = - 0.388972489786978191927164274724E+01; x[1] = - 0.302063702512088977171067937518E+01; x[2] = - 0.227950708050105990018772856942E+01; x[3] = - 0.159768263515260479670966277090E+01; x[4] = - 0.947788391240163743704578131060E+00; x[5] = - 0.314240376254359111276611634095E+00; x[6] = 0.314240376254359111276611634095E+00; x[7] = 0.947788391240163743704578131060E+00; x[8] = 0.159768263515260479670966277090E+01; x[9] = 0.227950708050105990018772856942E+01; x[10] = 0.302063702512088977171067937518E+01; x[11] = 0.388972489786978191927164274724E+01; } else if ( n == 13 ) { x[0] = - 0.410133759617863964117891508007E+01; x[1] = - 0.324660897837240998812205115236E+01; x[2] = - 0.251973568567823788343040913628E+01; x[3] = - 0.185310765160151214200350644316E+01; x[4] = - 0.122005503659074842622205526637E+01; x[5] = - 0.605763879171060113080537108602E+00; x[6] = 0.0E+00; x[7] = 0.605763879171060113080537108602E+00; x[8] = 0.122005503659074842622205526637E+01; x[9] = 0.185310765160151214200350644316E+01; x[10] = 0.251973568567823788343040913628E+01; x[11] = 0.324660897837240998812205115236E+01; x[12] = 0.410133759617863964117891508007E+01; } else if ( n == 14 ) { x[0] = - 0.430444857047363181262129810037E+01; x[1] = - 0.346265693360227055020891736115E+01; x[2] = - 0.274847072498540256862499852415E+01; x[3] = - 0.209518325850771681573497272630E+01; x[4] = - 0.147668273114114087058350654421E+01; x[5] = - 0.878713787329399416114679311861E+00; x[6] = - 0.291745510672562078446113075799E+00; x[7] = 0.291745510672562078446113075799E+00; x[8] = 0.878713787329399416114679311861E+00; x[9] = 0.147668273114114087058350654421E+01; x[10] = 0.209518325850771681573497272630E+01; x[11] = 0.274847072498540256862499852415E+01; x[12] = 0.346265693360227055020891736115E+01; x[13] = 0.430444857047363181262129810037E+01; } else if ( n == 15 ) { x[0] = - 0.449999070730939155366438053053E+01; x[1] = - 0.366995037340445253472922383312E+01; x[2] = - 0.296716692790560324848896036355E+01; x[3] = - 0.232573248617385774545404479449E+01; x[4] = - 0.171999257518648893241583152515E+01; x[5] = - 0.113611558521092066631913490556E+01; x[6] = - 0.565069583255575748526020337198E+00; x[7] = 0.0E+00; x[8] = 0.565069583255575748526020337198E+00; x[9] = 0.113611558521092066631913490556E+01; x[10] = 0.171999257518648893241583152515E+01; x[11] = 0.232573248617385774545404479449E+01; x[12] = 0.296716692790560324848896036355E+01; x[13] = 0.366995037340445253472922383312E+01; x[14] = 0.449999070730939155366438053053E+01; } else if ( n == 16 ) { x[0] = - 0.468873893930581836468849864875E+01; x[1] = - 0.386944790486012269871942409801E+01; x[2] = - 0.317699916197995602681399455926E+01; x[3] = - 0.254620215784748136215932870545E+01; x[4] = - 0.195178799091625397743465541496E+01; x[5] = - 0.138025853919888079637208966969E+01; x[6] = - 0.822951449144655892582454496734E+00; x[7] = - 0.273481046138152452158280401965E+00; x[8] = 0.273481046138152452158280401965E+00; x[9] = 0.822951449144655892582454496734E+00; x[10] = 0.138025853919888079637208966969E+01; x[11] = 0.195178799091625397743465541496E+01; x[12] = 0.254620215784748136215932870545E+01; x[13] = 0.317699916197995602681399455926E+01; x[14] = 0.386944790486012269871942409801E+01; x[15] = 0.468873893930581836468849864875E+01; } else if ( n == 17 ) { x[0] = - 0.487134519367440308834927655662E+01; x[1] = - 0.406194667587547430689245559698E+01; x[2] = - 0.337893209114149408338327069289E+01; x[3] = - 0.275776291570388873092640349574E+01; x[4] = - 0.217350282666662081927537907149E+01; x[5] = - 0.161292431422123133311288254454E+01; x[6] = - 0.106764872574345055363045773799E+01; x[7] = - 0.531633001342654731349086553718E+00; x[8] = 0.0E+00; x[9] = 0.531633001342654731349086553718E+00; x[10] = 0.106764872574345055363045773799E+01; x[11] = 0.161292431422123133311288254454E+01; x[12] = 0.217350282666662081927537907149E+01; x[13] = 0.275776291570388873092640349574E+01; x[14] = 0.337893209114149408338327069289E+01; x[15] = 0.406194667587547430689245559698E+01; x[16] = 0.487134519367440308834927655662E+01; } else if ( n == 18 ) { x[0] = - 0.504836400887446676837203757885E+01; x[1] = - 0.424811787356812646302342016090E+01; x[2] = - 0.357376906848626607950067599377E+01; x[3] = - 0.296137750553160684477863254906E+01; x[4] = - 0.238629908916668600026459301424E+01; x[5] = - 0.183553160426162889225383944409E+01; x[6] = - 0.130092085838961736566626555439E+01; x[7] = - 0.776682919267411661316659462284E+00; x[8] = - 0.258267750519096759258116098711E+00; x[9] = 0.258267750519096759258116098711E+00; x[10] = 0.776682919267411661316659462284E+00; x[11] = 0.130092085838961736566626555439E+01; x[12] = 0.183553160426162889225383944409E+01; x[13] = 0.238629908916668600026459301424E+01; x[14] = 0.296137750553160684477863254906E+01; x[15] = 0.357376906848626607950067599377E+01; x[16] = 0.424811787356812646302342016090E+01; x[17] = 0.504836400887446676837203757885E+01; } else if ( n == 19 ) { x[0] = - 0.522027169053748216460967142500E+01; x[1] = - 0.442853280660377943723498532226E+01; x[2] = - 0.376218735196402009751489394104E+01; x[3] = - 0.315784881834760228184318034120E+01; x[4] = - 0.259113378979454256492128084112E+01; x[5] = - 0.204923170985061937575050838669E+01; x[6] = - 0.152417061939353303183354859367E+01; x[7] = - 0.101036838713431135136859873726E+01; x[8] = - 0.503520163423888209373811765050E+00; x[9] = 0.0E+00; x[10] = 0.503520163423888209373811765050E+00; x[11] = 0.101036838713431135136859873726E+01; x[12] = 0.152417061939353303183354859367E+01; x[13] = 0.204923170985061937575050838669E+01; x[14] = 0.259113378979454256492128084112E+01; x[15] = 0.315784881834760228184318034120E+01; x[16] = 0.376218735196402009751489394104E+01; x[17] = 0.442853280660377943723498532226E+01; x[18] = 0.522027169053748216460967142500E+01; } else if ( n == 20 ) { x[0] = - 0.538748089001123286201690041068E+01; x[1] = - 0.460368244955074427307767524898E+01; x[2] = - 0.394476404011562521037562880052E+01; x[3] = - 0.334785456738321632691492452300E+01; x[4] = - 0.278880605842813048052503375640E+01; x[5] = - 0.225497400208927552308233334473E+01; x[6] = - 0.173853771211658620678086566214E+01; x[7] = - 0.123407621539532300788581834696E+01; x[8] = - 0.737473728545394358705605144252E+00; x[9] = - 0.245340708300901249903836530634E+00; x[10] = 0.245340708300901249903836530634E+00; x[11] = 0.737473728545394358705605144252E+00; x[12] = 0.123407621539532300788581834696E+01; x[13] = 0.173853771211658620678086566214E+01; x[14] = 0.225497400208927552308233334473E+01; x[15] = 0.278880605842813048052503375640E+01; x[16] = 0.334785456738321632691492452300E+01; x[17] = 0.394476404011562521037562880052E+01; x[18] = 0.460368244955074427307767524898E+01; x[19] = 0.538748089001123286201690041068E+01; } else { std::cerr << "\n"; std::cerr << "HERMITE_LOOKUP_POINTS - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::cerr << " Legal values are 1 through 20.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void hermite_lookup_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_LOOKUP_WEIGHTS looks up weights for Hermite quadrature. // // Discussion: // // The integral: // // integral ( -oo < x < +oo ) exp ( - x * x ) * f(x) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ). // // Mathematica can numerically estimate the abscissas // of order N to P digits by the command: // // NSolve [ HermiteH [ n, x ] == 0, x, p ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798, // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3, // LC: QA47.M315. // // Parameters: // // Input, int N, the order. // N must be between 1 and 20. // // Output, double W[N], the weights. // { if ( n == 1 ) { w[0] = 1.77245385090551602729816748334; } else if ( n == 2 ) { w[0] = 0.886226925452758013649083741671E+00; w[1] = 0.886226925452758013649083741671E+00; } else if ( n == 3 ) { w[0] = 0.295408975150919337883027913890E+00; w[1] = 0.118163590060367735153211165556E+01; w[2] = 0.295408975150919337883027913890E+00; } else if ( n == 4 ) { w[0] = 0.813128354472451771430345571899E-01; w[1] = 0.804914090005512836506049184481E+00; w[2] = 0.804914090005512836506049184481E+00; w[3] = 0.813128354472451771430345571899E-01; } else if ( n == 5 ) { w[0] = 0.199532420590459132077434585942E-01; w[1] = 0.393619323152241159828495620852E+00; w[2] = 0.945308720482941881225689324449E+00; w[3] = 0.393619323152241159828495620852E+00; w[4] = 0.199532420590459132077434585942E-01; } else if ( n == 6 ) { w[0] = 0.453000990550884564085747256463E-02; w[1] = 0.157067320322856643916311563508E+00; w[2] = 0.724629595224392524091914705598E+00; w[3] = 0.724629595224392524091914705598E+00; w[4] = 0.157067320322856643916311563508E+00; w[5] = 0.453000990550884564085747256463E-02; } else if ( n == 7 ) { w[0] = 0.971781245099519154149424255939E-03; w[1] = 0.545155828191270305921785688417E-01; w[2] = 0.425607252610127800520317466666E+00; w[3] = 0.810264617556807326764876563813E+00; w[4] = 0.425607252610127800520317466666E+00; w[5] = 0.545155828191270305921785688417E-01; w[6] = 0.971781245099519154149424255939E-03; } else if ( n == 8 ) { w[0] = 0.199604072211367619206090452544E-03; w[1] = 0.170779830074134754562030564364E-01; w[2] = 0.207802325814891879543258620286E+00; w[3] = 0.661147012558241291030415974496E+00; w[4] = 0.661147012558241291030415974496E+00; w[5] = 0.207802325814891879543258620286E+00; w[6] = 0.170779830074134754562030564364E-01; w[7] = 0.199604072211367619206090452544E-03; } else if ( n == 9 ) { w[0] = 0.396069772632643819045862946425E-04; w[1] = 0.494362427553694721722456597763E-02; w[2] = 0.884745273943765732879751147476E-01; w[3] = 0.432651559002555750199812112956E+00; w[4] = 0.720235215606050957124334723389E+00; w[5] = 0.432651559002555750199812112956E+00; w[6] = 0.884745273943765732879751147476E-01; w[7] = 0.494362427553694721722456597763E-02; w[8] = 0.396069772632643819045862946425E-04; } else if ( n == 10 ) { w[0] = 0.764043285523262062915936785960E-05; w[1] = 0.134364574678123269220156558585E-02; w[2] = 0.338743944554810631361647312776E-01; w[3] = 0.240138611082314686416523295006E+00; w[4] = 0.610862633735325798783564990433E+00; w[5] = 0.610862633735325798783564990433E+00; w[6] = 0.240138611082314686416523295006E+00; w[7] = 0.338743944554810631361647312776E-01; w[8] = 0.134364574678123269220156558585E-02; w[9] = 0.764043285523262062915936785960E-05; } else if ( n == 11 ) { w[0] = 0.143956039371425822033088366032E-05; w[1] = 0.346819466323345510643413772940E-03; w[2] = 0.119113954449115324503874202916E-01; w[3] = 0.117227875167708503381788649308E+00; w[4] = 0.429359752356125028446073598601E+00; w[5] = 0.654759286914591779203940657627E+00; w[6] = 0.429359752356125028446073598601E+00; w[7] = 0.117227875167708503381788649308E+00; w[8] = 0.119113954449115324503874202916E-01; w[9] = 0.346819466323345510643413772940E-03; w[10] = 0.143956039371425822033088366032E-05; } else if ( n == 12 ) { w[0] = 0.265855168435630160602311400877E-06; w[1] = 0.857368704358785865456906323153E-04; w[2] = 0.390539058462906185999438432620E-02; w[3] = 0.516079856158839299918734423606E-01; w[4] = 0.260492310264161129233396139765E+00; w[5] = 0.570135236262479578347113482275E+00; w[6] = 0.570135236262479578347113482275E+00; w[7] = 0.260492310264161129233396139765E+00; w[8] = 0.516079856158839299918734423606E-01; w[9] = 0.390539058462906185999438432620E-02; w[10] = 0.857368704358785865456906323153E-04; w[11] = 0.265855168435630160602311400877E-06; } else if ( n == 13 ) { w[0] = 0.482573185007313108834997332342E-07; w[1] = 0.204303604027070731248669432937E-04; w[2] = 0.120745999271938594730924899224E-02; w[3] = 0.208627752961699392166033805050E-01; w[4] = 0.140323320687023437762792268873E+00; w[5] = 0.421616296898543221746893558568E+00; w[6] = 0.604393187921161642342099068579E+00; w[7] = 0.421616296898543221746893558568E+00; w[8] = 0.140323320687023437762792268873E+00; w[9] = 0.208627752961699392166033805050E-01; w[10] = 0.120745999271938594730924899224E-02; w[11] = 0.204303604027070731248669432937E-04; w[12] = 0.482573185007313108834997332342E-07; } else if ( n == 14 ) { w[0] = 0.862859116812515794532041783429E-08; w[1] = 0.471648435501891674887688950105E-05; w[2] = 0.355092613551923610483661076691E-03; w[3] = 0.785005472645794431048644334608E-02; w[4] = 0.685055342234652055387163312367E-01; w[5] = 0.273105609064246603352569187026E+00; w[6] = 0.536405909712090149794921296776E+00; w[7] = 0.536405909712090149794921296776E+00; w[8] = 0.273105609064246603352569187026E+00; w[9] = 0.685055342234652055387163312367E-01; w[10] = 0.785005472645794431048644334608E-02; w[11] = 0.355092613551923610483661076691E-03; w[12] = 0.471648435501891674887688950105E-05; w[13] = 0.862859116812515794532041783429E-08; } else if ( n == 15 ) { w[0] = 0.152247580425351702016062666965E-08; w[1] = 0.105911554771106663577520791055E-05; w[2] = 0.100004441232499868127296736177E-03; w[3] = 0.277806884291277589607887049229E-02; w[4] = 0.307800338725460822286814158758E-01; w[5] = 0.158488915795935746883839384960E+00; w[6] = 0.412028687498898627025891079568E+00; w[7] = 0.564100308726417532852625797340E+00; w[8] = 0.412028687498898627025891079568E+00; w[9] = 0.158488915795935746883839384960E+00; w[10] = 0.307800338725460822286814158758E-01; w[11] = 0.277806884291277589607887049229E-02; w[12] = 0.100004441232499868127296736177E-03; w[13] = 0.105911554771106663577520791055E-05; w[14] = 0.152247580425351702016062666965E-08; } else if ( n == 16 ) { w[0] = 0.265480747401118224470926366050E-09; w[1] = 0.232098084486521065338749423185E-06; w[2] = 0.271186009253788151201891432244E-04; w[3] = 0.932284008624180529914277305537E-03; w[4] = 0.128803115355099736834642999312E-01; w[5] = 0.838100413989858294154207349001E-01; w[6] = 0.280647458528533675369463335380E+00; w[7] = 0.507929479016613741913517341791E+00; w[8] = 0.507929479016613741913517341791E+00; w[9] = 0.280647458528533675369463335380E+00; w[10] = 0.838100413989858294154207349001E-01; w[11] = 0.128803115355099736834642999312E-01; w[12] = 0.932284008624180529914277305537E-03; w[13] = 0.271186009253788151201891432244E-04; w[14] = 0.232098084486521065338749423185E-06; w[15] = 0.265480747401118224470926366050E-09; } else if ( n == 17 ) { w[0] = 0.458057893079863330580889281222E-10; w[1] = 0.497707898163079405227863353715E-07; w[2] = 0.711228914002130958353327376218E-05; w[3] = 0.298643286697753041151336643059E-03; w[4] = 0.506734995762753791170069495879E-02; w[5] = 0.409200341495762798094994877854E-01; w[6] = 0.172648297670097079217645196219E+00; w[7] = 0.401826469470411956577635085257E+00; w[8] = 0.530917937624863560331883103379E+00; w[9] = 0.401826469470411956577635085257E+00; w[10] = 0.172648297670097079217645196219E+00; w[11] = 0.409200341495762798094994877854E-01; w[12] = 0.506734995762753791170069495879E-02; w[13] = 0.298643286697753041151336643059E-03; w[14] = 0.711228914002130958353327376218E-05; w[15] = 0.497707898163079405227863353715E-07; w[16] = 0.458057893079863330580889281222E-10; } else if ( n == 18 ) { w[0] = 0.782819977211589102925147471012E-11; w[1] = 0.104672057957920824443559608435E-07; w[2] = 0.181065448109343040959702385911E-05; w[3] = 0.918112686792940352914675407371E-04; w[4] = 0.188852263026841789438175325426E-02; w[5] = 0.186400423875446519219315221973E-01; w[6] = 0.973017476413154293308537234155E-01; w[7] = 0.284807285669979578595606820713E+00; w[8] = 0.483495694725455552876410522141E+00; w[9] = 0.483495694725455552876410522141E+00; w[10] = 0.284807285669979578595606820713E+00; w[11] = 0.973017476413154293308537234155E-01; w[12] = 0.186400423875446519219315221973E-01; w[13] = 0.188852263026841789438175325426E-02; w[14] = 0.918112686792940352914675407371E-04; w[15] = 0.181065448109343040959702385911E-05; w[16] = 0.104672057957920824443559608435E-07; w[17] = 0.782819977211589102925147471012E-11; } else if ( n == 19 ) { w[0] = 0.132629709449851575185289154385E-11; w[1] = 0.216305100986355475019693077221E-08; w[2] = 0.448824314722312295179447915594E-06; w[3] = 0.272091977631616257711941025214E-04; w[4] = 0.670877521407181106194696282100E-03; w[5] = 0.798886677772299020922211491861E-02; w[6] = 0.508103869090520673569908110358E-01; w[7] = 0.183632701306997074156148485766E+00; w[8] = 0.391608988613030244504042313621E+00; w[9] = 0.502974888276186530840731361096E+00; w[10] = 0.391608988613030244504042313621E+00; w[11] = 0.183632701306997074156148485766E+00; w[12] = 0.508103869090520673569908110358E-01; w[13] = 0.798886677772299020922211491861E-02; w[14] = 0.670877521407181106194696282100E-03; w[15] = 0.272091977631616257711941025214E-04; w[16] = 0.448824314722312295179447915594E-06; w[17] = 0.216305100986355475019693077221E-08; w[18] = 0.132629709449851575185289154385E-11; } else if ( n == 20 ) { w[0] = 0.222939364553415129252250061603E-12; w[1] = 0.439934099227318055362885145547E-09; w[2] = 0.108606937076928169399952456345E-06; w[3] = 0.780255647853206369414599199965E-05; w[4] = 0.228338636016353967257145917963E-03; w[5] = 0.324377334223786183218324713235E-02; w[6] = 0.248105208874636108821649525589E-01; w[7] = 0.109017206020023320013755033535E+00; w[8] = 0.286675505362834129719659706228E+00; w[9] = 0.462243669600610089650328639861E+00; w[10] = 0.462243669600610089650328639861E+00; w[11] = 0.286675505362834129719659706228E+00; w[12] = 0.109017206020023320013755033535E+00; w[13] = 0.248105208874636108821649525589E-01; w[14] = 0.324377334223786183218324713235E-02; w[15] = 0.228338636016353967257145917963E-03; w[16] = 0.780255647853206369414599199965E-05; w[17] = 0.108606937076928169399952456345E-06; w[18] = 0.439934099227318055362885145547E-09; w[19] = 0.222939364553415129252250061603E-12; } else { std::cerr << "\n"; std::cerr << "HERMITE_LOOKUP_WEIGHTS - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::cerr << " Legal values are 1 through 20.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void hermite_ss_compute ( int order, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_SS_COMPUTE computes a Hermite quadrature rule. // // Discussion: // // The abscissas are the zeros of the N-th order Hermite polynomial. // // The integral: // // Integral ( -oo < X < +oo ) exp ( - X * X ) * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 April 2011 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double cc; double dp2; int i; double p1; double s; double temp; double x0; if ( order < 1 ) { std::cerr << "\n"; std::cerr << "HERMITE_SS_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of ORDER = " << order << "\n"; std::exit ( 1 ); } cc = 1.7724538509 * webbur::r8_gamma ( ( double ) ( order ) ) / std::pow ( 2.0, order - 1 ); s = std::pow ( 2.0 * ( double ) ( order ) + 1.0, 1.0 / 6.0 ); for ( i = 0; i < ( order + 1 ) / 2; i++ ) { if ( i == 0 ) { x0 = s * s * s - 1.85575 / s; } else if ( i == 1 ) { x0 = x0 - 1.14 * std::pow ( ( double ) ( order ), 0.426 ) / x0; } else if ( i == 2 ) { x0 = 1.86 * x0 - 0.86 * x[0]; } else if ( i == 3 ) { x0 = 1.91 * x0 - 0.91 * x[1]; } else { x0 = 2.0 * x0 - x[i-2]; } webbur::hermite_ss_root ( &x0, order, &dp2, &p1 ); x[i] = x0; w[i] = ( cc / dp2 ) / p1; x[order-i-1] = -x0; w[order-i-1] = w[i]; } // // Reverse the order of the abscissas. // for ( i = 1; i <= order/2; i++ ) { temp = x[i-1]; x[i-1] = x[order-i]; x[order-i] = temp; } if ( ( order % 2 ) == 1 ) { x[(order-1)/2] = 0.0; } return; } //****************************************************************************80 void hermite_ss_recur ( double *p2, double *dp2, double *p1, double x, int order ) //****************************************************************************80 // // Purpose: // // HERMITE_SS_RECUR finds the value and derivative of a Hermite polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 April 2011 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Output, double *P2, the value of H(ORDER)(X). // // Output, double *DP2, the value of H'(ORDER)(X). // // Output, double *P1, the value of H(ORDER-1)(X). // // Input, double X, the point at which polynomials are evaluated. // // Input, int ORDER, the order of the polynomial. // { int i; double dq0; double dq1; double dq2; double q0; double q1; double q2; q1 = 1.0; dq1 = 0.0; q2 = x; dq2 = 1.0; for ( i = 2; i <= order; i++ ) { q0 = q1; dq0 = dq1; q1 = q2; dq1 = dq2; q2 = x * q1 - 0.5 * ( ( double ) ( i ) - 1.0 ) * q0; dq2 = x * dq1 + q1 - 0.5 * ( ( double ) ( i ) - 1.0 ) * dq0; } *p2 = q2; *dp2 = dq2; *p1 = q1; return; } //****************************************************************************80 void hermite_ss_root ( double *x, int order, double *dp2, double *p1 ) //****************************************************************************80 // // Purpose: // // HERMITE_SS_ROOT improves an approximate root of a Hermite polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 April 2011 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input/output, double *X, the approximate root, which // should be improved on output. // // Input, int ORDER, the order of the Hermite polynomial. // // Output, double *DP2, the value of H'(ORDER)(X). // // Output, double *P1, the value of H(ORDER-1)(X). // { double d; double eps; double p2; int step; int step_max = 10; eps = webbur::r8_epsilon ( ); for ( step = 1; step <= step_max; step++ ) { webbur::hermite_ss_recur ( &p2, dp2, p1, *x, order ); d = p2 / ( *dp2 ); *x = *x - d; if ( webbur::r8_abs ( d ) <= eps * ( webbur::r8_abs ( *x ) + 1.0 ) ) { return; } } return; } //****************************************************************************80 int i4_choose ( int n, int k ) //****************************************************************************80 // // Purpose: // // I4_CHOOSE computes the binomial coefficient C(N,K). // // Discussion: // // The value is calculated in such a way as to avoid overflow and // roundoff. The calculation is done in integer arithmetic. // // The formula used is: // // C(N,K) = N! / ( K! * (N-K)! ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 November 2007 // // Author: // // John Burkardt // // Reference: // // ML Wolfson, HV Wright, // Algorithm 160: // Combinatorial of M Things Taken N at a Time, // Communications of the ACM, // Volume 6, Number 4, April 1963, page 161. // // Parameters: // // Input, int N, K, the values of N and K. // // Output, int I4_CHOOSE, the number of combinations of N // things taken K at a time. // { int i; int mn; int mx; int value; mn = i4_min ( k, n - k ); if ( mn < 0 ) { value = 0; } else if ( mn == 0 ) { value = 1; } else { mx = i4_max ( k, n - k ); value = mx + 1; for ( i = 2; i <= mn; i++ ) { value = ( value * ( mx + i ) ) / i; } } return value; } //****************************************************************************80 int i4_log_2 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_2 returns the integer part of the logarithm base 2 of an I4. // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 1 // 3 1 // 4 2 // 5 2 // 7 2 // 8 3 // 9 3 // 1000 9 // 1024 10 // // Discussion: // // I4_LOG_2 ( I ) + 1 is the number of binary digits in I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 2 is desired. // // Output, int I4_LOG_2, the integer part of the logarithm base 2 of // the absolute value of X. // { int i_abs; int two_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; two_pow = 2; i_abs = std::abs ( i ); while ( two_pow <= i_abs ) { value = value + 1; two_pow = two_pow * 2; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { std::cerr << "\n"; std::cerr << "I4_POWER - Fatal error!\n"; std::cerr << " I^J requested, with I = 0 and J negative.\n"; std::exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { std::cerr << "\n"; std::cerr << "I4_POWER - Fatal error!\n"; std::cerr << " I^J requested, with I = 0 and J = 0.\n"; std::exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 void i4mat_copy ( int m, int n, int a1[], int a2[] ) //****************************************************************************80 // // Purpose: // // I4MAT_COPY copies one I4MAT to another. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A1[M*N], the matrix to be copied. // // Output, int A2[M*N], the copy of A1. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a2[i+j*m] = a1[i+j*m]; } } return; } //****************************************************************************80 int *i4mat_copy_new ( int m, int n, int a1[] ) //****************************************************************************80 // // Purpose: // // I4MAT_COPY_NEW copies an I4MAT to a "new" I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A1[M*N], the matrix to be copied. // // Output, int I4MAT_COPY_NEW[M*N], the copy of A1. // { int *a2; int i; int j; a2 = new int[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a2[i+j*m] = a1[i+j*m]; } } return a2; } //****************************************************************************80 void i4mat_transpose_print ( int m, int n, int a[], std::string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, std::string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; std::cout << "\n"; std::cout << title << "\n"; // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = webbur::i4_min ( i2hi, m ); i2hi = webbur::i4_min ( i2hi, ihi ); std::cout << "\n"; // // For each row I in the current range... // // Write the header. // std::cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { std::cout << std::setw(6) << i - 1 << " "; } std::cout << "\n"; std::cout << " Col\n"; std::cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = webbur::i4_max ( jlo, 1 ); j2hi = webbur::i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // std::cout << std::setw(5) << j - 1 << ":"; for ( i = i2lo; i <= i2hi; i++ ) { std::cout << std::setw(6) << a[i-1+(j-1)*m] << " "; } std::cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void i4mat_write ( std::string output_filename, int m, int n, int table[] ) //****************************************************************************80 // // Purpose: // // I4MAT_WRITE writes an I4MAT file. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, int TABLE[M*N], the table data. // { int i; int j; std::ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { std::cerr << "\n"; std::cerr << "I4MAT_WRITE - Fatal error!\n"; std::cerr << " Could not open the output file.\n"; return; } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << std::setw(10) << table[i+j*m] << " "; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 int *i4vec_add_new ( int n, int a[], int b[] ) //****************************************************************************80 // // Purpose: // // I4VEC_ADD_NEW computes C = A + B for I4VEC's. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries. // // Input, int A[N], the first vector. // // Input, int B[N], the second vector. // // Output, int I4VEC_ADD_NEW[N], the sum of the vectors. // { int *c; int i; c = new int[n]; for ( i = 0; i < n; i++ ) { c[i] = a[i] + b[i]; } return c; } //****************************************************************************80 bool i4vec_any_lt ( int n, int a[], int b[] ) //****************************************************************************80 // // Purpose: // // I4VEC_ANY_LT: ( any ( A < B ) ) for I4VEC's. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries. // // Input, int A[N], the first vector. // // Input, int B[N], the second vector. // // Output, bool I4VEC_ANY_LT is TRUE if any entry // of A is less than the corresponding entry of B. // { int i; bool value; for ( i = 0; i < n; i++ ) { if ( a[i] < b[i] ) { value = true; return value; } } value = false; return value; } //****************************************************************************80 void i4vec_copy ( int n, int a1[], int a2[] ) //****************************************************************************80 // // Purpose: // // I4VEC_COPY copies an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 April 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, int A1[N], the vector to be copied. // // Output, int A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 int *i4vec_copy_new ( int n, int a1[] ) //****************************************************************************80 // // Purpose: // // I4VEC_COPY_NEW copies an I4VEC to a "new" I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, int A1[N], the vector to be copied. // // Output, int I4VEC_COPY_NEW[N], the copy of A1. // { int *a2; int i; a2 = new int[n]; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return a2; } //****************************************************************************80 void i4vec_min_mv ( int m, int n, int u[], int v[], int w[] ) //****************************************************************************80 // // Purpose: // // I4VEC_MIN_MV determines U(1:N) /\ V for vectors U and a single vector V. // // Discussion: // // For two vectors U and V, each of length M, we define // // ( U /\ V ) (I) = min ( U(I), V(I) ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 January 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the dimension of the vectors. // // Input, int N, the number of vectors in U. // // Input, int U[M*N], N vectors, each of length M. // // Input, int V[M], a vector of length M. // // Output, int W[M*N], the value of U /\ W. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { w[i+j*m] = i4_min ( u[i+j*m], v[i] ); } } return; } //****************************************************************************80 void i4vec_print ( int n, int a[], std::string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; std::cout << "\n"; std::cout << title << "\n"; std::cout << "\n"; for ( i = 0; i < n; i++ ) { std::cout << " " << std::setw(8) << i << ": " << std::setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 int i4vec_product ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_PRODUCT multiplies the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of integer values. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_PRODUCT = 24 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector // // Output, int I4VEC_PRODUCT, the product of the entries of A. // { int i; int product; product = 1; for ( i = 0; i < n; i++ ) { product = product * a[i]; } return product; } //****************************************************************************80 int i4vec_sum ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SUM sums the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_SUM = 10 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be summed. // // Output, int I4VEC_SUM, the sum of the entries of A. // { int i; int sum; sum = 0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } //****************************************************************************80 void i4vec_zero ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_ZERO zeroes an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, int A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0; } return; } //****************************************************************************80 int *i4vec_zero_new ( int n ) //****************************************************************************80 // // Purpose: // // I4VEC_ZERO_NEW creates and zeroes an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, int I4VEC_ZERO_NEW[N], a vector of zeroes. // { int *a; int i; a = new int[n]; for ( i = 0; i < n; i++ ) { a[i] = 0; } return a; } //****************************************************************************80 void imtqlx ( int n, double d[], double e[], double z[] ) //****************************************************************************80 // // Purpose: // // IMTQLX diagonalizes a symmetric tridiagonal matrix. // // Discussion: // // This routine is a slightly modified version of the EISPACK routine to // perform the implicit QL algorithm on a symmetric tridiagonal matrix. // // The authors thank the authors of EISPACK for permission to use this // routine. // // It has been modified to produce the product Q' * Z, where Z is an input // vector and Q is the orthogonal matrix diagonalizing the input matrix. // The changes consist (essentially) of applying the orthogonal transformations // directly to Z as they are generated. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Roger Martin, James Wilkinson, // The Implicit QL Algorithm, // Numerische Mathematik, // Volume 12, Number 5, December 1968, pages 377-383. // // Parameters: // // Input, int N, the order of the matrix. // // Input/output, double D(N), the diagonal entries of the matrix. // On output, the information in D has been overwritten. // // Input/output, double E(N), the subdiagonal entries of the // matrix, in entries E(1) through E(N-1). On output, the information in // E has been overwritten. // // Input/output, double Z(N). On input, a vector. On output, // the value of Q' * Z, where Q is the matrix that diagonalizes the // input symmetric tridiagonal matrix. // { double b; double c; double f; double g; int i; int ii; int itn = 30; int j; int k; int l; int m; int mml; double p; double prec; double r; double s; prec = webbur::r8_epsilon ( ); if ( n == 1 ) { return; } e[n-1] = 0.0; for ( l = 1; l <= n; l++ ) { j = 0; for ( ; ; ) { for ( m = l; m <= n; m++ ) { if ( m == n ) { break; } if ( webbur::r8_abs ( e[m-1] ) <= prec * ( webbur::r8_abs ( d[m-1] ) + webbur::r8_abs ( d[m] ) ) ) { break; } } p = d[l-1]; if ( m == l ) { break; } if ( itn <= j ) { std::cerr << "\n"; std::cerr << "IMTQLX - Fatal error!\n"; std::cerr << " Iteration limit exceeded\n"; std::exit ( 1 ); } j = j + 1; g = ( d[l] - p ) / ( 2.0 * e[l-1] ); r = std::sqrt ( g * g + 1.0 ); g = d[m-1] - p + e[l-1] / ( g + webbur::r8_abs ( r ) * webbur::r8_sign ( g ) ); s = 1.0; c = 1.0; p = 0.0; mml = m - l; for ( ii = 1; ii <= mml; ii++ ) { i = m - ii; f = s * e[i-1]; b = c * e[i-1]; if ( webbur::r8_abs ( g ) <= webbur::r8_abs ( f ) ) { c = g / f; r = std::sqrt ( c * c + 1.0 ); e[i] = f * r; s = 1.0 / r; c = c * s; } else { s = f / g; r = std::sqrt ( s * s + 1.0 ); e[i] = g * r; c = 1.0 / r; s = s * c; } g = d[i] - p; r = ( d[i-1] - g ) * s + 2.0 * c * b; p = s * r; d[i] = g + p; g = c * r - b; f = z[i]; z[i] = s * z[i-1] + c * f; z[i-1] = c * z[i-1] - s * f; } d[l-1] = d[l-1] - p; e[l-1] = g; e[m-1] = 0.0; } } // // Sorting. // for ( ii = 2; ii <= m; ii++ ) { i = ii - 1; k = i; p = d[i-1]; for ( j = ii; j <= n; j++ ) { if ( d[j-1] < p ) { k = j; p = d[j-1]; } } if ( k != i ) { d[k-1] = d[i-1]; d[i-1] = p; p = z[i-1]; z[i-1] = z[k-1]; z[k-1] = p; } } return; } //****************************************************************************80 void jacobi_compute ( int n, double alpha, double beta, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // JACOBI_COMPUTE: Elhay-Kautsky method for Gauss-Jacobi quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) (1-X)**ALPHA * (1+X)**BETA * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) WEIGHT(I) * F ( XTAB(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 April 2011 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int N, the order. // // Input, double ALPHA, BETA, the exponents of (1-X) and // (1+X) in the quadrature rule. For simple Gauss-Legendre quadrature, // set ALPHA = BETA = 0.0. -1.0 < ALPHA and -1.0 < BETA are required. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double abi; double *bj; int i; double i_r8; double zemu; // // Define the zero-th moment. // zemu = std::pow ( 2.0, alpha + beta + 1.0 ) * webbur::r8_gamma ( alpha + 1.0 ) * webbur::r8_gamma ( beta + 1.0 ) / webbur::r8_gamma ( 2.0 + alpha + beta ); // // Define the Jacobi matrix. // bj = new double[n]; x[0] = ( beta - alpha ) / ( 2.0 + alpha + beta ); bj[0] = 4.0 * ( 1.0 + alpha ) * ( 1.0 + beta ) / ( ( 3.0 + alpha + beta ) * ( 2.0 + alpha + beta ) * ( 2.0 + alpha + beta ) ); for ( i = 1; i < n; i++ ) { i_r8 = ( double ) ( i + 1 ); abi = 2.0 * i_r8 + alpha + beta; x[i] = ( beta + alpha ) * ( beta - alpha ) / ( ( abi - 2.0 ) * abi ); bj[i] = 4.0 * i_r8 * ( i_r8 + alpha ) * ( i_r8 + beta ) * ( i_r8 + alpha + beta ) / ( ( abi - 1.0 ) * ( abi + 1.0 ) * abi * abi ); } for ( i = 0; i < n; i++ ) { bj[i] = std::sqrt ( bj[i] ); } w[0] = std::sqrt ( zemu ); for ( i = 1; i < n; i++ ) { w[i] = 0.0; } // // Diagonalize the Jacobi matrix. // webbur::imtqlx ( n, x, bj, w ); for ( i = 0; i < n; i++ ) { w[i] = w[i] * w[i]; } delete [] bj; return; } //****************************************************************************80 void jacobi_compute_np ( int order, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // JACOBI_COMPUTE_NP computes a Jacobi quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) (1-X)^ALPHA * (1+X)^BETA * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // Thanks to Xu Xiang of Fudan University for pointing out that // an earlier implementation of this routine was incorrect! // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameter values. // P[0] = ALPHA, the exponent of (1-X) // P[1] = BETA, the exponent of (1+X). // -1.0 < ALPHA and -1.0 < BETA are required. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double alpha; double beta; alpha = p[0]; beta = p[1]; webbur::jacobi_compute ( order, alpha, beta, x, w ); return; } //****************************************************************************80 void jacobi_compute_points ( int order, double alpha, double beta, double x[] ) //****************************************************************************80 // // Purpose: // // JACOBI_COMPUTE_POINTS computes Jacobi quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, double ALPHA, BETA, the exponents of the (1-X) and (1+X) factors. // // Output, double X[ORDER], the abscissas. // { double *w; w = new double[order]; webbur::jacobi_compute ( order, alpha, beta, x, w ); delete [] w; return; } //****************************************************************************80 void jacobi_compute_points_np ( int order, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // JACOBI_COMPUTE_POINTS_NP computes Jacobi quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameter values. // P[0] = ALPHA, the exponent of (1-X) // P[1] = BETA, the exponent of (1+X). // -1.0 < ALPHA and -1.0 < BETA are required. // // Output, double X[ORDER], the abscissas. // { double alpha; double beta; alpha = p[0]; beta = p[1]; webbur::jacobi_compute_points ( order, alpha, beta, x ); return; } //****************************************************************************80 void jacobi_compute_weights ( int order, double alpha, double beta, double w[] ) //****************************************************************************80 // // Purpose: // // JACOBI_COMPUTE_WEIGHTS computes Jacobi quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, double ALPHA, BETA, the exponents of the (1-X) and (1+X) factors. // // Output, double W[ORDER], the weights. // { double *x; x = new double[order]; webbur::jacobi_compute ( order, alpha, beta, x, w ); delete [] x; return; } //****************************************************************************80 void jacobi_compute_weights_np ( int order, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // JACOBI_COMPUTE_WEIGHTS_NP computes Jacobi quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameter values. // P[0] = ALPHA, the exponent of (1-X) // P[1] = BETA, the exponent of (1+X). // -1.0 < ALPHA and -1.0 < BETA are required. // // Output, double W[ORDER], the weights. // { double alpha; double beta; alpha = p[0]; beta = p[1]; webbur::jacobi_compute_weights ( order, alpha, beta, w ); return; } //****************************************************************************80 double jacobi_integral ( int expon, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // JACOBI_INTEGRAL integrates a monomial with Jacobi weight. // // Discussion: // // VALUE = Integral ( -1 <= X <= +1 ) x^EXPON (1-x)^ALPHA (1+x)^BETA dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 September 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // // Input, double ALPHA, the exponent of (1-X) in the weight factor. // // Input, double BETA, the exponent of (1+X) in the weight factor. // // Output, double JACOBI_INTEGRAL, the value of the integral. // { double arg1; double arg2; double arg3; double arg4; double c; double s; double value; double value1; double value2; c = ( double ) ( expon ); if ( ( expon % 2 ) == 0 ) { s = +1.0; } else { s = -1.0; } arg1 = - alpha; arg2 = 1.0 + c; arg3 = 2.0 + beta + c; arg4 = - 1.0; value1 = webbur::r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); arg1 = - beta; arg2 = 1.0 + c; arg3 = 2.0 + alpha + c; arg4 = - 1.0; value2 = webbur::r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); value = webbur::r8_gamma ( 1.0 + c ) * ( s * webbur::r8_gamma ( 1.0 + beta ) * value1 / webbur::r8_gamma ( 2.0 + beta + c ) + webbur::r8_gamma ( 1.0 + alpha ) * value2 / webbur::r8_gamma ( 2.0 + alpha + c ) ); return value; } //****************************************************************************80 void jacobi_ss_compute ( int order, double alpha, double beta, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // JACOBI_SS_COMPUTE computes a Jacobi quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) (1-X)^ALPHA * (1+X)^BETA * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // Thanks to Xu Xiang of Fudan University for pointing out that // an earlier implementation of this routine was incorrect! // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 February 2008 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, double ALPHA, BETA, the exponents of (1-X) and // (1+X) in the quadrature rule. For simple Legendre quadrature, // set ALPHA = BETA = 0.0. -1.0 < ALPHA and -1.0 < BETA are required. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double an; double *b; double bn; double *c; double cc; double delta; double dp2; int i; double p1; double prod; double r1; double r2; double r3; double temp; double x0; if ( order < 1 ) { std::cerr << "\n"; std::cerr << "JACOBI_SS_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of ORDER = " << order << "\n"; std::exit ( 1 ); } b = new double[order]; c = new double[order]; // // Check ALPHA and BETA. // if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "JACOBI_SS_COMPUTE - Fatal error!\n"; std::cerr << " -1.0 < ALPHA is required.\n"; std::exit ( 1 ); } if ( beta <= -1.0 ) { std::cerr << "\n"; std::cerr << "JACOBI_SS_COMPUTE - Fatal error!\n"; std::cerr << " -1.0 < BETA is required.\n"; std::exit ( 1 ); } // // Set the recursion coefficients. // for ( i = 1; i <= order; i++ ) { if ( alpha + beta == 0.0 || beta - alpha == 0.0 ) { b[i-1] = 0.0; } else { b[i-1] = ( alpha + beta ) * ( beta - alpha ) / ( ( alpha + beta + ( double ) ( 2 * i ) ) * ( alpha + beta + ( double ) ( 2 * i - 2 ) ) ); } if ( i == 1 ) { c[i-1] = 0.0; } else { c[i-1] = 4.0 * ( double ) ( i - 1 ) * ( alpha + ( double ) ( i - 1 ) ) * ( beta + ( double ) ( i - 1 ) ) * ( alpha + beta + ( double ) ( i - 1 ) ) / ( ( alpha + beta + ( double ) ( 2 * i - 1 ) ) * std::pow ( alpha + beta + ( double ) ( 2 * i - 2 ), 2 ) * ( alpha + beta + ( double ) ( 2 * i - 3 ) ) ); } } delta = webbur::r8_gamma ( alpha + 1.0 ) * webbur::r8_gamma ( beta + 1.0 ) / webbur::r8_gamma ( alpha + beta + 2.0 ); prod = 1.0; for ( i = 2; i <= order; i++ ) { prod = prod * c[i-1]; } cc = delta * std::pow ( 2.0, alpha + beta + 1.0 ) * prod; for ( i = 1; i <= order; i++ ) { if ( i == 1 ) { an = alpha / ( double ) ( order ); bn = beta / ( double ) ( order ); r1 = ( 1.0 + alpha ) * ( 2.78 / ( 4.0 + ( double ) ( order * order ) ) + 0.768 * an / ( double ) ( order ) ); r2 = 1.0 + 1.48 * an + 0.96 * bn + 0.452 * an * an + 0.83 * an * bn; x0 = ( r2 - r1 ) / r2; } else if ( i == 2 ) { r1 = ( 4.1 + alpha ) / ( ( 1.0 + alpha ) * ( 1.0 + 0.156 * alpha ) ); r2 = 1.0 + 0.06 * ( ( double ) ( order ) - 8.0 ) * ( 1.0 + 0.12 * alpha ) / ( double ) ( order ); r3 = 1.0 + 0.012 * beta * ( 1.0 + 0.25 * r8_abs ( alpha ) ) / ( double ) ( order ); x0 = x0 - r1 * r2 * r3 * ( 1.0 - x0 ); } else if ( i == 3 ) { r1 = ( 1.67 + 0.28 * alpha ) / ( 1.0 + 0.37 * alpha ); r2 = 1.0 + 0.22 * ( ( double ) ( order ) - 8.0 ) / ( double ) ( order ); r3 = 1.0 + 8.0 * beta / ( ( 6.28 + beta ) * ( double ) ( order * order ) ); x0 = x0 - r1 * r2 * r3 * ( x[0] - x0 ); } else if ( i < order - 1 ) { x0 = 3.0 * x[i-2] - 3.0 * x[i-3] + x[i-4]; } else if ( i == order - 1 ) { r1 = ( 1.0 + 0.235 * beta ) / ( 0.766 + 0.119 * beta ); r2 = 1.0 / ( 1.0 + 0.639 * ( ( double ) ( order ) - 4.0 ) / ( 1.0 + 0.71 * ( ( double ) ( order ) - 4.0 ) ) ); r3 = 1.0 / ( 1.0 + 20.0 * alpha / ( ( 7.5 + alpha ) * ( double ) ( order * order ) ) ); x0 = x0 + r1 * r2 * r3 * ( x0 - x[i-3] ); } else if ( i == order ) { r1 = ( 1.0 + 0.37 * beta ) / ( 1.67 + 0.28 * beta ); r2 = 1.0 / ( 1.0 + 0.22 * ( ( double ) ( order ) - 8.0 ) / ( double ) ( order ) ); r3 = 1.0 / ( 1.0 + 8.0 * alpha / ( ( 6.28 + alpha ) * ( double ) ( order * order ) ) ); x0 = x0 + r1 * r2 * r3 * ( x0 - x[i-3] ); } webbur::jacobi_ss_root ( &x0, order, alpha, beta, &dp2, &p1, b, c ); x[i-1] = x0; w[i-1] = cc / ( dp2 * p1 ); } // // Reverse the order of the values. // for ( i = 1; i <= order/2; i++ ) { temp = x[i-1]; x[i-1] = x[order-i]; x[order-i] = temp; } for ( i = 1; i <=order/2; i++ ) { temp = w[i-1]; w[i-1] = w[order-i]; w[order-i] = temp; } delete [] b; delete [] c; return; } //****************************************************************************80 void jacobi_ss_recur ( double *p2, double *dp2, double *p1, double x, int order, double alpha, double beta, double b[], double c[] ) //****************************************************************************80 // // Purpose: // // JACOBI_SS_RECUR evaluates a Jacobi polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 February 2008 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Output, double *P2, the value of J(ORDER)(X). // // Output, double *DP2, the value of J'(ORDER)(X). // // Output, double *P1, the value of J(ORDER-1)(X). // // Input, double X, the point at which polynomials are evaluated. // // Input, int ORDER, the order of the polynomial. // // Input, double ALPHA, BETA, the exponents of (1-X) and // (1+X) in the quadrature rule. // // Input, double B[ORDER], C[ORDER], the recursion coefficients. // { double dp0; double dp1; int i; double p0; *p1 = 1.0; dp1 = 0.0; *p2 = x + ( alpha - beta ) / ( alpha + beta + 2.0 ); *dp2 = 1.0; for ( i = 2; i <= order; i++ ) { p0 = *p1; dp0 = dp1; *p1 = *p2; dp1 = *dp2; *p2 = ( x - b[i-1] ) * ( *p1 ) - c[i-1] * p0; *dp2 = ( x - b[i-1] ) * dp1 + ( *p1 ) - c[i-1] * dp0; } return; } //****************************************************************************80 void jacobi_ss_root ( double *x, int order, double alpha, double beta, double *dp2, double *p1, double b[], double c[] ) //****************************************************************************80 // // Purpose: // // JACOBI_SS_ROOT improves an approximate root of a Jacobi polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 February 2008 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input/output, double *X, the approximate root, which // should be improved on output. // // Input, int ORDER, the order of the polynomial. // // Input, double ALPHA, BETA, the exponents of (1-X) and // (1+X) in the quadrature rule. // // Output, double *DP2, the value of J'(ORDER)(X). // // Output, double *P1, the value of J(ORDER-1)(X). // // Input, double B[ORDER], C[ORDER], the recursion coefficients. // { double d; double eps; double p2; int step; int step_max = 10; eps = webbur::r8_epsilon ( ); for ( step = 1; step <= step_max; step++ ) { webbur::jacobi_ss_recur ( &p2, dp2, p1, *x, order, alpha, beta, b, c ); d = p2 / ( *dp2 ); *x = *x - d; if ( webbur::r8_abs ( d ) <= eps * ( webbur::r8_abs ( *x ) + 1.0 ) ) { return; } } return; } //****************************************************************************80 void laguerre_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_COMPUTE: Laguerre quadrature rule by the Elhay-Kautsky method. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 April 2011 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int N, the order. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double *bj; int i; double zemu; // // Define the zero-th moment. // zemu = 1.0; // // Define the Jacobi matrix. // bj = new double[n]; for ( i = 0; i < n; i++ ) { bj[i] = ( double ) ( i + 1 ); } for ( i = 0; i < n; i++ ) { x[i] = ( double ) ( 2 * i + 1 ); } w[0] = std::sqrt ( zemu ); for ( i = 1; i < n; i++ ) { w[i] = 0.0; } // // Diagonalize the Jacobi matrix. // webbur::imtqlx ( n, x, bj, w ); for ( i = 0; i < n; i++ ) { w[i] = w[i] * w[i]; } delete [] bj; return; } //****************************************************************************80 void laguerre_compute_np ( int order, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_COMPUTE_NP computes a Laguerre quadrature rule. // // Discussion: // // The integral: // // Integral ( 0 <= X < +oo ) exp ( - X ) * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // The integral: // // Integral ( A <= X < +oo ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * exp ( X(I) ) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { webbur::laguerre_compute ( order, x, w ); return; } //****************************************************************************80 void laguerre_compute_points ( int order, double x[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_COMPUTE_POINTS computes Laguerre quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Output, double X[ORDER], the abscissas. // { double *w; w = new double[order]; webbur::laguerre_compute ( order, x, w ); delete [] w; return; } //****************************************************************************80 void laguerre_compute_points_np ( int order, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_COMPUTE_POINTS_NP computes Laguerre quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[ORDER], the abscissas. // { webbur::laguerre_compute_points ( order, x ); return; } //****************************************************************************80 void laguerre_compute_weights ( int order, double w[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_COMPUTE_WEIGHTS computes Laguerre quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Output, double W[ORDER], the weights. // { double *x; x = new double[order]; webbur::laguerre_compute ( order, x, w ); delete [] x; return; } //****************************************************************************80 void laguerre_compute_weights_np ( int order, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_COMPUTE_WEIGHTS_NP computes Laguerre quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[ORDER], the weights. // { webbur::laguerre_compute_weights ( order, w ); return; } //****************************************************************************80 double laguerre_integral ( int expon ) //****************************************************************************80 // // Purpose: // // LAGUERRE_INTEGRAL evaluates a monomial Laguerre integral. // // Discussion: // // The integral: // // integral ( 0 <= x < +oo ) x^n * exp ( -x ) dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Output, double EXACT, the value of the integral. // { double exact; exact = webbur::r8_factorial ( expon ); return exact; } //****************************************************************************80 void laguerre_lookup ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_LOOKUP looks up abscissas and weights for Laguerre quadrature. // // Discussion: // // The abscissas are the zeroes of the Laguerre polynomial L(N)(X). // // The integral: // // Integral ( 0 <= X < +oo ) exp ( -X ) * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * f ( X(I) ) // // The integral: // // Integral ( 0 <= X < +oo ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * exp ( X(I) ) * f ( X(I) ) // // Mathematica can numerically estimate the abscissas for the // n-th order polynomial to p digits of precision by the command: // // NSolve [ LaguerreL[n,x] == 0, x, p ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798, // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3. // // Parameters: // // Input, int N, the order. // N must be between 1 and 20. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::laguerre_lookup_points ( n, x ); webbur::laguerre_lookup_weights ( n, w ); return; } //****************************************************************************80 void laguerre_lookup_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_LOOKUP_POINTS looks up abscissas for Laguerre quadrature. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798, // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3. // // Parameters: // // Input, int N, the order. // N must be between 1 and 20. // // Output, double X[N], the abscissas. // { if ( n == 1 ) { x[0] = 1.00000000000000000000000000000E+00; } else if ( n == 2 ) { x[0] = 0.585786437626904951198311275790E+00; x[1] = 3.41421356237309504880168872421E+00; } else if ( n == 3 ) { x[0] = 0.415774556783479083311533873128E+00; x[1] = 2.29428036027904171982205036136E+00; x[2] = 6.28994508293747919686641576551E+00; } else if ( n == 4 ) { x[0] = 0.322547689619392311800361459104E+00; x[1] = 1.74576110115834657568681671252E+00; x[2] = 4.53662029692112798327928538496E+00; x[3] = 9.39507091230113312923353644342E+00; } else if ( n == 5 ) { x[0] = 0.263560319718140910203061943361E+00; x[1] = 1.41340305910651679221840798019E+00; x[2] = 3.59642577104072208122318658878E+00; x[3] = 7.08581000585883755692212418111E+00; x[4] = 12.6408008442757826594332193066E+00; } else if ( n == 6 ) { x[0] = 0.222846604179260689464354826787E+00; x[1] = 1.18893210167262303074315092194E+00; x[2] = 2.99273632605931407769132528451E+00; x[3] = 5.77514356910451050183983036943E+00; x[4] = 9.83746741838258991771554702994E+00; x[5] = 15.9828739806017017825457915674E+00; } else if ( n == 7 ) { x[0] = 0.193043676560362413838247885004E+00; x[1] = 1.02666489533919195034519944317E+00; x[2] = 2.56787674495074620690778622666E+00; x[3] = 4.90035308452648456810171437810E+00; x[4] = 8.18215344456286079108182755123E+00; x[5] = 12.7341802917978137580126424582E+00; x[6] = 19.3957278622625403117125820576E+00; } else if ( n == 8 ) { x[0] = 0.170279632305100999788861856608E+00; x[1] = 0.903701776799379912186020223555E+00; x[2] = 2.25108662986613068930711836697E+00; x[3] = 4.26670017028765879364942182690E+00; x[4] = 7.04590540239346569727932548212E+00; x[5] = 10.7585160101809952240599567880E+00; x[6] = 15.7406786412780045780287611584E+00; x[7] = 22.8631317368892641057005342974E+00; } else if ( n == 9 ) { x[0] = 0.152322227731808247428107073127E+00; x[1] = 0.807220022742255847741419210952E+00; x[2] = 2.00513515561934712298303324701E+00; x[3] = 3.78347397333123299167540609364E+00; x[4] = 6.20495677787661260697353521006E+00; x[5] = 9.37298525168757620180971073215E+00; x[6] = 13.4662369110920935710978818397E+00; x[7] = 18.8335977889916966141498992996E+00; x[8] = 26.3740718909273767961410072937E+00; } else if ( n == 10 ) { x[0] = 0.137793470540492430830772505653E+00; x[1] = 0.729454549503170498160373121676E+00; x[2] = 1.80834290174031604823292007575E+00; x[3] = 3.40143369785489951448253222141E+00; x[4] = 5.55249614006380363241755848687E+00; x[5] = 8.33015274676449670023876719727E+00; x[6] = 11.8437858379000655649185389191E+00; x[7] = 16.2792578313781020995326539358E+00; x[8] = 21.9965858119807619512770901956E+00; x[9] = 29.9206970122738915599087933408E+00; } else if ( n == 11 ) { x[0] = 0.125796442187967522675794577516E+00; x[1] = 0.665418255839227841678127839420E+00; x[2] = 1.64715054587216930958700321365E+00; x[3] = 3.09113814303525495330195934259E+00; x[4] = 5.02928440157983321236999508366E+00; x[5] = 7.50988786380661681941099714450E+00; x[6] = 10.6059509995469677805559216457E+00; x[7] = 14.4316137580641855353200450349E+00; x[8] = 19.1788574032146786478174853989E+00; x[9] = 25.2177093396775611040909447797E+00; x[10] = 33.4971928471755372731917259395E+00; } else if ( n == 12 ) { x[0] = 0.115722117358020675267196428240E+00; x[1] = 0.611757484515130665391630053042E+00; x[2] = 1.51261026977641878678173792687E+00; x[3] = 2.83375133774350722862747177657E+00; x[4] = 4.59922763941834848460572922485E+00; x[5] = 6.84452545311517734775433041849E+00; x[6] = 9.62131684245686704391238234923E+00; x[7] = 13.0060549933063477203460524294E+00; x[8] = 17.1168551874622557281840528008E+00; x[9] = 22.1510903793970056699218950837E+00; x[10] = 28.4879672509840003125686072325E+00; x[11] = 37.0991210444669203366389142764E+00; } else if ( n == 13 ) { x[0] = 0.107142388472252310648493376977E+00; x[1] = 0.566131899040401853406036347177E+00; x[2] = 1.39856433645101971792750259921E+00; x[3] = 2.61659710840641129808364008472E+00; x[4] = 4.23884592901703327937303389926E+00; x[5] = 6.29225627114007378039376523025E+00; x[6] = 8.81500194118697804733348868036E+00; x[7] = 11.8614035888112425762212021880E+00; x[8] = 15.5107620377037527818478532958E+00; x[9] = 19.8846356638802283332036594634E+00; x[10] = 25.1852638646777580842970297823E+00; x[11] = 31.8003863019472683713663283526E+00; x[12] = 40.7230086692655795658979667001E+00; } else if ( n == 14 ) { x[0] = 0.0997475070325975745736829452514E+00; x[1] = 0.526857648851902896404583451502E+00; x[2] = 1.30062912125149648170842022116E+00; x[3] = 2.43080107873084463616999751038E+00; x[4] = 3.93210282229321888213134366778E+00; x[5] = 5.82553621830170841933899983898E+00; x[6] = 8.14024014156514503005978046052E+00; x[7] = 10.9164995073660188408130510904E+00; x[8] = 14.2108050111612886831059780825E+00; x[9] = 18.1048922202180984125546272083E+00; x[10] = 22.7233816282696248232280886985E+00; x[11] = 28.2729817232482056954158923218E+00; x[12] = 35.1494436605924265828643121364E+00; x[13] = 44.3660817111174230416312423666E+00; } else if ( n == 15 ) { x[0] = 0.0933078120172818047629030383672E+00; x[1] = 0.492691740301883908960101791412E+00; x[2] = 1.21559541207094946372992716488E+00; x[3] = 2.26994952620374320247421741375E+00; x[4] = 3.66762272175143727724905959436E+00; x[5] = 5.42533662741355316534358132596E+00; x[6] = 7.56591622661306786049739555812E+00; x[7] = 10.1202285680191127347927394568E+00; x[8] = 13.1302824821757235640991204176E+00; x[9] = 16.6544077083299578225202408430E+00; x[10] = 20.7764788994487667729157175676E+00; x[11] = 25.6238942267287801445868285977E+00; x[12] = 31.4075191697539385152432196202E+00; x[13] = 38.5306833064860094162515167595E+00; x[14] = 48.0260855726857943465734308508E+00; } else if ( n == 16 ) { x[0] = 0.0876494104789278403601980973401E+00; x[1] = 0.462696328915080831880838260664E+00; x[2] = 1.14105777483122685687794501811E+00; x[3] = 2.12928364509838061632615907066E+00; x[4] = 3.43708663389320664523510701675E+00; x[5] = 5.07801861454976791292305830814E+00; x[6] = 7.07033853504823413039598947080E+00; x[7] = 9.43831433639193878394724672911E+00; x[8] = 12.2142233688661587369391246088E+00; x[9] = 15.4415273687816170767647741622E+00; x[10] = 19.1801568567531348546631409497E+00; x[11] = 23.5159056939919085318231872752E+00; x[12] = 28.5787297428821403675206137099E+00; x[13] = 34.5833987022866258145276871778E+00; x[14] = 41.9404526476883326354722330252E+00; x[15] = 51.7011603395433183643426971197E+00; } else if ( n == 17 ) { x[0] = 0.0826382147089476690543986151980E+00; x[1] = 0.436150323558710436375959029847E+00; x[2] = 1.07517657751142857732980316755E+00; x[3] = 2.00519353164923224070293371933E+00; x[4] = 3.23425612404744376157380120696E+00; x[5] = 4.77351351370019726480932076262E+00; x[6] = 6.63782920536495266541643929703E+00; x[7] = 8.84668551116980005369470571184E+00; x[8] = 11.4255293193733525869726151469E+00; x[9] = 14.4078230374813180021982874959E+00; x[10] = 17.8382847307011409290658752412E+00; x[11] = 21.7782682577222653261749080522E+00; x[12] = 26.3153178112487997766149598369E+00; x[13] = 31.5817716804567331343908517497E+00; x[14] = 37.7960938374771007286092846663E+00; x[15] = 45.3757165339889661829258363215E+00; x[16] = 55.3897517898396106640900199790E+00; } else if ( n == 18 ) { x[0] = 0.0781691666697054712986747615334E+00; x[1] = 0.412490085259129291039101536536E+00; x[2] = 1.01652017962353968919093686187E+00; x[3] = 1.89488850996976091426727831954E+00; x[4] = 3.05435311320265975115241130719E+00; x[5] = 4.50420553888989282633795571455E+00; x[6] = 6.25672507394911145274209116326E+00; x[7] = 8.32782515660563002170470261564E+00; x[8] = 10.7379900477576093352179033397E+00; x[9] = 13.5136562075550898190863812108E+00; x[10] = 16.6893062819301059378183984163E+00; x[11] = 20.3107676262677428561313764553E+00; x[12] = 24.4406813592837027656442257980E+00; x[13] = 29.1682086625796161312980677805E+00; x[14] = 34.6279270656601721454012429438E+00; x[15] = 41.0418167728087581392948614284E+00; x[16] = 48.8339227160865227486586093290E+00; x[17] = 59.0905464359012507037157810181E+00; } else if ( n == 19 ) { x[0] = 0.0741587837572050877131369916024E+00; x[1] = 0.391268613319994607337648350299E+00; x[2] = 0.963957343997958058624878377130E+00; x[3] = 1.79617558206832812557725825252E+00; x[4] = 2.89365138187378399116494713237E+00; x[5] = 4.26421553962776647436040018167E+00; x[6] = 5.91814156164404855815360191408E+00; x[7] = 7.86861891533473373105668358176E+00; x[8] = 10.1324237168152659251627415800E+00; x[9] = 12.7308814638423980045092979656E+00; x[10] = 15.6912783398358885454136069861E+00; x[11] = 19.0489932098235501532136429732E+00; x[12] = 22.8508497608294829323930586693E+00; x[13] = 27.1606693274114488789963947149E+00; x[14] = 32.0691222518622423224362865906E+00; x[15] = 37.7129058012196494770647508283E+00; x[16] = 44.3173627958314961196067736013E+00; x[17] = 52.3129024574043831658644222420E+00; x[18] = 62.8024231535003758413504690673E+00; } else if ( n == 20 ) { x[0] = 0.0705398896919887533666890045842E+00; x[1] = 0.372126818001611443794241388761E+00; x[2] = 0.916582102483273564667716277074E+00; x[3] = 1.70730653102834388068768966741E+00; x[4] = 2.74919925530943212964503046049E+00; x[5] = 4.04892531385088692237495336913E+00; x[6] = 5.61517497086161651410453988565E+00; x[7] = 7.45901745367106330976886021837E+00; x[8] = 9.59439286958109677247367273428E+00; x[9] = 12.0388025469643163096234092989E+00; x[10] = 14.8142934426307399785126797100E+00; x[11] = 17.9488955205193760173657909926E+00; x[12] = 21.4787882402850109757351703696E+00; x[13] = 25.4517027931869055035186774846E+00; x[14] = 29.9325546317006120067136561352E+00; x[15] = 35.0134342404790000062849359067E+00; x[16] = 40.8330570567285710620295677078E+00; x[17] = 47.6199940473465021399416271529E+00; x[18] = 55.8107957500638988907507734445E+00; x[19] = 66.5244165256157538186403187915E+00; } else { std::cerr << "\n"; std::cerr << "LAGUERRE_LOOKUP_POINTS - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::cerr << " Legal values are 1 through 20.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void laguerre_lookup_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_LOOKUP_WEIGHTS looks up weights for Laguerre quadrature. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798, // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3. // // Parameters: // // Input, int N, the order. // N must be between 1 and 20. // // Output, double W[N], the weights. // { if ( n == 1 ) { w[0] = 1.00000000000000000000000000000E+00; } else if ( n == 2 ) { w[0] = 0.85355339059327376220042218105E+00; w[1] = 0.146446609406726237799577818948E+00; } else if ( n == 3 ) { w[0] = 0.71109300992917301544959019114E+00; w[1] = 0.27851773356924084880144488846E+00; w[2] = 0.010389256501586135748964920401E+00; } else if ( n == 4 ) { w[0] = 0.60315410434163360163596602382E+00; w[1] = 0.35741869243779968664149201746E+00; w[2] = 0.03888790851500538427243816816E+00; w[3] = 0.0005392947055613274501037905676E+00; } else if ( n == 5 ) { w[0] = 0.52175561058280865247586092879E+00; w[1] = 0.3986668110831759274541333481E+00; w[2] = 0.0759424496817075953876533114E+00; w[3] = 0.00361175867992204845446126257E+00; w[4] = 0.00002336997238577622789114908455E+00; } else if ( n == 6 ) { w[0] = 0.45896467394996359356828487771E+00; w[1] = 0.4170008307721209941133775662E+00; w[2] = 0.1133733820740449757387061851E+00; w[3] = 0.01039919745314907489891330285E+00; w[4] = 0.000261017202814932059479242860E+00; w[5] = 8.98547906429621238825292053E-07; } else if ( n == 7 ) { w[0] = 0.40931895170127390213043288002E+00; w[1] = 0.4218312778617197799292810054E+00; w[2] = 0.1471263486575052783953741846E+00; w[3] = 0.0206335144687169398657056150E+00; w[4] = 0.00107401014328074552213195963E+00; w[5] = 0.0000158654643485642012687326223E+00; w[6] = 3.17031547899558056227132215E-08; } else if ( n == 8 ) { w[0] = 0.36918858934163752992058283938E+00; w[1] = 0.4187867808143429560769785813E+00; w[2] = 0.175794986637171805699659867E+00; w[3] = 0.033343492261215651522132535E+00; w[4] = 0.0027945362352256725249389241E+00; w[5] = 0.00009076508773358213104238501E+00; w[6] = 8.4857467162725315448680183E-07; w[7] = 1.04800117487151038161508854E-09; } else if ( n == 9 ) { w[0] = 0.336126421797962519673467717606E+00; w[1] = 0.411213980423984387309146942793E+00; w[2] = 0.199287525370885580860575607212E+00; w[3] = 0.0474605627656515992621163600479E+00; w[4] = 0.00559962661079458317700419900556E+00; w[5] = 0.000305249767093210566305412824291E+00; w[6] = 6.59212302607535239225572284875E-06; w[7] = 4.1107693303495484429024104033E-08; w[8] = 3.29087403035070757646681380323E-11; } else if ( n == 10 ) { w[0] = 0.30844111576502014154747083468E+00; w[1] = 0.4011199291552735515157803099E+00; w[2] = 0.218068287611809421588648523E+00; w[3] = 0.062087456098677747392902129E+00; w[4] = 0.009501516975181100553839072E+00; w[5] = 0.0007530083885875387754559644E+00; w[6] = 0.00002825923349599565567422564E+00; w[7] = 4.249313984962686372586577E-07; w[8] = 1.839564823979630780921535E-09; w[9] = 9.911827219609008558377547E-13; } else if ( n == 11 ) { w[0] = 0.28493321289420060505605102472E+00; w[1] = 0.3897208895278493779375535080E+00; w[2] = 0.232781831848991333940223796E+00; w[3] = 0.076564453546196686400854179E+00; w[4] = 0.014393282767350695091863919E+00; w[5] = 0.001518880846484873069847776E+00; w[6] = 0.0000851312243547192259720424E+00; w[7] = 2.29240387957450407857683E-06; w[8] = 2.48635370276779587373391E-08; w[9] = 7.71262693369132047028153E-11; w[10] = 2.883775868323623861597778E-14; } else if ( n == 12 ) { w[0] = 0.26473137105544319034973889206E+00; w[1] = 0.3777592758731379820244905567E+00; w[2] = 0.244082011319877564254870818E+00; w[3] = 0.09044922221168093072750549E+00; w[4] = 0.02010238115463409652266129E+00; w[5] = 0.002663973541865315881054158E+00; w[6] = 0.000203231592662999392121433E+00; w[7] = 8.3650558568197987453363E-06; w[8] = 1.66849387654091026116990E-07; w[9] = 1.34239103051500414552392E-09; w[10] = 3.06160163503502078142408E-12; w[11] = 8.148077467426241682473119E-16; } else if ( n == 13 ) { w[0] = 0.24718870842996262134624918596E+00; w[1] = 0.3656888229005219453067175309E+00; w[2] = 0.252562420057658502356824289E+00; w[3] = 0.10347075802418370511421863E+00; w[4] = 0.02643275441556161577815877E+00; w[5] = 0.00422039604025475276555209E+00; w[6] = 0.000411881770472734774892473E+00; w[7] = 0.0000235154739815532386882897E+00; w[8] = 7.3173116202490991040105E-07; w[9] = 1.10884162570398067979151E-08; w[10] = 6.7708266922058988406462E-11; w[11] = 1.15997995990507606094507E-13; w[12] = 2.245093203892758415991872E-17; } else if ( n == 14 ) { w[0] = 0.23181557714486497784077486110E+00; w[1] = 0.3537846915975431518023313013E+00; w[2] = 0.258734610245428085987320561E+00; w[3] = 0.11548289355692321008730499E+00; w[4] = 0.03319209215933736003874996E+00; w[5] = 0.00619286943700661021678786E+00; w[6] = 0.00073989037786738594242589E+00; w[7] = 0.000054907194668416983785733E+00; w[8] = 2.4095857640853774967578E-06; w[9] = 5.801543981676495180886E-08; w[10] = 6.819314692484974119616E-10; w[11] = 3.2212077518948479398089E-12; w[12] = 4.2213524405165873515980E-15; w[13] = 6.05237502228918880839871E-19; } else if ( n == 15 ) { w[0] = 0.21823488594008688985641323645E+00; w[1] = 0.3422101779228833296389489568E+00; w[2] = 0.263027577941680097414812275E+00; w[3] = 0.12642581810593053584303055E+00; w[4] = 0.04020686492100091484158548E+00; w[5] = 0.00856387780361183836391576E+00; w[6] = 0.00121243614721425207621921E+00; w[7] = 0.00011167439234425194199258E+00; w[8] = 6.459926762022900924653E-06; w[9] = 2.226316907096272630332E-07; w[10] = 4.227430384979365007351E-09; w[11] = 3.921897267041089290385E-11; w[12] = 1.4565152640731264063327E-13; w[13] = 1.4830270511133013354616E-16; w[14] = 1.60059490621113323104998E-20; } else if ( n == 16 ) { w[0] = 0.20615171495780099433427363674E+00; w[1] = 0.3310578549508841659929830987E+00; w[2] = 0.265795777644214152599502021E+00; w[3] = 0.13629693429637753997554751E+00; w[4] = 0.0473289286941252189780623E+00; w[5] = 0.0112999000803394532312490E+00; w[6] = 0.0018490709435263108642918E+00; w[7] = 0.00020427191530827846012602E+00; w[8] = 0.00001484458687398129877135E+00; w[9] = 6.828319330871199564396E-07; w[10] = 1.881024841079673213882E-08; w[11] = 2.862350242973881619631E-10; w[12] = 2.127079033224102967390E-12; w[13] = 6.297967002517867787174E-15; w[14] = 5.050473700035512820402E-18; w[15] = 4.1614623703728551904265E-22; } else if ( n == 17 ) { w[0] = 0.19533220525177083214592729770E+00; w[1] = 0.3203753572745402813366256320E+00; w[2] = 0.267329726357171097238809604E+00; w[3] = 0.14512985435875862540742645E+00; w[4] = 0.0544369432453384577793806E+00; w[5] = 0.0143572977660618672917767E+00; w[6] = 0.0026628247355727725684324E+00; w[7] = 0.0003436797271562999206118E+00; w[8] = 0.00003027551783782870109437E+00; w[9] = 1.768515053231676895381E-06; w[10] = 6.57627288681043332199E-08; w[11] = 1.469730932159546790344E-09; w[12] = 1.81691036255544979555E-11; w[13] = 1.095401388928687402976E-13; w[14] = 2.617373882223370421551E-16; w[15] = 1.6729356931461546908502E-19; w[16] = 1.06562631627404278815253E-23; } else if ( n == 18 ) { w[0] = 0.18558860314691880562333775228E+00; w[1] = 0.3101817663702252936495975957E+00; w[2] = 0.267866567148536354820854395E+00; w[3] = 0.15297974746807490655384308E+00; w[4] = 0.0614349178609616527076780E+00; w[5] = 0.0176872130807729312772600E+00; w[6] = 0.0036601797677599177980266E+00; w[7] = 0.0005406227870077353231284E+00; w[8] = 0.0000561696505121423113818E+00; w[9] = 4.01530788370115755859E-06; w[10] = 1.91466985667567497969E-07; w[11] = 5.8360952686315941292E-09; w[12] = 1.07171126695539012773E-10; w[13] = 1.08909871388883385562E-12; w[14] = 5.38666474837830887608E-15; w[15] = 1.049865978035703408779E-17; w[16] = 5.405398451631053643566E-21; w[17] = 2.6916532692010286270838E-25; } else if ( n == 19 ) { w[0] = 0.17676847491591250225103547981E+00; w[1] = 0.3004781436072543794821568077E+00; w[2] = 0.267599547038175030772695441E+00; w[3] = 0.15991337213558021678551215E+00; w[4] = 0.0682493799761491134552355E+00; w[5] = 0.0212393076065443249244062E+00; w[6] = 0.0048416273511483959672501E+00; w[7] = 0.0008049127473813667665946E+00; w[8] = 0.0000965247209315350170843E+00; w[9] = 8.20730525805103054409E-06; w[10] = 4.8305667247307725394E-07; w[11] = 1.90499136112328569994E-08; w[12] = 4.8166846309280615577E-10; w[13] = 7.3482588395511443768E-12; w[14] = 6.2022753875726163989E-14; w[15] = 2.54143084301542272372E-16; w[16] = 4.07886129682571235007E-19; w[17] = 1.707750187593837061004E-22; w[18] = 6.715064649908189959990E-27; } else if ( n == 20 ) { w[0] = 0.168746801851113862149223899689E+00; w[1] = 0.291254362006068281716795323812E+00; w[2] = 0.266686102867001288549520868998E+00; w[3] = 0.166002453269506840031469127816E+00; w[4] = 0.0748260646687923705400624639615E+00; w[5] = 0.0249644173092832210728227383234E+00; w[6] = 0.00620255084457223684744754785395E+00; w[7] = 0.00114496238647690824203955356969E+00; w[8] = 0.000155741773027811974779809513214E+00; w[9] = 0.0000154014408652249156893806714048E+00; w[10] = 1.08648636651798235147970004439E-06; w[11] = 5.33012090955671475092780244305E-08; w[12] = 1.7579811790505820035778763784E-09; w[13] = 3.72550240251232087262924585338E-11; w[14] = 4.76752925157819052449488071613E-13; w[15] = 3.37284424336243841236506064991E-15; w[16] = 1.15501433950039883096396247181E-17; w[17] = 1.53952214058234355346383319667E-20; w[18] = 5.28644272556915782880273587683E-24; w[19] = 1.65645661249902329590781908529E-28; } else { std::cerr << "\n"; std::cerr << "LAGUERRE_LOOKUP_WEIGHTS - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::cerr << " Legal values are 1 through 20.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void laguerre_ss_compute ( int order, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_SS_COMPUTE computes a Laguerre quadrature rule. // // Discussion: // // The integral: // // Integral ( 0 <= X < +oo ) exp ( - X ) * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // The integral: // // Integral ( A <= X < +oo ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * exp ( X(I) ) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 April 2011 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order. // 1 <= ORDER. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double *b; double *c; double dp2; int i; int j; double p1; double prod; double r1; double x0; if ( order < 1 ) { std::cerr << "\n"; std::cerr << "LAGUERRE_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of ORDER = " << order << "\n"; std::exit ( 1 ); } b = new double[order]; c = new double[order]; // // Set the recursion coefficients. // for ( i = 0; i < order; i++ ) { b[i] = ( double ) ( 2 * i + 1 ); } for ( i = 0; i < order; i++ ) { c[i] = ( double ) ( i * i ); } prod = 1.0; for ( i = 1; i < order; i++ ) { prod = prod * c[i]; } //cc = prod; for ( i = 0; i < order; i++ ) { // // Compute an estimate for the root. // if ( i == 0 ) { x0 = 3.0 / ( 1.0 + 2.4 * ( double ) ( order ) ); } else if ( i == 1 ) { x0 = x0 + 15.0 / ( 1.0 + 2.5 * ( double ) ( order ) ); } else { r1 = ( 1.0 + 2.55 * ( double ) ( i - 1 ) ) / ( 1.9 * ( double ) ( i - 1 ) ); x0 = x0 + r1 * ( x0 - x[i-2] ); } // // Use iteration to find the root. // webbur::laguerre_ss_root ( &x0, order, &dp2, &p1, b, c ); // // Set the abscissa and weight. // x[i] = x0; // // Because of the huge values involved, this calculation breaks down // for ORDER = 127. // // It was originally w[i] = ( cc / dp2 ) / p1, which breaks down sooner. // w[i] = ( 1.0 / dp2 ); for ( j = 2; j <= order; j++ ) { w[i] = w[i] * ( double ) ( j - 1 ); } w[i] = w[i] / p1; for ( j = 2; j <= order; j++ ) { w[i] = w[i] * ( double ) ( j - 1 ); } // w[i] = ( cc / dp2 ) / p1; } delete [] b; delete [] c; return; } //****************************************************************************80 void laguerre_ss_recur ( double *p2, double *dp2, double *p1, double x, int order, double b[], double c[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_SS_RECUR evaluates a Laguerre polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 April 2011 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Output, double *P2, the value of L(ORDER)(X). // // Output, double *DP2, the value of L'(ORDER)(X). // // Output, double *P1, the value of L(ORDER-1)(X). // // Input, double X, the point at which polynomials are evaluated. // // Input, int ORDER, the order of the polynomial. // // Input, double B[ORDER], C[ORDER], the recursion coefficients. // { double dp0; double dp1; int i; double p0; *p1 = 1.0; dp1 = 0.0; *p2 = x - 1.0; *dp2 = 1.0; for ( i = 1; i < order; i++ ) { p0 = *p1; dp0 = dp1; *p1 = *p2; dp1 = *dp2; *p2 = ( x - b[i] ) * ( *p1 ) - c[i] * p0; *dp2 = ( x - b[i] ) * dp1 + ( *p1 ) - c[i] * dp0; } return; } //****************************************************************************80 void laguerre_ss_root ( double *x, int order, double *dp2, double *p1, double b[], double c[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_SS_ROOT improves a root of a Laguerre polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 April 2011 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input/output, double *X, the approximate root, which // should be improved on output. // // Input, int ORDER, the order of the polynomial. // // Output, double *DP2, the value of L'(ORDER)(X). // // Output, double *P1, the value of L(ORDER-1)(X). // // Input, double B[ORDER], C[ORDER], the recursion coefficients. // { double d; double eps; double p2; int step; int step_max = 10; eps = webbur::r8_epsilon ( ); for ( step = 1; step <= step_max; step++ ) { webbur::laguerre_ss_recur ( &p2, dp2, p1, *x, order, b, c ); d = p2 / ( *dp2 ); *x = *x - d; if ( webbur::r8_abs ( d ) <= eps * ( webbur::r8_abs ( *x ) + 1.0 ) ) { break; } } return; } //****************************************************************************80 void legendre_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_COMPUTE: Legendre quadrature rule by the Elhay-Kautsky method. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 April 2011 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int N, the order. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double *bj; int i; double zemu; // // Define the zero-th moment. // zemu = 2.0; // // Define the Jacobi matrix. // bj = new double[n]; for ( i = 0; i < n; i++ ) { bj[i] = ( double ) ( ( i + 1 ) * ( i + 1 ) ) / ( double ) ( 4 * ( i + 1 ) * ( i + 1 ) - 1 ); bj[i] = std::sqrt ( bj[i] ); } for ( i = 0; i < n; i++ ) { x[i] = 0.0; } w[0] = std::sqrt ( zemu ); for ( i = 1; i < n; i++ ) { w[i] = 0.0; } // // Diagonalize the Jacobi matrix. // webbur::imtqlx ( n, x, bj, w ); for ( i = 0; i < n; i++ ) { w[i] = w[i] * w[i]; } delete [] bj; return; } //****************************************************************************80 void legendre_compute_np ( int n, int np, double p[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_COMPUTE_NP computes a Legendre quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // Original FORTRAN77 version by Philip Davis, Philip Rabinowitz. // C++ version by John Burkardt. // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { webbur::legendre_compute ( n, x, w ); return; } //****************************************************************************80 void legendre_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_COMPUTE_POINTS computes Legendre quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double X[N], the abscissas. // { double *w; w= new double[n]; webbur::legendre_compute ( n, x, w ); delete [] w; return; } //****************************************************************************80 void legendre_compute_points_np ( int n, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_COMPUTE_POINTS_NP computes Legendre quadrature points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // { webbur::legendre_compute_points ( n, x ); return; } //****************************************************************************80 void legendre_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_COMPUTE_WEIGHTS computes Legendre quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double W[N], the weights. // { double *x; x = new double[n]; webbur::legendre_compute ( n, x, w ); delete [] x; return; } //****************************************************************************80 void legendre_compute_weights_np ( int n, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_COMPUTE_WEIGHTS_NP computes Legendre quadrature weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[N], the weights. // { webbur::legendre_compute_weights ( n, w ); return; } //****************************************************************************80 void legendre_dr_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_DR_COMPUTE computes a Legendre quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2009 // // Author: // // Original FORTRAN77 version by Philip Davis, Philip Rabinowitz. // C++ version by John Burkardt. // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the order. // 1 <= N. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double d1; double d2pn; double d3pn; double d4pn; double dp; double dpn; double e1; double fx; double h; int i; int iback; int k; int m; int mp1mi; int ncopy; int nmove; double p; double pi = 3.141592653589793; double pk; double pkm1; double pkp1; double t; double u; double v; double x0; double xtemp; if ( n < 1 ) { std::cerr << "\n"; std::cerr << "LEGENDRE_DR_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::exit ( 1 ); } e1 = ( double ) ( n * ( n + 1 ) ); m = ( n + 1 ) / 2; for ( i = 1; i <= m; i++ ) { mp1mi = m + 1 - i; t = ( double ) ( 4 * i - 1 ) * pi / ( double ) ( 4 * n + 2 ); x0 = std::cos ( t ) * ( 1.0 - ( 1.0 - 1.0 / ( double ) ( n ) ) / ( double ) ( 8 * n * n ) ); pkm1 = 1.0; pk = x0; for ( k = 2; k <= n; k++ ) { pkp1 = 2.0 * x0 * pk - pkm1 - ( x0 * pk - pkm1 ) / ( double ) ( k ); pkm1 = pk; pk = pkp1; } d1 = ( double ) ( n ) * ( pkm1 - x0 * pk ); dpn = d1 / ( 1.0 - x0 * x0 ); d2pn = ( 2.0 * x0 * dpn - e1 * pk ) / ( 1.0 - x0 * x0 ); d3pn = ( 4.0 * x0 * d2pn + ( 2.0 - e1 ) * dpn ) / ( 1.0 - x0 * x0 ); d4pn = ( 6.0 * x0 * d3pn + ( 6.0 - e1 ) * d2pn ) / ( 1.0 - x0 * x0 ); u = pk / dpn; v = d2pn / dpn; // // Initial approximation H: // h = -u * ( 1.0 + 0.5 * u * ( v + u * ( v * v - d3pn / ( 3.0 * dpn ) ) ) ); // // Refine H using one step of Newton's method: // p = pk + h * ( dpn + 0.5 * h * ( d2pn + h / 3.0 * ( d3pn + 0.25 * h * d4pn ) ) ); dp = dpn + h * ( d2pn + 0.5 * h * ( d3pn + h * d4pn / 3.0 ) ); h = h - p / dp; xtemp = x0 + h; x[mp1mi-1] = xtemp; fx = d1 - h * e1 * ( pk + 0.5 * h * ( dpn + h / 3.0 * ( d2pn + 0.25 * h * ( d3pn + 0.2 * h * d4pn ) ) ) ); w[mp1mi-1] = 2.0 * ( 1.0 - xtemp * xtemp ) / ( fx * fx ); } if ( ( n % 2 ) == 1 ) { x[0] = 0.0; } // // Shift the data up. // nmove = ( n + 1 ) / 2; ncopy = n - nmove; for ( i = 1; i <= nmove; i++ ) { iback = n + 1 - i; x[iback-1] = x[iback-ncopy-1]; w[iback-1] = w[iback-ncopy-1]; } // // Reflect values for the negative abscissas. // for ( i = 1; i <= n - nmove; i++ ) { x[i-1] = - x[n-i]; w[i-1] = w[n-i]; } return; } //****************************************************************************80 double legendre_integral ( int expon ) //****************************************************************************80 // // Purpose: // // LEGENDRE_INTEGRAL evaluates a monomial Legendre integral. // // Discussion: // // The integral: // // integral ( -1 <= x <= +1 ) x^n dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // // Output, double LEGENDRE_INTEGRAL, the value of the exact integral. // { double exact; // // Get the exact value of the integral. // if ( ( expon % 2 ) == 0 ) { exact = 2.0 / ( double ) ( expon + 1 ); } else { exact = 0.0; } return exact; } //****************************************************************************80 void legendre_lookup ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_LOOKUP looks up abscissas and weights for Gauss-Legendre quadrature. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798. // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3, // LC: QA47.M315. // // Parameters: // // Input, int N, the order. // N must be between 1 and 33. // // Output, double X[N], the abscissas. // // Output, double W[N], the abscissas. // { webbur::legendre_lookup_points ( n, x ); webbur::legendre_lookup_weights ( n, w ); return; } //****************************************************************************80 void legendre_lookup_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_LOOKUP_POINTS looks up abscissas for Gauss-Legendre quadrature. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798. // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3, // LC: QA47.M315. // // Parameters: // // Input, int N, the order. // N must be between 1 and 33. // // Output, double X[N], the abscissas. // { if ( n == 1 ) { x[0] = 0.000000000000000000000000000000; } else if ( n == 2 ) { x[0] = -0.577350269189625764509148780502; x[1] = 0.577350269189625764509148780502; } else if ( n == 3 ) { x[0] = -0.774596669241483377035853079956; x[1] = 0.000000000000000000000000000000; x[2] = 0.774596669241483377035853079956; } else if ( n == 4 ) { x[0] = -0.861136311594052575223946488893; x[1] = -0.339981043584856264802665759103; x[2] = 0.339981043584856264802665759103; x[3] = 0.861136311594052575223946488893; } else if ( n == 5 ) { x[0] = -0.906179845938663992797626878299; x[1] = -0.538469310105683091036314420700; x[2] = 0.000000000000000000000000000000; x[3] = 0.538469310105683091036314420700; x[4] = 0.906179845938663992797626878299; } else if ( n == 6 ) { x[0] = -0.932469514203152027812301554494; x[1] = -0.661209386466264513661399595020; x[2] = -0.238619186083196908630501721681; x[3] = 0.238619186083196908630501721681; x[4] = 0.661209386466264513661399595020; x[5] = 0.932469514203152027812301554494; } else if ( n == 7 ) { x[0] = -0.949107912342758524526189684048; x[1] = -0.741531185599394439863864773281; x[2] = -0.405845151377397166906606412077; x[3] = 0.000000000000000000000000000000; x[4] = 0.405845151377397166906606412077; x[5] = 0.741531185599394439863864773281; x[6] = 0.949107912342758524526189684048; } else if ( n == 8 ) { x[0] = -0.960289856497536231683560868569; x[1] = -0.796666477413626739591553936476; x[2] = -0.525532409916328985817739049189; x[3] = -0.183434642495649804939476142360; x[4] = 0.183434642495649804939476142360; x[5] = 0.525532409916328985817739049189; x[6] = 0.796666477413626739591553936476; x[7] = 0.960289856497536231683560868569; } else if ( n == 9 ) { x[0] = -0.968160239507626089835576203; x[1] = -0.836031107326635794299429788; x[2] = -0.613371432700590397308702039; x[3] = -0.324253423403808929038538015; x[4] = 0.000000000000000000000000000; x[5] = 0.324253423403808929038538015; x[6] = 0.613371432700590397308702039; x[7] = 0.836031107326635794299429788; x[8] = 0.968160239507626089835576203; } else if ( n == 10 ) { x[0] = -0.973906528517171720077964012; x[1] = -0.865063366688984510732096688; x[2] = -0.679409568299024406234327365; x[3] = -0.433395394129247190799265943; x[4] = -0.148874338981631210884826001; x[5] = 0.148874338981631210884826001; x[6] = 0.433395394129247190799265943; x[7] = 0.679409568299024406234327365; x[8] = 0.865063366688984510732096688; x[9] = 0.973906528517171720077964012; } else if ( n == 11 ) { x[0] = -0.978228658146056992803938001; x[1] = -0.887062599768095299075157769; x[2] = -0.730152005574049324093416252; x[3] = -0.519096129206811815925725669; x[4] = -0.269543155952344972331531985; x[5] = 0.000000000000000000000000000; x[6] = 0.269543155952344972331531985; x[7] = 0.519096129206811815925725669; x[8] = 0.730152005574049324093416252; x[9] = 0.887062599768095299075157769; x[10] = 0.978228658146056992803938001; } else if ( n == 12 ) { x[0] = -0.981560634246719250690549090; x[1] = -0.904117256370474856678465866; x[2] = -0.769902674194304687036893833; x[3] = -0.587317954286617447296702419; x[4] = -0.367831498998180193752691537; x[5] = -0.125233408511468915472441369; x[6] = 0.125233408511468915472441369; x[7] = 0.367831498998180193752691537; x[8] = 0.587317954286617447296702419; x[9] = 0.769902674194304687036893833; x[10] = 0.904117256370474856678465866; x[11] = 0.981560634246719250690549090; } else if ( n == 13 ) { x[0] = -0.984183054718588149472829449; x[1] = -0.917598399222977965206547837; x[2] = -0.801578090733309912794206490; x[3] = -0.642349339440340220643984607; x[4] = -0.448492751036446852877912852; x[5] = -0.230458315955134794065528121; x[6] = 0.000000000000000000000000000; x[7] = 0.230458315955134794065528121; x[8] = 0.448492751036446852877912852; x[9] = 0.642349339440340220643984607; x[10] = 0.80157809073330991279420649; x[11] = 0.91759839922297796520654784; x[12] = 0.98418305471858814947282945; } else if ( n == 14 ) { x[0] = -0.986283808696812338841597267; x[1] = -0.928434883663573517336391139; x[2] = -0.827201315069764993189794743; x[3] = -0.687292904811685470148019803; x[4] = -0.515248636358154091965290719; x[5] = -0.319112368927889760435671824; x[6] = -0.108054948707343662066244650; x[7] = 0.108054948707343662066244650; x[8] = 0.31911236892788976043567182; x[9] = 0.51524863635815409196529072; x[10] = 0.68729290481168547014801980; x[11] = 0.82720131506976499318979474; x[12] = 0.92843488366357351733639114; x[13] = 0.98628380869681233884159727; } else if ( n == 15 ) { x[0] = -0.987992518020485428489565719; x[1] = -0.937273392400705904307758948; x[2] = -0.848206583410427216200648321; x[3] = -0.724417731360170047416186055; x[4] = -0.570972172608538847537226737; x[5] = -0.394151347077563369897207371; x[6] = -0.201194093997434522300628303; x[7] = 0.00000000000000000000000000; x[8] = 0.20119409399743452230062830; x[9] = 0.39415134707756336989720737; x[10] = 0.57097217260853884753722674; x[11] = 0.72441773136017004741618605; x[12] = 0.84820658341042721620064832; x[13] = 0.93727339240070590430775895; x[14] = 0.98799251802048542848956572; } else if ( n == 16 ) { x[0] = -0.989400934991649932596154173; x[1] = -0.944575023073232576077988416; x[2] = -0.865631202387831743880467898; x[3] = -0.755404408355003033895101195; x[4] = -0.617876244402643748446671764; x[5] = -0.458016777657227386342419443; x[6] = -0.281603550779258913230460501; x[7] = -0.09501250983763744018531934; x[8] = 0.09501250983763744018531934; x[9] = 0.28160355077925891323046050; x[10] = 0.45801677765722738634241944; x[11] = 0.61787624440264374844667176; x[12] = 0.75540440835500303389510119; x[13] = 0.86563120238783174388046790; x[14] = 0.94457502307323257607798842; x[15] = 0.98940093499164993259615417; } else if ( n == 17 ) { x[0] = -0.990575475314417335675434020; x[1] = -0.950675521768767761222716958; x[2] = -0.880239153726985902122955694; x[3] = -0.781514003896801406925230056; x[4] = -0.657671159216690765850302217; x[5] = -0.512690537086476967886246569; x[6] = -0.35123176345387631529718552; x[7] = -0.17848418149584785585067749; x[8] = 0.00000000000000000000000000; x[9] = 0.17848418149584785585067749; x[10] = 0.35123176345387631529718552; x[11] = 0.51269053708647696788624657; x[12] = 0.65767115921669076585030222; x[13] = 0.78151400389680140692523006; x[14] = 0.88023915372698590212295569; x[15] = 0.95067552176876776122271696; x[16] = 0.99057547531441733567543402; } else if ( n == 18 ) { x[0] = -0.991565168420930946730016005; x[1] = -0.955823949571397755181195893; x[2] = -0.892602466497555739206060591; x[3] = -0.803704958972523115682417455; x[4] = -0.691687043060353207874891081; x[5] = -0.55977083107394753460787155; x[6] = -0.41175116146284264603593179; x[7] = -0.25188622569150550958897285; x[8] = -0.08477501304173530124226185; x[9] = 0.08477501304173530124226185; x[10] = 0.25188622569150550958897285; x[11] = 0.41175116146284264603593179; x[12] = 0.55977083107394753460787155; x[13] = 0.69168704306035320787489108; x[14] = 0.80370495897252311568241746; x[15] = 0.89260246649755573920606059; x[16] = 0.95582394957139775518119589; x[17] = 0.99156516842093094673001600; } else if ( n == 19 ) { x[0] = -0.992406843843584403189017670; x[1] = -0.960208152134830030852778841; x[2] = -0.903155903614817901642660929; x[3] = -0.822714656537142824978922487; x[4] = -0.72096617733522937861709586; x[5] = -0.60054530466168102346963816; x[6] = -0.46457074137596094571726715; x[7] = -0.31656409996362983199011733; x[8] = -0.16035864564022537586809612; x[9] = 0.00000000000000000000000000; x[10] = 0.16035864564022537586809612; x[11] = 0.31656409996362983199011733; x[12] = 0.46457074137596094571726715; x[13] = 0.60054530466168102346963816; x[14] = 0.72096617733522937861709586; x[15] = 0.82271465653714282497892249; x[16] = 0.90315590361481790164266093; x[17] = 0.96020815213483003085277884; x[18] = 0.99240684384358440318901767; } else if ( n == 20 ) { x[0] = -0.993128599185094924786122388; x[1] = -0.963971927277913791267666131; x[2] = -0.912234428251325905867752441; x[3] = -0.83911697182221882339452906; x[4] = -0.74633190646015079261430507; x[5] = -0.63605368072651502545283670; x[6] = -0.51086700195082709800436405; x[7] = -0.37370608871541956067254818; x[8] = -0.22778585114164507808049620; x[9] = -0.07652652113349733375464041; x[10] = 0.07652652113349733375464041; x[11] = 0.22778585114164507808049620; x[12] = 0.37370608871541956067254818; x[13] = 0.51086700195082709800436405; x[14] = 0.63605368072651502545283670; x[15] = 0.74633190646015079261430507; x[16] = 0.83911697182221882339452906; x[17] = 0.91223442825132590586775244; x[18] = 0.96397192727791379126766613; x[19] = 0.99312859918509492478612239; } else if ( n == 21 ) { x[ 0] = -0.99375217062038950026024204; x[ 1] = -0.96722683856630629431662221; x[ 2] = -0.92009933415040082879018713; x[ 3] = -0.85336336458331728364725064; x[ 4] = -0.76843996347567790861587785; x[ 5] = -0.66713880419741231930596667; x[ 6] = -0.55161883588721980705901880; x[ 7] = -0.42434212020743878357366889; x[ 8] = -0.28802131680240109660079252; x[9] = -0.14556185416089509093703098; x[10] = 0.00000000000000000000000000; x[11] = +0.14556185416089509093703098; x[12] = +0.28802131680240109660079252; x[13] = +0.42434212020743878357366889; x[14] = +0.55161883588721980705901880; x[15] = +0.66713880419741231930596667; x[16] = +0.76843996347567790861587785; x[17] = +0.85336336458331728364725064; x[18] = +0.92009933415040082879018713; x[19] = +0.96722683856630629431662221; x[20] = +0.99375217062038950026024204; } else if ( n == 22 ) { x[0] = -0.99429458548239929207303142; x[1] = -0.97006049783542872712395099; x[2] = -0.92695677218717400052069294; x[3] = -0.86581257772030013653642564; x[4] = -0.78781680597920816200427796; x[5] = -0.69448726318668278005068984; x[6] = -0.58764040350691159295887693; x[7] = -0.46935583798675702640633071; x[8] = -0.34193582089208422515814742; x[9] = -0.20786042668822128547884653; x[10] = -0.06973927331972222121384180; x[11] = 0.06973927331972222121384180; x[12] = 0.20786042668822128547884653; x[13] = 0.34193582089208422515814742; x[14] = 0.46935583798675702640633071; x[15] = 0.58764040350691159295887693; x[16] = 0.69448726318668278005068984; x[17] = 0.78781680597920816200427796; x[18] = 0.86581257772030013653642564; x[19] = 0.92695677218717400052069294; x[20] = 0.97006049783542872712395099; x[21] = 0.99429458548239929207303142; } else if ( n == 23 ) { x[0] = -0.99476933499755212352392572; x[1] = -0.97254247121811523195602408; x[2] = -0.93297108682601610234919699; x[3] = -0.87675235827044166737815689; x[4] = -0.80488840161883989215111841; x[5] = -0.71866136313195019446162448; x[6] = -0.61960987576364615638509731; x[7] = -0.50950147784600754968979305; x[8] = -0.39030103803029083142148887; x[9] = -0.26413568097034493053386954; x[10] = -0.13325682429846611093174268; x[11] = 0.00000000000000000000000000; x[12] = 0.13325682429846611093174268; x[13] = 0.26413568097034493053386954; x[14] = 0.39030103803029083142148887; x[15] = 0.50950147784600754968979305; x[16] = 0.61960987576364615638509731; x[17] = 0.71866136313195019446162448; x[18] = 0.80488840161883989215111841; x[19] = 0.87675235827044166737815689; x[20] = 0.93297108682601610234919699; x[21] = 0.97254247121811523195602408; x[22] = 0.99476933499755212352392572; } else if ( n == 24 ) { x[0] = -0.99518721999702136017999741; x[1] = -0.97472855597130949819839199; x[2] = -0.93827455200273275852364900; x[3] = -0.88641552700440103421315434; x[4] = -0.82000198597390292195394987; x[5] = -0.74012419157855436424382810; x[6] = -0.64809365193697556925249579; x[7] = -0.54542147138883953565837562; x[8] = -0.43379350762604513848708423; x[9] = -0.31504267969616337438679329; x[10] = -0.19111886747361630915863982; x[11] = -0.06405689286260562608504308; x[12] = 0.06405689286260562608504308; x[13] = 0.19111886747361630915863982; x[14] = 0.31504267969616337438679329; x[15] = 0.43379350762604513848708423; x[16] = 0.54542147138883953565837562; x[17] = 0.64809365193697556925249579; x[18] = 0.74012419157855436424382810; x[19] = 0.82000198597390292195394987; x[20] = 0.88641552700440103421315434; x[21] = 0.93827455200273275852364900; x[22] = 0.97472855597130949819839199; x[23] = 0.99518721999702136017999741; } else if ( n == 25 ) { x[0] = -0.99555696979049809790878495; x[1] = -0.97666392145951751149831539; x[2] = -0.94297457122897433941401117; x[3] = -0.89499199787827536885104201; x[4] = -0.83344262876083400142102111; x[5] = -0.75925926303735763057728287; x[6] = -0.67356636847346836448512063; x[7] = -0.57766293024122296772368984; x[8] = -0.47300273144571496052218212; x[9] = -0.36117230580938783773582173; x[10] = -0.24386688372098843204519036; x[11] = -0.12286469261071039638735982; x[12] = 0.00000000000000000000000000; x[13] = 0.12286469261071039638735982; x[14] = 0.24386688372098843204519036; x[15] = 0.36117230580938783773582173; x[16] = 0.47300273144571496052218212; x[17] = 0.57766293024122296772368984; x[18] = 0.67356636847346836448512063; x[19] = 0.75925926303735763057728287; x[20] = 0.83344262876083400142102111; x[21] = 0.89499199787827536885104201; x[22] = 0.94297457122897433941401117; x[23] = 0.97666392145951751149831539; x[24] = 0.99555696979049809790878495; } else if ( n == 26 ) { x[0] = -0.99588570114561692900321696; x[1] = -0.97838544595647099110058035; x[2] = -0.94715906666171425013591528; x[3] = -0.90263786198430707421766560; x[4] = -0.84544594278849801879750706; x[5] = -0.77638594882067885619296725; x[6] = -0.69642726041995726486381391; x[7] = -0.60669229301761806323197875; x[8] = -0.50844071482450571769570306; x[9] = -0.40305175512348630648107738; x[10] = -0.29200483948595689514283538; x[11] = -0.17685882035689018396905775; x[12] = -0.05923009342931320709371858; x[13] = 0.05923009342931320709371858; x[14] = 0.17685882035689018396905775; x[15] = 0.29200483948595689514283538; x[16] = 0.40305175512348630648107738; x[17] = 0.50844071482450571769570306; x[18] = 0.60669229301761806323197875; x[19] = 0.69642726041995726486381391; x[20] = 0.77638594882067885619296725; x[21] = 0.84544594278849801879750706; x[22] = 0.90263786198430707421766560; x[23] = 0.94715906666171425013591528; x[24] = 0.97838544595647099110058035; x[25] = 0.99588570114561692900321696; } else if ( n == 27 ) { x[0] = -0.99617926288898856693888721; x[1] = -0.97992347596150122285587336; x[2] = -0.95090055781470500685190803; x[3] = -0.90948232067749110430064502; x[4] = -0.85620790801829449030273722; x[5] = -0.79177163907050822714439734; x[6] = -0.71701347373942369929481621; x[7] = -0.63290797194649514092773464; x[8] = -0.54055156457945689490030094; x[9] = -0.44114825175002688058597416; x[10] = -0.33599390363850889973031903; x[11] = -0.22645936543953685885723911; x[12] = -0.11397258560952996693289498; x[13] = 0.00000000000000000000000000; x[14] = 0.11397258560952996693289498; x[15] = 0.22645936543953685885723911; x[16] = 0.33599390363850889973031903; x[17] = 0.44114825175002688058597416; x[18] = 0.54055156457945689490030094; x[19] = 0.63290797194649514092773464; x[20] = 0.71701347373942369929481621; x[21] = 0.79177163907050822714439734; x[22] = 0.85620790801829449030273722; x[23] = 0.90948232067749110430064502; x[24] = 0.95090055781470500685190803; x[25] = 0.97992347596150122285587336; x[26] = 0.99617926288898856693888721; } else if ( n == 28 ) { x[0] = -0.99644249757395444995043639; x[1] = -0.98130316537087275369455995; x[2] = -0.95425928062893819725410184; x[3] = -0.91563302639213207386968942; x[4] = -0.86589252257439504894225457; x[5] = -0.80564137091717917144788596; x[6] = -0.73561087801363177202814451; x[7] = -0.65665109403886496121989818; x[8] = -0.56972047181140171930800328; x[9] = -0.47587422495511826103441185; x[10] = -0.37625151608907871022135721; x[11] = -0.27206162763517807767682636; x[12] = -0.16456928213338077128147178; x[13] = -0.05507928988403427042651653; x[14] = 0.05507928988403427042651653; x[15] = 0.16456928213338077128147178; x[16] = 0.27206162763517807767682636; x[17] = 0.37625151608907871022135721; x[18] = 0.47587422495511826103441185; x[19] = 0.56972047181140171930800328; x[20] = 0.65665109403886496121989818; x[21] = 0.73561087801363177202814451; x[22] = 0.80564137091717917144788596; x[23] = 0.86589252257439504894225457; x[24] = 0.91563302639213207386968942; x[25] = 0.95425928062893819725410184; x[26] = 0.98130316537087275369455995; x[27] = 0.99644249757395444995043639; } else if ( n == 29 ) { x[0] = -0.99667944226059658616319153; x[1] = -0.98254550526141317487092602; x[2] = -0.95728559577808772579820804; x[3] = -0.92118023295305878509375344; x[4] = -0.87463780492010279041779342; x[5] = -0.81818548761525244498957221; x[6] = -0.75246285173447713391261008; x[7] = -0.67821453760268651515618501; x[8] = -0.59628179713822782037958621; x[9] = -0.50759295512422764210262792; x[10] = -0.41315288817400866389070659; x[11] = -0.31403163786763993494819592; x[12] = -0.21135228616600107450637573; x[13] = -0.10627823013267923017098239; x[14] = 0.00000000000000000000000000; x[15] = 0.10627823013267923017098239; x[16] = 0.21135228616600107450637573; x[17] = 0.31403163786763993494819592; x[18] = 0.41315288817400866389070659; x[19] = 0.50759295512422764210262792; x[20] = 0.59628179713822782037958621; x[21] = 0.67821453760268651515618501; x[22] = 0.75246285173447713391261008; x[23] = 0.81818548761525244498957221; x[24] = 0.87463780492010279041779342; x[25] = 0.92118023295305878509375344; x[26] = 0.95728559577808772579820804; x[27] = 0.98254550526141317487092602; x[28] = 0.99667944226059658616319153; } else if ( n == 30 ) { x[0] = -0.99689348407464954027163005; x[1] = -0.98366812327974720997003258; x[2] = -0.96002186496830751221687103; x[3] = -0.92620004742927432587932428; x[4] = -0.88256053579205268154311646; x[5] = -0.82956576238276839744289812; x[6] = -0.76777743210482619491797734; x[7] = -0.69785049479331579693229239; x[8] = -0.62052618298924286114047756; x[9] = -0.53662414814201989926416979; x[10] = -0.44703376953808917678060990; x[11] = -0.35270472553087811347103721; x[12] = -0.25463692616788984643980513; x[13] = -0.15386991360858354696379467; x[14] = -0.05147184255531769583302521; x[15] = 0.05147184255531769583302521; x[16] = 0.15386991360858354696379467; x[17] = 0.25463692616788984643980513; x[18] = 0.35270472553087811347103721; x[19] = 0.44703376953808917678060990; x[20] = 0.53662414814201989926416979; x[21] = 0.62052618298924286114047756; x[22] = 0.69785049479331579693229239; x[23] = 0.76777743210482619491797734; x[24] = 0.82956576238276839744289812; x[25] = 0.88256053579205268154311646; x[26] = 0.92620004742927432587932428; x[27] = 0.96002186496830751221687103; x[28] = 0.98366812327974720997003258; x[29] = 0.99689348407464954027163005; } else if ( n == 31 ) { x[0] = -0.99708748181947707405562655; x[1] = -0.98468590966515248400246517; x[2] = -0.96250392509294966178905240; x[3] = -0.93075699789664816495694576; x[4] = -0.88976002994827104337419201; x[5] = -0.83992032014626734008690454; x[6] = -0.78173314841662494040636002; x[7] = -0.71577678458685328390597087; x[8] = -0.64270672292426034618441820; x[9] = -0.56324916140714926272094492; x[10] = -0.47819378204490248044059404; x[11] = -0.38838590160823294306135146; x[12] = -0.29471806998170161661790390; x[13] = -0.19812119933557062877241300; x[14] = -0.09955531215234152032517479; x[15] = 0.00000000000000000000000000; x[16] = 0.09955531215234152032517479; x[17] = 0.19812119933557062877241300; x[18] = 0.29471806998170161661790390; x[19] = 0.38838590160823294306135146; x[20] = 0.47819378204490248044059404; x[21] = 0.56324916140714926272094492; x[22] = 0.64270672292426034618441820; x[23] = 0.71577678458685328390597087; x[24] = 0.78173314841662494040636002; x[25] = 0.83992032014626734008690454; x[26] = 0.88976002994827104337419201; x[27] = 0.93075699789664816495694576; x[28] = 0.96250392509294966178905240; x[29] = 0.98468590966515248400246517; x[30] = 0.99708748181947707405562655; } else if ( n == 32 ) { x[0] = -0.99726386184948156354498113; x[1] = -0.98561151154526833540017504; x[2] = -0.96476225558750643077381193; x[3] = -0.93490607593773968917091913; x[4] = -0.89632115576605212396530724; x[5] = -0.84936761373256997013369300; x[6] = -0.79448379596794240696309730; x[7] = -0.73218211874028968038742667; x[8] = -0.66304426693021520097511517; x[9] = -0.58771575724076232904074548; x[10] = -0.50689990893222939002374747; x[11] = -0.42135127613063534536411944; x[12] = -0.33186860228212764977991681; x[13] = -0.23928736225213707454460321; x[14] = -0.14447196158279649348518637; x[15] = -0.04830766568773831623481257; x[16] = 0.04830766568773831623481257; x[17] = 0.14447196158279649348518637; x[18] = 0.23928736225213707454460321; x[19] = 0.33186860228212764977991681; x[20] = 0.42135127613063534536411944; x[21] = 0.50689990893222939002374747; x[22] = 0.58771575724076232904074548; x[23] = 0.66304426693021520097511517; x[24] = 0.73218211874028968038742667; x[25] = 0.79448379596794240696309730; x[26] = 0.84936761373256997013369300; x[27] = 0.89632115576605212396530724; x[28] = 0.93490607593773968917091913; x[29] = 0.96476225558750643077381193; x[30] = 0.98561151154526833540017504; x[31] = 0.99726386184948156354498113; } else if ( n == 33 ) { x[0] = -0.99742469424645521726616802; x[1] = -0.98645572623064248811037570; x[2] = -0.96682290968999276892837771; x[3] = -0.93869437261116835035583512; x[4] = -0.90231676774343358304053133; x[5] = -0.85800965267650406464306148; x[6] = -0.80616235627416658979620087; x[7] = -0.74723049644956215785905512; x[8] = -0.68173195996974278626821595; x[9] = -0.61024234583637902730728751; x[10] = -0.53338990478634764354889426; x[11] = -0.45185001727245069572599328; x[12] = -0.36633925774807334107022062; x[13] = -0.27760909715249702940324807; x[14] = -0.18643929882799157233579876; x[15] = -0.09363106585473338567074292; x[16] = 0.00000000000000000000000000; x[17] = 0.09363106585473338567074292; x[18] = 0.18643929882799157233579876; x[19] = 0.27760909715249702940324807; x[20] = 0.36633925774807334107022062; x[21] = 0.45185001727245069572599328; x[22] = 0.53338990478634764354889426; x[23] = 0.61024234583637902730728751; x[24] = 0.68173195996974278626821595; x[25] = 0.74723049644956215785905512; x[26] = 0.80616235627416658979620087; x[27] = 0.85800965267650406464306148; x[28] = 0.90231676774343358304053133; x[29] = 0.93869437261116835035583512; x[30] = 0.96682290968999276892837771; x[31] = 0.98645572623064248811037570; x[32] = 0.99742469424645521726616802; } else { std::cerr << "\n"; std::cerr << "LEGENDRE_LOOKUP_POINTS - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::cerr << " Legal values are 1 through 33.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void legendre_lookup_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_LOOKUP_WEIGHTS looks up weights for Gauss-Legendre quadrature. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798. // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3, // LC: QA47.M315. // // Parameters: // // Input, int N, the order. // N must be between 1 and 33. // // Output, double W[N], the weights. // { if ( n == 1 ) { w[0] = 2.000000000000000000000000000000; } else if ( n == 2 ) { w[0] = 1.000000000000000000000000000000; w[1] = 1.000000000000000000000000000000; } else if ( n == 3 ) { w[0] = 0.555555555555555555555555555556; w[1] = 0.888888888888888888888888888889; w[2] = 0.555555555555555555555555555556; } else if ( n == 4 ) { w[0] = 0.347854845137453857373063949222; w[1] = 0.652145154862546142626936050778; w[2] = 0.652145154862546142626936050778; w[3] = 0.347854845137453857373063949222; } else if ( n == 5 ) { w[0] = 0.236926885056189087514264040720; w[1] = 0.478628670499366468041291514836; w[2] = 0.568888888888888888888888888889; w[3] = 0.478628670499366468041291514836; w[4] = 0.236926885056189087514264040720; } else if ( n == 6 ) { w[0] = 0.171324492379170345040296142173; w[1] = 0.360761573048138607569833513838; w[2] = 0.467913934572691047389870343990; w[3] = 0.467913934572691047389870343990; w[4] = 0.360761573048138607569833513838; w[5] = 0.171324492379170345040296142173; } else if ( n == 7 ) { w[0] = 0.129484966168869693270611432679; w[1] = 0.279705391489276667901467771424; w[2] = 0.381830050505118944950369775489; w[3] = 0.417959183673469387755102040816; w[4] = 0.381830050505118944950369775489; w[5] = 0.279705391489276667901467771424; w[6] = 0.129484966168869693270611432679; } else if ( n == 8 ) { w[0] = 0.101228536290376259152531354310; w[1] = 0.222381034453374470544355994426; w[2] = 0.313706645877887287337962201987; w[3] = 0.362683783378361982965150449277; w[4] = 0.362683783378361982965150449277; w[5] = 0.313706645877887287337962201987; w[6] = 0.222381034453374470544355994426; w[7] = 0.101228536290376259152531354310; } else if ( n == 9 ) { w[0] = 0.081274388361574411971892158111; w[1] = 0.18064816069485740405847203124; w[2] = 0.26061069640293546231874286942; w[3] = 0.31234707704000284006863040658; w[4] = 0.33023935500125976316452506929; w[5] = 0.31234707704000284006863040658; w[6] = 0.26061069640293546231874286942; w[7] = 0.18064816069485740405847203124; w[8] = 0.081274388361574411971892158111; } else if ( n == 10 ) { w[0] = 0.066671344308688137593568809893; w[1] = 0.14945134915058059314577633966; w[2] = 0.21908636251598204399553493423; w[3] = 0.26926671930999635509122692157; w[4] = 0.29552422471475287017389299465; w[5] = 0.29552422471475287017389299465; w[6] = 0.26926671930999635509122692157; w[7] = 0.21908636251598204399553493423; w[8] = 0.14945134915058059314577633966; w[9] = 0.066671344308688137593568809893; } else if ( n == 11 ) { w[0] = 0.055668567116173666482753720443; w[1] = 0.12558036946490462463469429922; w[2] = 0.18629021092773425142609764143; w[3] = 0.23319376459199047991852370484; w[4] = 0.26280454451024666218068886989; w[5] = 0.27292508677790063071448352834; w[6] = 0.26280454451024666218068886989; w[7] = 0.23319376459199047991852370484; w[8] = 0.18629021092773425142609764143; w[9] = 0.12558036946490462463469429922; w[10] = 0.055668567116173666482753720443; } else if ( n == 12 ) { w[0] = 0.047175336386511827194615961485; w[1] = 0.10693932599531843096025471819; w[2] = 0.16007832854334622633465252954; w[3] = 0.20316742672306592174906445581; w[4] = 0.23349253653835480876084989892; w[5] = 0.24914704581340278500056243604; w[6] = 0.24914704581340278500056243604; w[7] = 0.23349253653835480876084989892; w[8] = 0.20316742672306592174906445581; w[9] = 0.16007832854334622633465252954; w[10] = 0.10693932599531843096025471819; w[11] = 0.047175336386511827194615961485; } else if ( n == 13 ) { w[0] = 0.040484004765315879520021592201; w[1] = 0.092121499837728447914421775954; w[2] = 0.13887351021978723846360177687; w[3] = 0.17814598076194573828004669200; w[4] = 0.20781604753688850231252321931; w[5] = 0.22628318026289723841209018604; w[6] = 0.23255155323087391019458951527; w[7] = 0.22628318026289723841209018604; w[8] = 0.20781604753688850231252321931; w[9] = 0.17814598076194573828004669200; w[10] = 0.13887351021978723846360177687; w[11] = 0.092121499837728447914421775954; w[12] = 0.040484004765315879520021592201; } else if ( n == 14 ) { w[0] = 0.035119460331751863031832876138; w[1] = 0.08015808715976020980563327706; w[2] = 0.12151857068790318468941480907; w[3] = 0.15720316715819353456960193862; w[4] = 0.18553839747793781374171659013; w[5] = 0.20519846372129560396592406566; w[6] = 0.21526385346315779019587644332; w[7] = 0.21526385346315779019587644332; w[8] = 0.20519846372129560396592406566; w[9] = 0.18553839747793781374171659013; w[10] = 0.15720316715819353456960193862; w[11] = 0.12151857068790318468941480907; w[12] = 0.08015808715976020980563327706; w[13] = 0.035119460331751863031832876138; } else if ( n == 15 ) { w[0] = 0.030753241996117268354628393577; w[1] = 0.070366047488108124709267416451; w[2] = 0.107159220467171935011869546686; w[3] = 0.13957067792615431444780479451; w[4] = 0.16626920581699393355320086048; w[5] = 0.18616100001556221102680056187; w[6] = 0.19843148532711157645611832644; w[7] = 0.20257824192556127288062019997; w[8] = 0.19843148532711157645611832644; w[9] = 0.18616100001556221102680056187; w[10] = 0.16626920581699393355320086048; w[11] = 0.13957067792615431444780479451; w[12] = 0.107159220467171935011869546686; w[13] = 0.070366047488108124709267416451; w[14] = 0.030753241996117268354628393577; } else if ( n == 16 ) { w[0] = 0.027152459411754094851780572456; w[1] = 0.062253523938647892862843836994; w[2] = 0.09515851168249278480992510760; w[3] = 0.12462897125553387205247628219; w[4] = 0.14959598881657673208150173055; w[5] = 0.16915651939500253818931207903; w[6] = 0.18260341504492358886676366797; w[7] = 0.18945061045506849628539672321; w[8] = 0.18945061045506849628539672321; w[9] = 0.18260341504492358886676366797; w[10] = 0.16915651939500253818931207903; w[11] = 0.14959598881657673208150173055; w[12] = 0.12462897125553387205247628219; w[13] = 0.09515851168249278480992510760; w[14] = 0.062253523938647892862843836994; w[15] = 0.027152459411754094851780572456; } else if ( n == 17 ) { w[0] = 0.024148302868547931960110026288; w[1] = 0.055459529373987201129440165359; w[2] = 0.085036148317179180883535370191; w[3] = 0.111883847193403971094788385626; w[4] = 0.13513636846852547328631998170; w[5] = 0.15404576107681028808143159480; w[6] = 0.16800410215645004450997066379; w[7] = 0.17656270536699264632527099011; w[8] = 0.17944647035620652545826564426; w[9] = 0.17656270536699264632527099011; w[10] = 0.16800410215645004450997066379; w[11] = 0.15404576107681028808143159480; w[12] = 0.13513636846852547328631998170; w[13] = 0.111883847193403971094788385626; w[14] = 0.085036148317179180883535370191; w[15] = 0.055459529373987201129440165359; w[16] = 0.024148302868547931960110026288; } else if ( n == 18 ) { w[0] = 0.021616013526483310313342710266; w[1] = 0.049714548894969796453334946203; w[2] = 0.07642573025488905652912967762; w[3] = 0.10094204410628716556281398492; w[4] = 0.12255520671147846018451912680; w[5] = 0.14064291467065065120473130375; w[6] = 0.15468467512626524492541800384; w[7] = 0.16427648374583272298605377647; w[8] = 0.16914238296314359184065647013; w[9] = 0.16914238296314359184065647013; w[10] = 0.16427648374583272298605377647; w[11] = 0.15468467512626524492541800384; w[12] = 0.14064291467065065120473130375; w[13] = 0.12255520671147846018451912680; w[14] = 0.10094204410628716556281398492; w[15] = 0.07642573025488905652912967762; w[16] = 0.049714548894969796453334946203; w[17] = 0.021616013526483310313342710266; } else if ( n == 19 ) { w[0] = 0.019461788229726477036312041464; w[1] = 0.044814226765699600332838157402; w[2] = 0.069044542737641226580708258006; w[3] = 0.091490021622449999464462094124; w[4] = 0.111566645547333994716023901682; w[5] = 0.12875396253933622767551578486; w[6] = 0.14260670217360661177574610944; w[7] = 0.15276604206585966677885540090; w[8] = 0.15896884339395434764995643946; w[9] = 0.16105444984878369597916362532; w[10] = 0.15896884339395434764995643946; w[11] = 0.15276604206585966677885540090; w[12] = 0.14260670217360661177574610944; w[13] = 0.12875396253933622767551578486; w[14] = 0.111566645547333994716023901682; w[15] = 0.091490021622449999464462094124; w[16] = 0.069044542737641226580708258006; w[17] = 0.044814226765699600332838157402; w[18] = 0.019461788229726477036312041464; } else if ( n == 20 ) { w[0] = 0.017614007139152118311861962352; w[1] = 0.040601429800386941331039952275; w[2] = 0.062672048334109063569506535187; w[3] = 0.08327674157670474872475814322; w[4] = 0.10193011981724043503675013548; w[5] = 0.11819453196151841731237737771; w[6] = 0.13168863844917662689849449975; w[7] = 0.14209610931838205132929832507; w[8] = 0.14917298647260374678782873700; w[9] = 0.15275338713072585069808433195; w[10] = 0.15275338713072585069808433195; w[11] = 0.14917298647260374678782873700; w[12] = 0.14209610931838205132929832507; w[13] = 0.13168863844917662689849449975; w[14] = 0.11819453196151841731237737771; w[15] = 0.10193011981724043503675013548; w[16] = 0.08327674157670474872475814322; w[17] = 0.062672048334109063569506535187; w[18] = 0.040601429800386941331039952275; w[19] = 0.017614007139152118311861962352; } else if ( n == 21 ) { w[ 0] = 0.016017228257774333324224616858; w[ 1] = 0.036953789770852493799950668299; w[ 2] = 0.057134425426857208283635826472; w[ 3] = 0.076100113628379302017051653300; w[ 4] = 0.093444423456033861553289741114; w[ 5] = 0.108797299167148377663474578070; w[ 6] = 0.12183141605372853419536717713; w[ 7] = 0.13226893863333746178105257450; w[ 8] = 0.13988739479107315472213342387; w[9] = 0.14452440398997005906382716655; w[10] = 0.14608113364969042719198514768; w[11] = 0.14452440398997005906382716655; w[12] = 0.13988739479107315472213342387; w[13] = 0.13226893863333746178105257450; w[14] = 0.12183141605372853419536717713; w[15] = 0.108797299167148377663474578070; w[16] = 0.093444423456033861553289741114; w[17] = 0.076100113628379302017051653300; w[18] = 0.057134425426857208283635826472; w[19] = 0.036953789770852493799950668299; w[20] = 0.016017228257774333324224616858; } else if ( n == 22 ) { w[0] = 0.014627995298272200684991098047; w[1] = 0.033774901584814154793302246866; w[2] = 0.052293335152683285940312051273; w[3] = 0.06979646842452048809496141893; w[4] = 0.08594160621706772741444368137; w[5] = 0.10041414444288096493207883783; w[6] = 0.11293229608053921839340060742; w[7] = 0.12325237681051242428556098615; w[8] = 0.13117350478706237073296499253; w[9] = 0.13654149834601517135257383123; w[10] = 0.13925187285563199337541024834; w[11] = 0.13925187285563199337541024834; w[12] = 0.13654149834601517135257383123; w[13] = 0.13117350478706237073296499253; w[14] = 0.12325237681051242428556098615; w[15] = 0.11293229608053921839340060742; w[16] = 0.10041414444288096493207883783; w[17] = 0.08594160621706772741444368137; w[18] = 0.06979646842452048809496141893; w[19] = 0.052293335152683285940312051273; w[20] = 0.033774901584814154793302246866; w[21] = 0.014627995298272200684991098047; } else if ( n == 23 ) { w[0] = 0.013411859487141772081309493459; w[1] = 0.030988005856979444310694219642; w[2] = 0.048037671731084668571641071632; w[3] = 0.064232421408525852127169615159; w[4] = 0.079281411776718954922892524742; w[5] = 0.092915766060035147477018617370; w[6] = 0.104892091464541410074086185015; w[7] = 0.11499664022241136494164351293; w[8] = 0.12304908430672953046757840067; w[9] = 0.12890572218808214997859533940; w[10] = 0.13246203940469661737164246470; w[11] = 0.13365457218610617535145711055; w[12] = 0.13246203940469661737164246470; w[13] = 0.12890572218808214997859533940; w[14] = 0.12304908430672953046757840067; w[15] = 0.11499664022241136494164351293; w[16] = 0.104892091464541410074086185015; w[17] = 0.092915766060035147477018617370; w[18] = 0.079281411776718954922892524742; w[19] = 0.064232421408525852127169615159; w[20] = 0.048037671731084668571641071632; w[21] = 0.030988005856979444310694219642; w[22] = 0.013411859487141772081309493459; } else if ( n == 24 ) { w[0] = 0.012341229799987199546805667070; w[1] = 0.028531388628933663181307815952; w[2] = 0.044277438817419806168602748211; w[3] = 0.059298584915436780746367758500; w[4] = 0.07334648141108030573403361525; w[5] = 0.08619016153195327591718520298; w[6] = 0.09761865210411388826988066446; w[7] = 0.10744427011596563478257734245; w[8] = 0.11550566805372560135334448391; w[9] = 0.12167047292780339120446315348; w[10] = 0.12583745634682829612137538251; w[11] = 0.12793819534675215697405616522; w[12] = 0.12793819534675215697405616522; w[13] = 0.12583745634682829612137538251; w[14] = 0.12167047292780339120446315348; w[15] = 0.11550566805372560135334448391; w[16] = 0.10744427011596563478257734245; w[17] = 0.09761865210411388826988066446; w[18] = 0.08619016153195327591718520298; w[19] = 0.07334648141108030573403361525; w[20] = 0.059298584915436780746367758500; w[21] = 0.044277438817419806168602748211; w[22] = 0.028531388628933663181307815952; w[23] = 0.012341229799987199546805667070; } else if ( n == 25 ) { w[0] = 0.0113937985010262879479029641132; w[1] = 0.026354986615032137261901815295; w[2] = 0.040939156701306312655623487712; w[3] = 0.054904695975835191925936891541; w[4] = 0.068038333812356917207187185657; w[5] = 0.080140700335001018013234959669; w[6] = 0.091028261982963649811497220703; w[7] = 0.100535949067050644202206890393; w[8] = 0.108519624474263653116093957050; w[9] = 0.11485825914571164833932554587; w[10] = 0.11945576353578477222817812651; w[11] = 0.12224244299031004168895951895; w[12] = 0.12317605372671545120390287308; w[13] = 0.12224244299031004168895951895; w[14] = 0.11945576353578477222817812651; w[15] = 0.11485825914571164833932554587; w[16] = 0.108519624474263653116093957050; w[17] = 0.100535949067050644202206890393; w[18] = 0.091028261982963649811497220703; w[19] = 0.080140700335001018013234959669; w[20] = 0.068038333812356917207187185657; w[21] = 0.054904695975835191925936891541; w[22] = 0.040939156701306312655623487712; w[23] = 0.026354986615032137261901815295; w[24] = 0.0113937985010262879479029641132; } else if ( n == 26 ) { w[0] = 0.010551372617343007155651187685; w[1] = 0.024417851092631908789615827520; w[2] = 0.037962383294362763950303141249; w[3] = 0.050975825297147811998319900724; w[4] = 0.063274046329574835539453689907; w[5] = 0.07468414976565974588707579610; w[6] = 0.08504589431348523921044776508; w[7] = 0.09421380035591414846366488307; w[8] = 0.10205916109442542323841407025; w[9] = 0.10847184052857659065657942673; w[10] = 0.11336181654631966654944071844; w[11] = 0.11666044348529658204466250754; w[12] = 0.11832141527926227651637108570; w[13] = 0.11832141527926227651637108570; w[14] = 0.11666044348529658204466250754; w[15] = 0.11336181654631966654944071844; w[16] = 0.10847184052857659065657942673; w[17] = 0.10205916109442542323841407025; w[18] = 0.09421380035591414846366488307; w[19] = 0.08504589431348523921044776508; w[20] = 0.07468414976565974588707579610; w[21] = 0.063274046329574835539453689907; w[22] = 0.050975825297147811998319900724; w[23] = 0.037962383294362763950303141249; w[24] = 0.024417851092631908789615827520; w[25] = 0.010551372617343007155651187685; } else if ( n == 27 ) { w[0] = 0.0097989960512943602611500550912; w[1] = 0.022686231596180623196034206447; w[2] = 0.035297053757419711022578289305; w[3] = 0.047449412520615062704096710114; w[4] = 0.058983536859833599110300833720; w[5] = 0.069748823766245592984322888357; w[6] = 0.079604867773057771263074959010; w[7] = 0.088423158543756950194322802854; w[8] = 0.096088727370028507565652646558; w[9] = 0.102501637817745798671247711533; w[10] = 0.107578285788533187212162984427; w[11] = 0.111252488356845192672163096043; w[12] = 0.113476346108965148620369948092; w[13] = 0.11422086737895698904504573690; w[14] = 0.113476346108965148620369948092; w[15] = 0.111252488356845192672163096043; w[16] = 0.107578285788533187212162984427; w[17] = 0.102501637817745798671247711533; w[18] = 0.096088727370028507565652646558; w[19] = 0.088423158543756950194322802854; w[20] = 0.079604867773057771263074959010; w[21] = 0.069748823766245592984322888357; w[22] = 0.058983536859833599110300833720; w[23] = 0.047449412520615062704096710114; w[24] = 0.035297053757419711022578289305; w[25] = 0.022686231596180623196034206447; w[26] = 0.0097989960512943602611500550912; } else if ( n == 28 ) { w[0] = 0.009124282593094517738816153923; w[1] = 0.021132112592771259751500380993; w[2] = 0.032901427782304379977630819171; w[3] = 0.044272934759004227839587877653; w[4] = 0.055107345675716745431482918227; w[5] = 0.06527292396699959579339756678; w[6] = 0.07464621423456877902393188717; w[7] = 0.08311341722890121839039649824; w[8] = 0.09057174439303284094218603134; w[9] = 0.09693065799792991585048900610; w[10] = 0.10211296757806076981421663851; w[11] = 0.10605576592284641791041643700; w[12] = 0.10871119225829413525357151930; w[13] = 0.11004701301647519628237626560; w[14] = 0.11004701301647519628237626560; w[15] = 0.10871119225829413525357151930; w[16] = 0.10605576592284641791041643700; w[17] = 0.10211296757806076981421663851; w[18] = 0.09693065799792991585048900610; w[19] = 0.09057174439303284094218603134; w[20] = 0.08311341722890121839039649824; w[21] = 0.07464621423456877902393188717; w[22] = 0.06527292396699959579339756678; w[23] = 0.055107345675716745431482918227; w[24] = 0.044272934759004227839587877653; w[25] = 0.032901427782304379977630819171; w[26] = 0.021132112592771259751500380993; w[27] = 0.009124282593094517738816153923; } else if ( n == 29 ) { w[0] = 0.0085169038787464096542638133022; w[1] = 0.019732085056122705983859801640; w[2] = 0.030740492202093622644408525375; w[3] = 0.041402062518682836104830010114; w[4] = 0.051594826902497923912594381180; w[5] = 0.061203090657079138542109848024; w[6] = 0.070117933255051278569581486949; w[7] = 0.078238327135763783828144888660; w[8] = 0.085472257366172527545344849297; w[9] = 0.091737757139258763347966411077; w[10] = 0.096963834094408606301900074883; w[11] = 0.101091273759914966121820546907; w[12] = 0.104073310077729373913328471285; w[13] = 0.105876155097320941406591327852; w[14] = 0.10647938171831424424651112691; w[15] = 0.105876155097320941406591327852; w[16] = 0.104073310077729373913328471285; w[17] = 0.101091273759914966121820546907; w[18] = 0.096963834094408606301900074883; w[19] = 0.091737757139258763347966411077; w[20] = 0.085472257366172527545344849297; w[21] = 0.078238327135763783828144888660; w[22] = 0.070117933255051278569581486949; w[23] = 0.061203090657079138542109848024; w[24] = 0.051594826902497923912594381180; w[25] = 0.041402062518682836104830010114; w[26] = 0.030740492202093622644408525375; w[27] = 0.019732085056122705983859801640; w[28] = 0.0085169038787464096542638133022; } else if ( n == 30 ) { w[0] = 0.007968192496166605615465883475; w[1] = 0.018466468311090959142302131912; w[2] = 0.028784707883323369349719179611; w[3] = 0.038799192569627049596801936446; w[4] = 0.048402672830594052902938140423; w[5] = 0.057493156217619066481721689402; w[6] = 0.06597422988218049512812851512; w[7] = 0.07375597473770520626824385002; w[8] = 0.08075589522942021535469493846; w[9] = 0.08689978720108297980238753072; w[10] = 0.09212252223778612871763270709; w[11] = 0.09636873717464425963946862635; w[12] = 0.09959342058679526706278028210; w[13] = 0.10176238974840550459642895217; w[14] = 0.10285265289355884034128563671; w[15] = 0.10285265289355884034128563671; w[16] = 0.10176238974840550459642895217; w[17] = 0.09959342058679526706278028210; w[18] = 0.09636873717464425963946862635; w[19] = 0.09212252223778612871763270709; w[20] = 0.08689978720108297980238753072; w[21] = 0.08075589522942021535469493846; w[22] = 0.07375597473770520626824385002; w[23] = 0.06597422988218049512812851512; w[24] = 0.057493156217619066481721689402; w[25] = 0.048402672830594052902938140423; w[26] = 0.038799192569627049596801936446; w[27] = 0.028784707883323369349719179611; w[28] = 0.018466468311090959142302131912; w[29] = 0.007968192496166605615465883475; } else if ( n == 31 ) { w[0] = 0.0074708315792487758586968750322; w[1] = 0.017318620790310582463157996087; w[2] = 0.027009019184979421800608708092; w[3] = 0.036432273912385464024392010468; w[4] = 0.045493707527201102902315857895; w[5] = 0.054103082424916853711666259087; w[6] = 0.062174786561028426910343543687; w[7] = 0.069628583235410366167756126255; w[8] = 0.076390386598776616426357674901; w[9] = 0.082392991761589263903823367432; w[10] = 0.087576740608477876126198069695; w[11] = 0.091890113893641478215362871607; w[12] = 0.095290242912319512807204197488; w[13] = 0.097743335386328725093474010979; w[14] = 0.099225011226672307874875514429; w[15] = 0.09972054479342645142753383373; w[16] = 0.099225011226672307874875514429; w[17] = 0.097743335386328725093474010979; w[18] = 0.095290242912319512807204197488; w[19] = 0.091890113893641478215362871607; w[20] = 0.087576740608477876126198069695; w[21] = 0.082392991761589263903823367432; w[22] = 0.076390386598776616426357674901; w[23] = 0.069628583235410366167756126255; w[24] = 0.062174786561028426910343543687; w[25] = 0.054103082424916853711666259087; w[26] = 0.045493707527201102902315857895; w[27] = 0.036432273912385464024392010468; w[28] = 0.027009019184979421800608708092; w[29] = 0.017318620790310582463157996087; w[30] = 0.0074708315792487758586968750322; } else if ( n == 32 ) { w[0] = 0.007018610009470096600407063739; w[1] = 0.016274394730905670605170562206; w[2] = 0.025392065309262059455752589789; w[3] = 0.034273862913021433102687732252; w[4] = 0.042835898022226680656878646606; w[5] = 0.050998059262376176196163244690; w[6] = 0.058684093478535547145283637300; w[7] = 0.06582222277636184683765006371; w[8] = 0.07234579410884850622539935648; w[9] = 0.07819389578707030647174091883; w[10] = 0.08331192422694675522219907460; w[11] = 0.08765209300440381114277146275; w[12] = 0.09117387869576388471286857711; w[13] = 0.09384439908080456563918023767; w[14] = 0.09563872007927485941908200220; w[15] = 0.09654008851472780056676483006; w[16] = 0.09654008851472780056676483006; w[17] = 0.09563872007927485941908200220; w[18] = 0.09384439908080456563918023767; w[19] = 0.09117387869576388471286857711; w[20] = 0.08765209300440381114277146275; w[21] = 0.08331192422694675522219907460; w[22] = 0.07819389578707030647174091883; w[23] = 0.07234579410884850622539935648; w[24] = 0.06582222277636184683765006371; w[25] = 0.058684093478535547145283637300; w[26] = 0.050998059262376176196163244690; w[27] = 0.042835898022226680656878646606; w[28] = 0.034273862913021433102687732252; w[29] = 0.025392065309262059455752589789; w[30] = 0.016274394730905670605170562206; w[31] = 0.007018610009470096600407063739; } else if ( n == 33 ) { w[0] = 0.0066062278475873780586492352085; w[1] = 0.015321701512934676127945768534; w[2] = 0.023915548101749480350533257529; w[3] = 0.032300358632328953281561447250; w[4] = 0.040401541331669591563409790527; w[5] = 0.048147742818711695670146880138; w[6] = 0.055470846631663561284944495439; w[7] = 0.062306482530317480031627725771; w[8] = 0.068594572818656712805955073015; w[9] = 0.074279854843954149342472175919; w[10] = 0.079312364794886738363908384942; w[11] = 0.083647876067038707613928014518; w[12] = 0.087248287618844337607281670945; w[13] = 0.090081958660638577239743705500; w[14] = 0.092123986643316846213240977717; w[15] = 0.093356426065596116160999126274; w[16] = 0.09376844616020999656730454155; w[17] = 0.093356426065596116160999126274; w[18] = 0.092123986643316846213240977717; w[19] = 0.090081958660638577239743705500; w[20] = 0.087248287618844337607281670945; w[21] = 0.083647876067038707613928014518; w[22] = 0.079312364794886738363908384942; w[23] = 0.074279854843954149342472175919; w[24] = 0.068594572818656712805955073015; w[25] = 0.062306482530317480031627725771; w[26] = 0.055470846631663561284944495439; w[27] = 0.048147742818711695670146880138; w[28] = 0.040401541331669591563409790527; w[29] = 0.032300358632328953281561447250; w[30] = 0.023915548101749480350533257529; w[31] = 0.015321701512934676127945768534; w[32] = 0.0066062278475873780586492352085; } else { std::cerr << "\n"; std::cerr << "LEGENDRE_LOOKUP_WEIGHTS - Fatal error!\n"; std::cerr << " Illegal value of N = " << n << "\n"; std::cerr << " Legal values are 1 through 33.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 double *legendre_zeros ( int order ) //****************************************************************************80 // // Purpose: // // LEGENDRE_ZEROS returns the zeros of the Legendre polynomial of degree N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 June 2011 // // Author: // // Original FORTRAN77 version by Philip Davis, Philip Rabinowitz. // C++ version by John Burkardt. // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int ORDER, the order. // ORDER must be greater than 0. // // Output, double LEGENDRE_ZEROS[ORDER], the zeros. // { double d1; double d2pn; double d3pn; double d4pn; double dp; double dpn; double e1; double h; int i; int iback; int k; int m; int mp1mi; int ncopy; int nmove; double p; double pi = 3.141592653589793; double pk; double pkm1; double pkp1; double t; double u; double v; double x0; double *xtab; double xtemp; xtab = new double[order]; e1 = ( double ) ( order * ( order + 1 ) ); m = ( order + 1 ) / 2; for ( i = 1; i <= m; i++ ) { mp1mi = m + 1 - i; t = ( double ) ( 4 * i - 1 ) * pi / ( double ) ( 4 * order + 2 ); x0 = std::cos ( t ) * ( 1.0 - ( 1.0 - 1.0 / ( double ) ( order ) ) / ( double ) ( 8 * order * order ) ); pkm1 = 1.0; pk = x0; for ( k = 2; k <= order; k++ ) { pkp1 = 2.0 * x0 * pk - pkm1 - ( x0 * pk - pkm1 ) / ( double ) ( k ); pkm1 = pk; pk = pkp1; } d1 = ( double ) ( order ) * ( pkm1 - x0 * pk ); dpn = d1 / ( 1.0 - x0 * x0 ); d2pn = ( 2.0 * x0 * dpn - e1 * pk ) / ( 1.0 - x0 * x0 ); d3pn = ( 4.0 * x0 * d2pn + ( 2.0 - e1 ) * dpn ) / ( 1.0 - x0 * x0 ); d4pn = ( 6.0 * x0 * d3pn + ( 6.0 - e1 ) * d2pn ) / ( 1.0 - x0 * x0 ); u = pk / dpn; v = d2pn / dpn; // // Initial approximation H: // h = - u * ( 1.0 + 0.5 * u * ( v + u * ( v * v - d3pn / ( 3.0 * dpn ) ) ) ); // // Refine H using one step of Newton's method: // p = pk + h * ( dpn + 0.5 * h * ( d2pn + h / 3.0 * ( d3pn + 0.25 * h * d4pn ) ) ); dp = dpn + h * ( d2pn + 0.5 * h * ( d3pn + h * d4pn / 3.0 ) ); h = h - p / dp; xtemp = x0 + h; xtab[mp1mi-1] = xtemp; // fx = d1 - h * e1 * ( pk + 0.5 * h * ( dpn + h / 3.0 // * ( d2pn + 0.25 * h * ( d3pn + 0.2 * h * d4pn ) ) ) ); } if ( ( order % 2 ) == 1 ) { xtab[0] = 0.0; } // // Shift the data up. // nmove = ( order + 1 ) / 2; ncopy = order - nmove; for ( i = 1; i <= nmove; i++ ) { iback = order + 1 - i; xtab[iback-1] = xtab[iback-ncopy-1]; } // // Reflect values for the negative abscissas. // for ( i = 1; i <= order - nmove; i++ ) { xtab[i-1] = - xtab[order-i]; } return xtab; } //****************************************************************************80 void level_growth_to_order ( int dim_num, int level[], int rule[], int growth[], int order[] ) //****************************************************************************80 // // Purpose: // // LEVEL_GROWTH_TO_ORDER: convert Level and Growth to Order. // // Discussion: // // This function is given level, rule, and growth information // for each dimension of a quadrature rule, and determines the // corresponding order of the rule in each dimension. // // This is a revised version of LEVEL_GROWTH_TO_ORDER. // // In particular, it revises the interpretation of the RULE vector as // far as the values 10, 11, and 12 are concerned. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 October 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL[DIM_NUM], the 1D levels. // // Input, int RULE[DIM_NUM], the rule in each dimension. // 1, "CC", Clenshaw Curtis, Closed Fully Nested. // 2, "F2", Fejer Type 2, Open Fully Nested. // 3, "GP", Gauss Patterson, Open Fully Nested. // 4, "GL", Gauss Legendre, Open Weakly Nested. // 5, "GH", Gauss Hermite, Open Weakly Nested. // 6, "GGH", Generalized Gauss Hermite, Open Weakly Nested. // 7, "LG", Gauss Laguerre, Open Non Nested. // 8, "GLG", Generalized Gauss Laguerre, Open Non Nested. // 9, "GJ", Gauss Jacobi, Open Non Nested. // 10, "HGK", Hermite Genz-Keister, Open Fully Nested. // 11, "UO", User supplied Open, presumably Non Nested. // 12, "UC", User supplied Closed, presumably Non Nested. // // Input, int GROWTH[DIM_NUM], the desired growth in each dimension. // 0, "DF", default growth associated with this quadrature rule; // 1, "SL", slow linear, L+1; // 2 "SO", slow linear odd, O=1+2((L+1)/2) // 3, "ML", moderate linear, 2L+1; // 4, "SE", slow exponential; // 5, "ME", moderate exponential; // 6, "FE", full exponential. // // Output, int ORDER[DIM_NUM], the 1D orders (number of points). // { int dim; int l; int o; static int o_hgk[6] = { 1, 3, 9, 19, 35, 43 }; int p; static int p_hgk[6] = { 1, 5, 15, 29, 51, 67 }; // // Check the input. // for ( dim = 0; dim < dim_num; dim++ ) { if ( level[dim] < 0 ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Negative value of LEVEL[DIM]!\n"; std::cerr << " LEVEL[" << dim << "] = " << level[dim] << "\n"; std::exit ( 1 ); } if ( rule[dim] < 1 || 12 < rule[dim] ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Illegal value of RULE[DIM]!\n"; std::cerr << " RULE[" << dim << "] = " << rule[dim] << "\n"; std::exit ( 1 ); } if ( growth[dim] < 0 || 6 < growth[dim] ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Illegal value of GROWTH[DIM]!\n"; std::cerr << " GROWTH[" << dim << "] = " << growth[dim] << "\n"; std::exit ( 1 ); } } // // Compute the order vector. // for ( dim = 0; dim < dim_num; dim++ ) { // // CC // Default is Moderate Exponential Growth. // if ( rule[dim] == 1 ) { if ( growth[dim] == 1 ) { o = level[dim] + 1; } else if ( growth[dim] == 2 ) { o = 2 * ( ( level[dim] + 1 ) / 2 ) + 1; } else if ( growth[dim] == 3 ) { o = 2 * level[dim] + 1; } else if ( growth[dim] == 4 ) { if ( level[dim] == 0 ) { o = 1; } else { o = 2; while ( o < 2 * level[dim] + 1 ) { o = 2 * ( o - 1 ) + 1; } } } else if ( growth[dim] == 5 || growth[dim] == 0 ) { if ( level[dim] == 0 ) { o = 1; } else { o = 2; while ( o < 4 * level[dim] + 1 ) { o = 2 * ( o - 1 ) + 1; } } } else if ( growth[dim] == 6 ) { if ( level[dim] == 0 ) { o = 1; } else { o = webbur::i4_power ( 2, level[dim] ) + 1; } } } // // F2 // Default is Moderate Exponential Growth. // else if ( rule[dim] == 2 ) { if ( growth[dim] == 1 ) { o = level[dim] + 1; } else if ( growth[dim] == 2 ) { o = 2 * ( ( level[dim] + 1 ) / 2 ) + 1; } else if ( growth[dim] == 3 ) { o = 2 * level[dim] + 1; } else if ( growth[dim] == 4 ) { o = 1; while ( o < 2 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 5 || growth[dim] == 0 ) { o = 1; while ( o < 4 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 6 ) { o = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } } // // GP // Default is Moderate Exponential Growth. // else if ( rule[dim] == 3 ) { if ( growth[dim] == 1 ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Growth rate 1 for rule 3 not available!\n"; std::exit ( 1 ); } else if ( growth[dim] == 2 ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Growth rate 2 for rule 3 not available!\n"; std::exit ( 1 ); } else if ( growth[dim] == 3 ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Growth rate 3 for rule 3 not available!\n"; std::exit ( 1 ); } else if ( growth[dim] == 4 ) { if ( level[dim] == 0 ) { o = 1; } else { p = 5; o = 3; while ( p < 2 * level[dim] + 1 ) { p = 2 * p + 1; o = 2 * o + 1; } } } else if ( growth[dim] == 5 || growth[dim] == 0 ) { if ( level[dim] == 0 ) { o = 1; } else { p = 5; o = 3; while ( p < 4 * level[dim] + 1 ) { p = 2 * p + 1; o = 2 * o + 1; } } } else if ( growth[dim] == 6 ) { o = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } } // // GL // Default is Moderate Linear Growth. // else if ( rule[dim] == 4 ) { if ( growth[dim] == 1 ) { o = level[dim] + 1; } else if ( growth[dim] == 2 ) { o = 2 * ( ( level[dim] + 1 ) / 2 ) + 1; } else if ( growth[dim] == 3 || growth[dim] == 0 ) { o = 2 * level[dim] + 1; } else if ( growth[dim] == 4 ) { o = 1; while ( 2 * o - 1 < 2 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 5 ) { o = 1; while ( 2 * o - 1 < 4 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 6 ) { o = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } } // // GH // Default is Moderate Linear Growth. // else if ( rule[dim] == 5 ) { if ( growth[dim] == 1 ) { o = level[dim] + 1; } else if ( growth[dim] == 2 ) { o = 2 * ( ( level[dim] + 1 ) / 2 ) + 1; } else if ( growth[dim] == 3 || growth[dim] == 0 ) { o = 2 * level[dim] + 1; } else if ( growth[dim] == 4 ) { o = 1; while ( 2 * o - 1 < 2 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 5 ) { o = 1; while ( 2 * o - 1 < 4 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 6 ) { o = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } } // // GGH // Default is Moderate Linear Growth. // else if ( rule[dim] == 6 ) { if ( growth[dim] == 1 ) { o = level[dim] + 1; } else if ( growth[dim] == 2 ) { o = 2 * ( ( level[dim] + 1 ) / 2 ) + 1; } else if ( growth[dim] == 3 || growth[dim] == 0 ) { o = 2 * level[dim] + 1; } else if ( growth[dim] == 4 ) { o = 1; while ( 2 * o - 1 < 2 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 5 ) { o = 1; while ( 2 * o - 1 < 4 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 6 ) { o = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } } // // LG // Default is Moderate Linear Growth. // else if ( rule[dim] == 7 ) { if ( growth[dim] == 1 ) { o = level[dim] + 1; } else if ( growth[dim] == 2 ) { o = 2 * ( ( level[dim] + 1 ) / 2 ) + 1; } else if ( growth[dim] == 3 || growth[dim] == 0 ) { o = 2 * level[dim] + 1; } else if ( growth[dim] == 4 ) { o = 1; while ( 2 * o - 1 < 2 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 5 ) { o = 1; while ( 2 * o - 1 < 4 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 6 ) { o = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } } // // GLG // Default is Moderate Linear Growth. // else if ( rule[dim] == 8 ) { if ( growth[dim] == 1 ) { o = level[dim] + 1; } else if ( growth[dim] == 2 ) { o = 2 * ( ( level[dim] + 1 ) / 2 ) + 1; } else if ( growth[dim] == 3 || growth[dim] == 0 ) { o = 2 * level[dim] + 1; } else if ( growth[dim] == 4 ) { o = 1; while ( 2 * o - 1 < 2 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 5 ) { o = 1; while ( 2 * o - 1 < 4 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 6 ) { o = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } } // // GJ // Default is Moderate Linear Growth. // else if ( rule[dim] == 9 ) { if ( growth[dim] == 1 ) { o = level[dim] + 1; } else if ( growth[dim] == 2 ) { o = 2 * ( ( level[dim] + 1 ) / 2 ) + 1; } else if ( growth[dim] == 3 || growth[dim] == 0 ) { o = 2 * level[dim] + 1; } else if ( growth[dim] == 4 ) { o = 1; while ( 2 * o - 1 < 2 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 5 ) { o = 1; while ( 2 * o - 1 < 4 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 6 ) { o = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } } // // HGK // Default is Moderate Exponential Growth. // Exponential growth is interpreted to mean simply take successive rules. // else if ( rule[dim] == 10 ) { if ( growth[dim] == 1 ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Growth rate 1 for rule 10 not available!\n"; std::exit ( 1 ); } else if ( growth[dim] == 2 ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Growth rate 2 for rule 10 not available!\n"; std::exit ( 1 ); } else if ( growth[dim] == 3 ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Growth rate 3 for rule 10 not available!\n"; std::exit ( 1 ); } else if ( growth[dim] == 4 ) { l = 0; p = p_hgk[l]; o = o_hgk[l]; while ( p < 2 * level[dim] + 1 ) { l = l + 1; if ( 5 < l ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Hermite Genz-Keister maximum level exceeded.\n"; std::exit ( 1 ); } p = p_hgk[l]; o = o_hgk[l]; } } else if ( growth[dim] == 5 || growth[dim] == 0 ) { l = 0; p = p_hgk[l]; o = o_hgk[l]; while ( p < 4 * level[dim] + 1 ) { l = l + 1; if ( 5 < l ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Hermite Genz-Keister maximum level exceeded.\n"; std::exit ( 1 ); } p = p_hgk[l]; o = o_hgk[l]; } } else if ( growth[dim] == 6 ) { l = level[dim]; l = webbur::i4_max ( l, 0 ); if ( 5 < l ) { std::cerr << "\n"; std::cerr << "LEVEL_GROWTH_TO_ORDER - Fatal error!\n"; std::cerr << " Hermite Genz-Keister maximum level exceeded.\n"; std::exit ( 1 ); } o = o_hgk[l]; } } // // UO // Default is Moderate Linear Growth. // We assume the rule is of OPEN type and that it // has a precision typical of Gauss rules. // else if ( rule[dim] == 11 ) { if ( growth[dim] == 1 ) { o = level[dim] + 1; } else if ( growth[dim] == 2 ) { o = 2 * ( ( level[dim] + 1 ) / 2 ) + 1; } else if ( growth[dim] == 3 || growth[dim] == 0 ) { o = 2 * level[dim] + 1; } else if ( growth[dim] == 4 ) { o = 1; while ( 2 * o - 1 < 2 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 5 ) { o = 1; while ( 2 * o - 1 < 4 * level[dim] + 1 ) { o = 2 * o + 1; } } else if ( growth[dim] == 6 ) { o = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } } // // UC // Default is Moderate Linear Growth. // We assume the rule is of CLOSED type and that it // has a precision typical of Clenshaw-Curtis rules. // else if ( rule[dim] == 12 ) { if ( growth[dim] == 1 ) { o = level[dim] + 1; } else if ( growth[dim] == 2 ) { o = 2 * ( ( level[dim] + 1 ) / 2 ) + 1; } else if ( growth[dim] == 3 || growth[dim] == 0 ) { o = 2 * level[dim] + 1; } else if ( growth[dim] == 4 ) { if ( level[dim] == 0 ) { o = 1; } else { o = 2; while ( o < 2 * level[dim] + 1 ) { o = 2 * ( o - 1 ) + 1; } } } else if ( growth[dim] == 5 ) { if ( level[dim] == 0 ) { o = 1; } else { o = 2; while ( o < 4 * level[dim] + 1 ) { o = 2 * ( o - 1 ) + 1; } } } else if ( growth[dim] == 6 ) { if ( level[dim] == 0 ) { o = 1; } else { o = webbur::i4_power ( 2, level[dim] ) + 1; } } } order[dim] = o; } return; } //****************************************************************************80 void level_to_order_default ( int dim_num, int level[], int rule[], int order[] ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_DEFAULT: default growth. // // Discussion: // // This function uses: // // * exponential growth rates for fully nested quadrature rules, // ( "CC", "F2", "GP"); // // * linear growth rates for other rules. // ( "GL", "GH", "GGH", "LG", "GLG", "GJ", "GW" ). // // * slow exponential growth alternative for fully nested rules: // ("CC_SE", "F2_SE", "GP_SE"). // // * moderate exponential growth alternative for fully nested rules: // ("CC_ME", "F2_ME", "GP_ME"). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL[DIM_NUM], the 1D levels. // // Input, int RULE[DIM_NUM], the rule in each dimension. // 1, "CC", Clenshaw Curtis, Closed Fully Nested rule. // 2, "F2", Fejer Type 2, Open Fully Nested rule. // 3, "GP", Gauss Patterson, Open Fully Nested rule. // 4, "GL", Gauss Legendre, Open Weakly Nested rule. // 5, "GH", Gauss Hermite, Open Weakly Nested rule. // 6, "GGH", Generalized Gauss Hermite, Open Weakly Nested rule. // 7, "LG", Gauss Laguerre, Open Non Nested rule. // 8, "GLG", Generalized Gauss Laguerre, Open Non Nested rule. // 9, "GJ", Gauss Jacobi, Open Non Nested rule. // 10, "GW", Golub Welsch, (presumed) Open Non Nested rule. // 11, "CC_SE", Clenshaw Curtis Slow Exponential, Closed Fully Nested rule. // 12, "F2_SE", Fejer Type 2 Slow Exponential, Open Fully Nested rule. // 13, "GP_SE", Gauss Patterson Slow Exponential, Open Fully Nested rule. // 14, "CC_ME", Clenshaw Curtis Moderate Exponential, Closed Fully Nested rule. // 15, "F2_ME", Fejer Type 2 Moderate Exponential, Open Fully Nested rule. // 16, "GP_ME", Gauss Patterson Moderate Exponential, Open Fully Nested rule. // 17, "CCN", Clenshaw Curtis Nested, Linear, Closed Fully Nested rule. // // Output, int ORDER[DIM_NUM], the 1D orders (number of points). // { int dim; int o; int p; for ( dim = 0; dim < dim_num; dim++ ) { if ( level[dim] < 0 ) { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_DEFAULT - Fatal error!\n"; std::cerr << " Negative value of LEVEL[DIM]!\n"; std::cerr << " LEVEL[" << dim << "] = " << level[dim] << "\n"; std::exit ( 1 ); } else if ( rule[dim] == 1 ) { if ( level[dim] == 0 ) { order[dim] = 1; } else { order[dim] = webbur::i4_power ( 2, level[dim] ) + 1; } } else if ( rule[dim] == 2 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 3 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 4 ) { order[dim] = 2 * level[dim] + 1; } else if ( rule[dim] == 5 ) { order[dim] = 2 * level[dim] + 1; } else if ( rule[dim] == 6 ) { order[dim] = 2 * level[dim] + 1; } else if ( rule[dim] == 7 ) { order[dim] = 2 * level[dim] + 1; } else if ( rule[dim] == 8 ) { order[dim] = 2 * level[dim] + 1; } else if ( rule[dim] == 9 ) { order[dim] = 2 * level[dim] + 1; } else if ( rule[dim] == 10 ) { order[dim] = 2 * level[dim] + 1; } else if ( rule[dim] == 11 ) { if ( level[dim] == 0 ) { o = 1; } else { o = 2; while ( o < 2 * level[dim] + 1 ) { o = 2 * ( o - 1 ) + 1; } } order[dim] = o; } else if ( rule[dim] == 12 ) { o = 1; while ( o < 2 * level[dim] + 1 ) { o = 2 * o + 1; } order[dim] = o; } else if ( rule[dim] == 13 ) { if ( level[dim] == 0 ) { order[dim] = 1; } else { p = 5; o = 3; while ( p < 2 * level[dim] + 1 ) { p = 2 * p + 1; o = 2 * o + 1; } order[dim] = o; } } else if ( rule[dim] == 14 ) { if ( level[dim] == 0 ) { o = 1; } else { o = 2; while ( o < 4 * level[dim] + 1 ) { o = 2 * ( o - 1 ) + 1; } } order[dim] = o; } else if ( rule[dim] == 15 ) { o = 1; while ( o < 4 * level[dim] + 1 ) { o = 2 * o + 1; } order[dim] = o; } else if ( rule[dim] == 16 ) { if ( level[dim] == 0 ) { order[dim] = 1; } else { p = 5; o = 3; while ( p < 4 * level[dim] + 1 ) { p = 2 * p + 1; o = 2 * o + 1; } order[dim] = o; } } else if ( rule[dim] == 17 ) { order[dim] = 2 * level[dim] + 1; } else { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_DEFAULT - Fatal error!\n"; std::cerr << " Unexpected value of RULE[" << dim << "] = " << rule[dim] << ".\n"; std::exit ( 1 ); } } return; } //****************************************************************************80 void level_to_order_exponential ( int dim_num, int level[], int rule[], int order[] ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_EXPONENTIAL: exponential growth. // // Discussion: // // The user must preallocate space for the output array ORDER. // // Closed rules: // // O(0) = 1 // O(L) = 2^L + 1; // // O = 1, 3, 5, 9, 17, 33, ... // // Open rules: // // O(L) = 2^(L+1) - 1; // // O = 1, 3, 7, 15, 31, 63, ... // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL[DIM_NUM], the 1D levels. // // Input, int RULE[DIM_NUM], the rule in each dimension. // 1, "CC", Clenshaw Curtis, Closed Fully Nested rule. // 2, "F2", Fejer Type 2, Open Fully Nested rule. // 3, "GP", Gauss Patterson, Open Fully Nested rule. // 4, "GL", Gauss Legendre, Open Weakly Nested rule. // 5, "GH", Gauss Hermite, Open Weakly Nested rule. // 6, "GGH", Generalized Gauss Hermite, Open Weakly Nested rule. // 7, "LG", Gauss Laguerre, Open Non Nested rule. // 8, "GLG", Generalized Gauss Laguerre, Open Non Nested rule. // 9, "GJ", Gauss Jacobi, Open Non Nested rule. // 10, "GW", Golub Welsch, (presumed) Open Non Nested rule. // 11, "CC_SE", Clenshaw Curtis Slow Exponential, Closed Fully Nested rule. // 12, "F2_SE", Fejer Type 2 Slow Exponential, Open Fully Nested rule. // 13, "GP_SE", Gauss Patterson Slow Exponential, Open Fully Nested rule. // 14, "CC_ME", Clenshaw Curtis Moderate Exponential, Closed Fully Nested rule. // 15, "F2_ME", Fejer Type 2 Moderate Exponential, Open Fully Nested rule. // 16, "GP_ME", Gauss Patterson Moderate Exponential, Open Fully Nested rule. // 17, "CCN", Clenshaw Curtis Nested, Linear, Closed Fully Nested rule. // // Output, int ORDER[DIM_NUM], the 1D orders (number of points). // { int dim; for ( dim = 0; dim < dim_num; dim++ ) { if ( level[dim] < 0 ) { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXPONENTIAL - Fatal error!\n"; std::cerr << " Negative value of LEVEL[DIM]!\n"; std::cerr << " LEVEL[" << dim << "] = " << level[dim] << "\n"; std::exit ( 1 ); } else if ( rule[dim] == 1 ) { if ( level[dim] == 0 ) { order[dim] = 1; } else { order[dim] = webbur::i4_power ( 2, level[dim] ) + 1; } } else if ( rule[dim] == 2 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 3 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 4 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 5 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 6 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 7 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 8 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 9 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 10 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 11 ) { if ( level[dim] == 0 ) { order[dim] = 1; } else { order[dim] = webbur::i4_power ( 2, level[dim] ) + 1; } } else if ( rule[dim] == 12 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 13 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 14 ) { if ( level[dim] == 0 ) { order[dim] = 1; } else { order[dim] = webbur::i4_power ( 2, level[dim] ) + 1; } } else if ( rule[dim] == 15 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 16 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ) - 1; } else if ( rule[dim] == 17 ) { order[dim] = webbur::i4_power ( 2, level[dim] + 1 ); } else { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXPONENTIAL - Fatal error!\n"; std::cerr << " Unexpected value of RULE[" << dim << "] = " << rule[dim] << ".\n"; std::exit ( 1 ); } } return; } //****************************************************************************80 void level_to_order_exponential_slow ( int dim_num, int level[], int rule[], int order[] ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_EXPONENTIAL_SLOW: slow exponential growth; // // Discussion: // // We seek a sequence of quadrature rules with two opposing constraints: // * a measured rise in polynomial precision with increasing level; // * a control on the increase in (new) points per level; // // Essentially, we are trying to keep some of the advantages of nesting, // while moderating the cost of the explosive growth in order that occurs // due to the repeated order doubling of nesting. // // We wish the number of points at a given level L to be "about" 2 * L + 1, // but we also wish the rules to be completely nested. // // One way to do this is to start with a nested family of rules, whose // order will tend to grow exponentially (doubling from one to the next), // but simply to REPEAT each rule as many times as possible. We move to // the next rule only when the desired precision 2 * L + 1 exceeds the // precision of the current rule. // // For both the Clenshaw Curtis and Fejer Type 2 rules, the order and // precision are the same if the order is odd. That is, an 11 point rule // will integrate exactly all polynomials up to and including degree 11. // // For Gauss Patterson rules, the relationship between order and precision // is somewhat more complicated. For that rule, we take the philosophy // that at each level L, we wish to choose the rule of smallest order // so that the precision of 2 * L + 1 is guaranteed. // // L 2*L+1 CC Order F2 Order GP Order/Precision // // 0 1 1 1 1/1 // 1 3 3 3 3/5 // 2 5 5 7 3/5 // 3 7 9 7 7/11 // 4 9 9 15 7/11 // 5 11 17 15 7/11 // 6 13 17 15 15/23 // 7 15 17 15 15/23 // 8 17 17 31 15/23 // 9 19 33 31 15/23 // 10 21 33 31 15/23 // 11 23 33 31 15/23 // 12 25 33 31 31/47 // 13 27 33 31 31/47 // 14 29 33 31 31/47 // 15 31 33 31 31/47 // 16 33 33 63 31/47 // 17 35 65 63 31/47 // 18 37 65 63 31/47 // 19 39 65 63 31/47 // 20 41 65 63 31/47 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Reference: // // Knut Petras, // Smolyak Cubature of Given Polynomial Degree with Few Nodes // for Increasing Dimension, // Numerische Mathematik, // Volume 93, Number 4, February 2003, pages 729-753. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL[DIM_NUM], the 1D levels. // // Input, int RULE[DIM_NUM], the rule in each dimension. // 1, "CC", Clenshaw Curtis, Closed Fully Nested rule. // 2, "F2", Fejer Type 2, Open Fully Nested rule. // 3, "GP", Gauss Patterson, Open Fully Nested rule. // 4, "GL", Gauss Legendre, Open Weakly Nested rule. // 5, "GH", Gauss Hermite, Open Weakly Nested rule. // 6, "GGH", Generalized Gauss Hermite, Open Weakly Nested rule. // 7, "LG", Gauss Laguerre, Open Non Nested rule. // 8, "GLG", Generalized Gauss Laguerre, Open Non Nested rule. // 9, "GJ", Gauss Jacobi, Open Non Nested rule. // 10, "GW", Golub Welsch, (presumed) Open Non Nested rule. // 11, "CC_SE", Clenshaw Curtis Slow Exponential, Closed Fully Nested rule. // 12, "F2_SE", Fejer Type 2 Slow Exponential, Open Fully Nested rule. // 13, "GP_SE", Gauss Patterson Slow Exponential, Open Fully Nested rule. // 14, "CC_ME", Clenshaw Curtis Moderate Exponential, Closed Fully Nested rule. // 15, "F2_ME", Fejer Type 2 Moderate Exponential, Open Fully Nested rule. // 16, "GP_ME", Gauss Patterson Moderate Exponential, Open Fully Nested rule. // 17, "CCN", Clenshaw Curtis Nested, Linear, Closed Fully Nested rule. // // Output, int ORDER[DIM_NUM], the 1D orders (number of points). // { int dim; int o; int p; for ( dim = 0; dim < dim_num; dim++ ) { if ( level[dim] < 0 ) { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXPONENTIAL_SLOW - Fatal error!\n"; std::cerr << " Negative value of LEVEL[DIM]!\n"; std::cerr << " LEVEL[" << dim << "] = " << level[dim] << "\n"; std::exit ( 1 ); } } for ( dim = 0; dim < dim_num; dim++ ) { if ( rule[dim] == 1 || rule[dim] == 11 || rule[dim] == 14 || rule[dim] == 17 ) { if ( level[dim] == 0 ) { o = 1; } else { o = 2; while ( o < 2 * level[dim] + 1 ) { o = 2 * ( o - 1 ) + 1; } } } else if ( rule[dim] == 3 || rule[dim] == 13 || rule[dim] == 16 ) { if ( level[dim] == 0 ) { o = 1; } else { p = 5; o = 3; while ( p < 2 * level[dim] + 1 ) { p = 2 * p + 1; o = 2 * o + 1; } } } else { o = 1; while ( o < 2 * level[dim] + 1 ) { o = 2 * o + 1; } } order[dim] = o; } return; } //****************************************************************************80 void level_to_order_linear ( int dim_num, int level[], int rule[], int order[] ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_LINEAR: linear growth. // // Discussion: // // The user must preallocate space for the output array ORDER. // // O(L) = 2 * L + 1; // // O = 1, 3, 5, 7, 9, ... // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL[DIM_NUM], the 1D levels. // // Input, int RULE[DIM_NUM], the rule in each dimension. // 1, "CC", Clenshaw Curtis, Closed Fully Nested rule. // 2, "F2", Fejer Type 2, Open Fully Nested rule. // 3, "GP", Gauss Patterson, Open Fully Nested rule. // 4, "GL", Gauss Legendre, Open Weakly Nested rule. // 5, "GH", Gauss Hermite, Open Weakly Nested rule. // 6, "GGH", Generalized Gauss Hermite, Open Weakly Nested rule. // 7, "LG", Gauss Laguerre, Open Non Nested rule. // 8, "GLG", Generalized Gauss Laguerre, Open Non Nested rule. // 9, "GJ", Gauss Jacobi, Open Non Nested rule. // 10, "GW", Golub Welsch, (presumed) Open Non Nested rule. // 11, "CC_SE", Clenshaw Curtis Slow Exponential, Closed Fully Nested rule. // 12, "F2_SE", Fejer Type 2 Slow Exponential, Open Fully Nested rule. // 13, "GP_SE", Gauss Patterson Slow Exponential, Open Fully Nested rule. // 14, "CC_ME", Clenshaw Curtis Moderate Exponential, Closed Fully Nested rule. // 15, "F2_ME", Fejer Type 2 Moderate Exponential, Open Fully Nested rule. // 16, "GP_ME", Gauss Patterson Moderate Exponential, Open Fully Nested rule. // 17, "CCN", Clenshaw Curtis Nested, Linear, Closed Fully Nested rule. // // Output, int ORDER[DIM_NUM], the 1D orders (number of points). // { int dim; for ( dim = 0; dim < dim_num; dim++ ) { if ( level[dim] < 0 ) { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_LINEAR - Fatal error!\n"; std::cerr << " Negative value of LEVEL[DIM]!\n"; std::cerr << " LEVEL[" << dim << "] = " << level[dim] << "\n"; std::exit ( 1 ); } } for ( dim = 0; dim < dim_num; dim++ ) { order[dim] = 2 * level[dim] + 1; } return; } //****************************************************************************80 int level_to_order_exp_cc ( int level, int growth ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_EXP_CC is used for Clenshaw-Curtis type rules. // // Discussion: // // Rules of this type are assumed to be closed (including both endpoints // except for the level 0 rule) and having a precision // behavior typical of Clenshaw Curtis rules, namely, the ORDER-point // rule is exact for polynomials of degree less than ORDER, and if // ORDER is odd, then the exactness includes polynomials of degree ORDER // as well. // // LEVEL ORDER ORDER ORDER // G = 0 G = 1 G = 2 // ----- ----- ----- ----- // 0 1 1 1 // 1 3 5 3 // 2 5 9 5 // 3 9 17 9 // 4 9 17 17 // 5 17 33 33 // 6 17 33 65 // 7 17 33 129 // 8 17 33 257 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int LEVEL, the level of the rule. // // Input, int GROWTH, the growth policy: // 0, slow growth; // 1, moderate growth; // 2, full growth. // // Output, int LEVEL_TO_ORDER_EXP_CC, the order of the rule. // { int o; // // Slow exponential growth. // if ( growth == 0 ) { if ( level == 0 ) { o = 1; } else { o = 2; while ( o < 2 * level + 1 ) { o = 2 * ( o - 1 ) + 1; } } } // // Moderate Exponential Growth. // else if ( growth == 1 ) { if ( level == 0 ) { o = 1; } else { o = 2; while ( o < 4 * level + 1 ) { o = 2 * ( o - 1 ) + 1; } } } // // Full Exponential Growth. // else if ( growth == 2 ) { if ( level == 0 ) { o = 1; } else { o = webbur::i4_power ( 2, level ) + 1; } } else { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_CC - Fatal error!\n"; std::cerr << " Illegal value of GROWTH = " << growth << "\n"; std::exit ( 1 ); } return o; } //****************************************************************************80 int level_to_order_exp_f2 ( int level, int growth ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_EXP_F2 is used for Fejer 2 type rules. // // Discussion: // // Rules of this type are assumed to be open (not including either endpoint) // and having a precision behavior typical of Fejer Type 2 // rules, namely, the ORDER-point rule is exact for polynomials of degree // less than ORDER, and if ORDER is odd, then the exactness includes // polynomials of degree ORDER as well. // // LEVEL ORDER ORDER ORDER // G = 0 G = 1 G = 2 // // 0 1 1 1 // 1 3 7 3 // 2 7 15 7 // 3 7 15 15 // 4 15 31 31 // 5 15 31 63 // 6 15 31 127 // 7 15 31 255 // 8 31 63 511 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int LEVEL, the level of the rule. // // Input, int GROWTH, the growth policy: // 0, slow growth; // 1, moderate growth; // 2, full growth. // // Output, int LEVEL_TO_ORDER_EXP_F2, the order of the rule. // { int o; // // Slow exponential growth. // if ( growth == 0 ) { if ( level == 0 ) { o = 1; } else { o = 1; while ( o < 2 * level + 1 ) { o = 2 * o + 1; } } } // // Moderate Exponential Growth. // else if ( growth == 1 ) { if ( level == 0 ) { o = 1; } else { o = 1; while ( o < 4 * level + 1 ) { o = 2 * o + 1; } } } // // Full Exponential Growth. // else if ( growth == 2 ) { if ( level == 0 ) { o = 1; } else { o = webbur::i4_power ( 2, level + 1 ) - 1; } } else { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_F2 - Fatal error!\n"; std::cerr << " Illegal value of GROWTH = " << growth << "\n"; std::exit ( 1 ); } return o; } //****************************************************************************80 int level_to_order_exp_gauss ( int level, int growth ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_EXP_GAUSS is used for Gauss type rules. // // Discussion: // // Rules of this type are assumed to be open (not including either endpoint), // and having a precision behavior typical of Gauss rules, namely, the // ORDER-point rule is exact for polynomials of degree less than 2 * ORDER. // // LEVEL ORDER ORDER ORDER // G = 0 G = 1 G = 2 // // 0 1 1 1 // 1 3 3 3 // 2 3 7 7 // 3 7 7 15 // 4 7 15 31 // 5 7 15 63 // 6 7 15 127 // 7 15 15 255 // 8 15 31 511 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int LEVEL, the level of the rule. // // Input, int GROWTH, the growth policy: // 0, slow growth; // 1, moderate growth; // 2, full growth. // // Output, int LEVEL_TO_ORDER_EXP_GAUSS, the order of the rule. // { int o; // // Slow exponential growth. // if ( growth == 0 ) { if ( level == 0 ) { o = 1; } else { o = 1; while ( 2 * o - 1 < 2 * level + 1 ) { o = 2 * o + 1; } } } // // Moderate Exponential Growth. // else if ( growth == 1 ) { if ( level == 0 ) { o = 1; } else { o = 1; while ( 2 * o - 1 < 4 * level + 1 ) { o = 2 * o + 1; } } } // // Full Exponential Growth. // else if ( growth == 2 ) { if ( level == 0 ) { o = 1; } else { o = webbur::i4_power ( 2, level + 1 ) - 1; } } else { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_GAUSS - Fatal error!\n"; std::cerr << " Illegal value of GROWTH = " << growth << "\n"; std::exit ( 1 ); } return o; } //****************************************************************************80 int level_to_order_exp_gp ( int level, int growth ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_EXP_GP is used for Gauss-Patterson type rules. // // Discussion: // // Rules of this type are assumed to be open (not including either endpoint) // and having a precision behavior typical of Gauss Patterson rules. // // Note that there are onlly 9 rules in the family, and so it is possible to // specify input for which the function will fail. // // LEVEL ORDER ORDER ORDER // G = 0 G = 1 G = 2 // // 0 1 1 1 // 1 3 3 3 // 2 3 7 7 // 3 7 15 15 // 4 7 15 31 // 5 7 15 63 // 6 15 31 127 // 7 15 31 255 // 8 15 31 511 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int LEVEL, the level of the rule. // // Input, int GROWTH, the growth policy: // 0, slow growth; // 1, moderate growth; // 2, full growth. // // Output, int LEVEL_TO_ORDER_EXP_GP, the order of the rule. // { int o; int p; // // Slow exponential growth. // if ( growth == 0 ) { if ( level == 0 ) { o = 1; } else { p = 5; o = 3; while ( p < 2 * level + 1 ) { p = 2 * p + 1; o = 2 * o + 1; if ( 511 < o ) { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_GP - Fatal error!\n"; std::cerr << " Request for unavailable Patterson rule.\n"; std::exit ( 1 ); } } } } // // Moderate Exponential Growth. // else if ( growth == 1 ) { if ( level == 0 ) { o = 1; } else { p = 5; o = 3; while ( p < 4 * level + 1 ) { p = 2 * p + 1; o = 2 * o + 1; if ( 511 < o ) { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_GP - Fatal error!\n"; std::cerr << " Request for unavailable Patterson rule.\n"; std::exit ( 1 ); } } } } // // Full Exponential Growth. // else if ( growth == 2 ) { if ( level == 0 ) { o = 1; } else { o = webbur::i4_power ( 2, level + 1 ) - 1; if ( 511 < o ) { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_GP - Fatal error!\n"; std::cerr << " Request for unavailable Patterson rule.\n"; std::exit ( 1 ); } } } else { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_GP - Fatal error!\n"; std::cerr << " Illegal value of GROWTH = " << growth << "\n"; std::exit ( 1 ); } return o; } //****************************************************************************80 int level_to_order_exp_hgk ( int level, int growth ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_EXP_HGK is used for Hermite Genz-Keister type rules. // // Discussion: // // Rules of this type are assumed to be open (not including either endpoint) // and having a precision behavior typical of Hermite Genz-Keister rules. // // Note that there are only 6 rules in the family, and so it is possible to // specify input for which the function will fail. // // LEVEL ORDER ORDER ORDER // G = 0 G = 1 G = 2 // // 0 1 1 1 // 1 3 3 3 // 2 3 9 9 // 3 9 9 19 // 4 9 19 35 // 5 9 19 43 // 6 9 19 -- // 7 9 19 -- // 8 19 35 -- // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int LEVEL, the level of the rule. // // Input, int GROWTH, the growth policy: // 0, slow growth; // 1, moderate growth; // 2, full growth. // // Output, int LEVEL_TO_ORDER_EXP_HGK, the order of the rule. // { int l; int o; static int o_hgk[6] = { 1, 3, 9, 19, 35, 43 }; int p; static int p_hgk[6] = { 1, 5, 15, 29, 51, 67 }; // // Slow exponential growth. // if ( growth == 0 ) { l = 0; p = p_hgk[l]; o = o_hgk[l]; while ( p < 2 * level + 1 ) { l = l + 1; if ( 5 < l ) { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_HGK - Fatal error!\n"; std::cerr << " Hermite Genz-Keister maximum level exceeded.\n"; std::exit ( 1 ); } p = p_hgk[l]; o = o_hgk[l]; } } else if ( growth == 1 ) { l = 0; p = p_hgk[l]; o = o_hgk[l]; while ( p < 4 * level + 1 ) { l = l + 1; if ( 5 < l ) { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_HGK - Fatal error!\n"; std::cerr << " Hermite Genz-Keister maximum level exceeded.\n"; std::exit ( 1 ); } p = p_hgk[l]; o = o_hgk[l]; } } else if ( growth == 2 ) { l = level; l = webbur::i4_max ( l, 0 ); if ( 5 < l ) { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_HGK - Fatal error!\n"; std::cerr << " Hermite Genz-Keister maximum level exceeded.\n"; std::exit ( 1 ); } o = o_hgk[l]; } else { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_EXP_HGK - Fatal error!\n"; std::cerr << " Illegal value of GROWTH = " << growth << "\n"; std::exit ( 1 ); } return o; } //****************************************************************************80 int level_to_order_linear_nn ( int level, int growth ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_LINEAR_NN is used for non-nested Gauss type rules. // // Discussion: // // Rules of this type are assumed to be open (not including either endpoint), // non-nested, and having a precision behavior typical of Gauss rules. // // LEVEL ORDER ORDER // G = 0 G = 1 // // 0 1 1 // 1 2 3 // 2 3 5 // 3 4 7 // 4 5 9 // 5 6 11 // 6 7 13 // 7 8 15 // 8 9 17 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int LEVEL, the level of the rule. // // Input, int GROWTH, the growth policy: // 0, slow growth; // 1, moderate growth; // // Output, int LEVEL_TO_ORDER_LINEAR_NN, the order of the rule. // { int o; // // Slow linear growth. // if ( growth == 0 ) { o = level + 1; } // // Moderate linear growth. // else if ( growth == 1 ) { o = 2 * level + 1; } else if ( growth == 2 ) { o = 2 * level + 1; } else { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_LINEAR_NN - Fatal error!\n"; std::cerr << " Illegal value of GROWTH = " << growth << "\n"; std::exit ( 1 ); } return o; } //****************************************************************************80 int level_to_order_linear_wn ( int level, int growth ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_LINEAR_WN is used for weakly-nested Gauss type rules. // // Discussion: // // Rules of this type are assumed to be open (not including either endpoint), // nested, and having a precision behavior typical of Gauss rules. // // We assume the rules are to be generated with an odd number of points, // and that all the rules will share a single point, namely 0. // // Note that the "moderate growth" option for this function results in the // same values as the moderate growth option for LEVEL_TO_ORDER_LINEAR_NN. // // LEVEL ORDER ORDER // G = 0 G = 1 // // 0 1 1 // 1 3 3 // 2 3 5 // 3 5 7 // 4 5 9 // 5 7 11 // 6 7 13 // 7 9 15 // 8 9 17 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 January 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int LEVEL, the level of the rule. // // Input, int GROWTH, the growth policy: // 0, slow growth; // 1, moderate growth; // // Output, int LEVEL_TO_ORDER_LINEAR_WN, the order of the rule. // { int o; // // Slow growth. // if ( growth == 0 ) { o = 2 * ( ( level + 1 ) / 2 ) + 1; } else if ( growth == 1 ) { o = 2 * level + 1; } else if ( growth == 2 ) { o = 2 * level + 1; } else { std::cerr << "\n"; std::cerr << "LEVEL_TO_ORDER_LINEAR_WN - Fatal error!\n"; std::cerr << " Illegal value of GROWTH = " << growth << "\n"; std::exit ( 1 ); } return o; } //****************************************************************************80 void nc_compute ( int n, double x_min, double x_max, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // NC_COMPUTE computes a Newton-Cotes quadrature rule. // // Discussion: // // For the interval [X_MIN,X_MAX], the Newton-Cotes quadrature rule // estimates // // Integral ( X_MIN <= X <= X_MAX ) F(X) dX // // using N abscissas X and weights W: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ). // // For the CLOSED rule, the abscissas include the end points. // For the OPEN rule, the abscissas do not include the end points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 November 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, double X_MIN, X_MAX, the endpoints of the interval. // // Input, double X[N], the abscissas. // // Output, double W[N], the weights. // { double *d; int i; int j; int k; double yvala; double yvalb; d = new double[n]; for ( i = 0; i < n; i++ ) { // // Compute the Lagrange basis polynomial which is 1 at XTAB(I), // and zero at the other nodes. // for ( j = 0; j < n; j++ ) { d[j] = 0.0; } d[i] = 1.0; for ( j = 2; j <= n; j++ ) { for ( k = j; k <= n; k++ ) { d[n+j-k-1] = ( d[n+j-k-1-1] - d[n+j-k-1] ) / ( x[n+1-k-1] - x[n+j-k-1] ); } } for ( j = 1; j <= n - 1; j++ ) { for ( k = 1; k <= n - j; k++ ) { d[n-k-1] = d[n-k-1] - x[n-k-j] * d[n-k]; } } // // Evaluate the antiderivative of the polynomial at the left and // right endpoints. // yvala = d[n-1] / ( double ) ( n ); for ( j = n - 2; 0 <= j; j-- ) { yvala = yvala * x_min + d[j] / ( double ) ( j + 1 ); } yvala = yvala * x_min; yvalb = d[n-1] / ( double ) ( n ); for ( j = n - 2; 0 <= j; j-- ) { yvalb = yvalb * x_max + d[j] / ( double ) ( j + 1 ); } yvalb = yvalb * x_max; w[i] = yvalb - yvala; } delete [] d; return; } //****************************************************************************80 double *nc_compute_new ( int n, double x_min, double x_max, double x[] ) //****************************************************************************80 // // Purpose: // // NC_COMPUTE_NEW computes a Newton-Cotes quadrature rule. // // Discussion: // // For the interval [X_MIN,X_MAX], the Newton-Cotes quadrature rule // estimates // // Integral ( X_MIN <= X <= X_MAX ) F(X) dX // // using N abscissas X and weights W: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ). // // For the CLOSED rule, the abscissas include the end points. // For the OPEN rule, the abscissas do not include the end points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 November 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Input, double X_MIN, X_MAX, the endpoints of the interval. // // Input, double X[N], the abscissas. // // Output, double NC_COMPUTE_NEW[N], the weights. // { double *d; int i; int j; int k; double *w; double yvala; double yvalb; d = new double[n]; w = new double[n]; for ( i = 0; i < n; i++ ) { // // Compute the Lagrange basis polynomial which is 1 at XTAB(I), // and zero at the other nodes. // for ( j = 0; j < n; j++ ) { d[j] = 0.0; } d[i] = 1.0; for ( j = 2; j <= n; j++ ) { for ( k = j; k <= n; k++ ) { d[n+j-k-1] = ( d[n+j-k-1-1] - d[n+j-k-1] ) / ( x[n+1-k-1] - x[n+j-k-1] ); } } for ( j = 1; j <= n - 1; j++ ) { for ( k = 1; k <= n - j; k++ ) { d[n-k-1] = d[n-k-1] - x[n-k-j] * d[n-k]; } } // // Evaluate the antiderivative of the polynomial at the left and // right endpoints. // yvala = d[n-1] / ( double ) ( n ); for ( j = n - 2; 0 <= j; j-- ) { yvala = yvala * x_min + d[j] / ( double ) ( j + 1 ); } yvala = yvala * x_min; yvalb = d[n-1] / ( double ) ( n ); for ( j = n - 2; 0 <= j; j-- ) { yvalb = yvalb * x_max + d[j] / ( double ) ( j + 1 ); } yvalb = yvalb * x_max; w[i] = yvalb - yvala; } delete [] d; return w; } //****************************************************************************80 void ncc_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // NCC_COMPUTE_POINTS: points of a Newton-Cotes Closed quadrature rule. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 November 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double X[N], the abscissas. // { int i; double x_max = 1.0; double x_min = -1.0; if ( n == 1 ) { x[0] = ( x_max + x_min ) / 2.0; } else { for ( i = 0; i < n; i++ ) { x[i] = ( ( double ) ( n - i - 1 ) * x_min + ( double ) ( i ) * x_max ) / ( double ) ( n - 1 ); } } return; } //****************************************************************************80 void ncc_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // NCC_COMPUTE_WEIGHTS: weights of a Newton-Cotes Closed quadrature rule. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 November 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double W[N], the weights. // { int i; double *x; double x_max = 1.0; double x_min = -1.0; if ( n == 1 ) { w[0] = x_max - x_min; } else { x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = ( ( double ) ( n - i - 1 ) * x_min + ( double ) ( i ) * x_max ) / ( double ) ( n - 1 ); } webbur::nc_compute ( n, x_min, x_max, x, w ); delete [] x; } return; } //****************************************************************************80 void nco_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // NCO_COMPUTE_POINTS: points for a Newton-Cotes Open quadrature rule. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 November 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double X[N], the abscissas. // { int i; double x_max = 1.0; double x_min = -1.0; for ( i = 0; i < n; i++ ) { x[i] = ( ( double ) ( n - i ) * x_min + ( double ) ( + i + 1 ) * x_max ) / ( double ) ( n + 1 ); } return; } //****************************************************************************80 void nco_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // NCO_COMPUTE_WEIGHTS: weights for a Newton-Cotes Open quadrature rule. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 November 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double W[N], the weights. // { double *x; double x_max = 1.0; double x_min = -1.0; x = new double[n]; webbur::nco_compute_points ( n, x ); webbur::nc_compute ( n, x_min, x_max, x, w ); delete [] x; return; } //****************************************************************************80 void ncoh_compute_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // NCOH_COMPUTE_POINTS computes points for a Newton-Cotes "open half" quadrature rule. // // Discussion: // // The input value N is used to define N equal subintervals of [-1,+1]. // The I-th abscissa is the center of the I-th subinterval. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double X[N], the abscissas. // { int i; const double x_max = 1.0; const double x_min = -1.0; for ( i = 0; i < n; i++ ) { x[i] = ( ( double ) ( 2 * n - 2 * i - 1 ) * x_min + ( double ) ( 2 * i + 1 ) * x_max ) / ( double ) ( 2 * n ); } return; } //****************************************************************************80 void ncoh_compute_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // NCOH_COMPUTE_WEIGHTS computes weights for a Newton-Cotes "open half" quadrature rule. // // Discussion: // // The input value N is used to define N equal subintervals of [-1,+1]. // The I-th abscissa is the center of the I-th subinterval. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // // Output, double W[N], the weights. // { double *x; const double x_max = 1.0; const double x_min = -1.0; x = new double[n]; webbur::ncoh_compute_points ( n, x ); webbur::nc_compute ( n, x_min, x_max, x, w ); delete [] x; return; } //****************************************************************************80 void patterson_lookup ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // PATTERSON_LOOKUP looks up Patterson quadrature points and weights. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // The rule is defined on [-1,1], // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 February 2010 // // Author: // // John Burkardt // // Reference: // // Prem Kythe, Michael Schaeferkotter, // Handbook of Computational Methods for Integration, // Chapman and Hall, 2004, // ISBN: 1-58488-428-2, // LC: QA299.3.K98. // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // Legal values are 1, 3, 7, 15, 31, 63, 127, 255 and 511. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { patterson_lookup_points ( n, x ); patterson_lookup_weights ( n, w ); return; } //****************************************************************************80 void patterson_lookup_points ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // PATTERSON_LOOKUP_POINTS looks up Patterson quadrature points. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // The rule is defined on [-1,1], // // These rules constitute a nested family. The rules can integrate exactly // any polynomial of degree 1, 5, 11, 23, 47, 95, 191, 383 or 767, // respectively. // // The data for N = 511 was supplied by Dirk Laurie, and is derived // from a NAG Library function d01arf. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2011 // // Author: // // John Burkardt // // Reference: // // Prem Kythe, Michael Schaeferkotter, // Handbook of Computational Methods for Integration, // Chapman and Hall, 2004, // ISBN: 1-58488-428-2, // LC: QA299.3.K98. // // NAG Library Documentation, // D01ARF, // The Numerical Algorithms Group. // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // Legal values are 1, 3, 7, 15, 31, 63, 127, 255 and 511. // // Output, double X[N], the abscissas. // { static double x_001[1] = { 0.0 }; static double x_003[3] = { -0.77459666924148337704, 0.0, 0.77459666924148337704 }; static double x_007[7] = { -0.96049126870802028342, -0.77459666924148337704, -0.43424374934680255800, 0.0, 0.43424374934680255800, 0.77459666924148337704, 0.96049126870802028342 }; static double x_015[15] = { -0.99383196321275502221, -0.96049126870802028342, -0.88845923287225699889, -0.77459666924148337704, -0.62110294673722640294, -0.43424374934680255800, -0.22338668642896688163, 0.0, 0.22338668642896688163, 0.43424374934680255800, 0.62110294673722640294, 0.77459666924148337704, 0.88845923287225699889, 0.96049126870802028342, 0.99383196321275502221 }; static double x_031[31] = { -0.99909812496766759766, -0.99383196321275502221, -0.98153114955374010687, -0.96049126870802028342, -0.92965485742974005667, -0.88845923287225699889, -0.83672593816886873550, -0.77459666924148337704, -0.70249620649152707861, -0.62110294673722640294, -0.53131974364437562397, -0.43424374934680255800, -0.33113539325797683309, -0.22338668642896688163, -0.11248894313318662575, 0.0, 0.11248894313318662575, 0.22338668642896688163, 0.33113539325797683309, 0.43424374934680255800, 0.53131974364437562397, 0.62110294673722640294, 0.70249620649152707861, 0.77459666924148337704, 0.83672593816886873550, 0.88845923287225699889, 0.92965485742974005667, 0.96049126870802028342, 0.98153114955374010687, 0.99383196321275502221, 0.99909812496766759766 }; static double x_063[63] = { -0.99987288812035761194, -0.99909812496766759766, -0.99720625937222195908, -0.99383196321275502221, -0.98868475754742947994, -0.98153114955374010687, -0.97218287474858179658, -0.96049126870802028342, -0.94634285837340290515, -0.92965485742974005667, -0.91037115695700429250, -0.88845923287225699889, -0.86390793819369047715, -0.83672593816886873550, -0.80694053195021761186, -0.77459666924148337704, -0.73975604435269475868, -0.70249620649152707861, -0.66290966002478059546, -0.62110294673722640294, -0.57719571005204581484, -0.53131974364437562397, -0.48361802694584102756, -0.43424374934680255800, -0.38335932419873034692, -0.33113539325797683309, -0.27774982202182431507, -0.22338668642896688163, -0.16823525155220746498, -0.11248894313318662575, -0.056344313046592789972, 0.0, 0.056344313046592789972, 0.11248894313318662575, 0.16823525155220746498, 0.22338668642896688163, 0.27774982202182431507, 0.33113539325797683309, 0.38335932419873034692, 0.43424374934680255800, 0.48361802694584102756, 0.53131974364437562397, 0.57719571005204581484, 0.62110294673722640294, 0.66290966002478059546, 0.70249620649152707861, 0.73975604435269475868, 0.77459666924148337704, 0.80694053195021761186, 0.83672593816886873550, 0.86390793819369047715, 0.88845923287225699889, 0.91037115695700429250, 0.92965485742974005667, 0.94634285837340290515, 0.96049126870802028342, 0.97218287474858179658, 0.98153114955374010687, 0.98868475754742947994, 0.99383196321275502221, 0.99720625937222195908, 0.99909812496766759766, 0.99987288812035761194 }; static double x_127[127] = { -0.99998243035489159858, -0.99987288812035761194, -0.99959879967191068325, -0.99909812496766759766, -0.99831663531840739253, -0.99720625937222195908, -0.99572410469840718851, -0.99383196321275502221, -0.99149572117810613240, -0.98868475754742947994, -0.98537149959852037111, -0.98153114955374010687, -0.97714151463970571416, -0.97218287474858179658, -0.96663785155841656709, -0.96049126870802028342, -0.95373000642576113641, -0.94634285837340290515, -0.93832039777959288365, -0.92965485742974005667, -0.92034002547001242073, -0.91037115695700429250, -0.89974489977694003664, -0.88845923287225699889, -0.87651341448470526974, -0.86390793819369047715, -0.85064449476835027976, -0.83672593816886873550, -0.82215625436498040737, -0.80694053195021761186, -0.79108493379984836143, -0.77459666924148337704, -0.75748396638051363793, -0.73975604435269475868, -0.72142308537009891548, -0.70249620649152707861, -0.68298743109107922809, -0.66290966002478059546, -0.64227664250975951377, -0.62110294673722640294, -0.59940393024224289297, -0.57719571005204581484, -0.55449513263193254887, -0.53131974364437562397, -0.50768775753371660215, -0.48361802694584102756, -0.45913001198983233287, -0.43424374934680255800, -0.40897982122988867241, -0.38335932419873034692, -0.35740383783153215238, -0.33113539325797683309, -0.30457644155671404334, -0.27774982202182431507, -0.25067873030348317661, -0.22338668642896688163, -0.19589750271110015392, -0.16823525155220746498, -0.14042423315256017459, -0.11248894313318662575, -0.084454040083710883710, -0.056344313046592789972, -0.028184648949745694339, 0.0, 0.028184648949745694339, 0.056344313046592789972, 0.084454040083710883710, 0.11248894313318662575, 0.14042423315256017459, 0.16823525155220746498, 0.19589750271110015392, 0.22338668642896688163, 0.25067873030348317661, 0.27774982202182431507, 0.30457644155671404334, 0.33113539325797683309, 0.35740383783153215238, 0.38335932419873034692, 0.40897982122988867241, 0.43424374934680255800, 0.45913001198983233287, 0.48361802694584102756, 0.50768775753371660215, 0.53131974364437562397, 0.55449513263193254887, 0.57719571005204581484, 0.59940393024224289297, 0.62110294673722640294, 0.64227664250975951377, 0.66290966002478059546, 0.68298743109107922809, 0.70249620649152707861, 0.72142308537009891548, 0.73975604435269475868, 0.75748396638051363793, 0.77459666924148337704, 0.79108493379984836143, 0.80694053195021761186, 0.82215625436498040737, 0.83672593816886873550, 0.85064449476835027976, 0.86390793819369047715, 0.87651341448470526974, 0.88845923287225699889, 0.89974489977694003664, 0.91037115695700429250, 0.92034002547001242073, 0.92965485742974005667, 0.93832039777959288365, 0.94634285837340290515, 0.95373000642576113641, 0.96049126870802028342, 0.96663785155841656709, 0.97218287474858179658, 0.97714151463970571416, 0.98153114955374010687, 0.98537149959852037111, 0.98868475754742947994, 0.99149572117810613240, 0.99383196321275502221, 0.99572410469840718851, 0.99720625937222195908, 0.99831663531840739253, 0.99909812496766759766, 0.99959879967191068325, 0.99987288812035761194, 0.99998243035489159858 }; static double x_255[255] = { -0.99999759637974846462, -0.99998243035489159858, -0.99994399620705437576, -0.99987288812035761194, -0.99976049092443204733, -0.99959879967191068325, -0.99938033802502358193, -0.99909812496766759766, -0.99874561446809511470, -0.99831663531840739253, -0.99780535449595727456, -0.99720625937222195908, -0.99651414591489027385, -0.99572410469840718851, -0.99483150280062100052, -0.99383196321275502221, -0.99272134428278861533, -0.99149572117810613240, -0.99015137040077015918, -0.98868475754742947994, -0.98709252795403406719, -0.98537149959852037111, -0.98351865757863272876, -0.98153114955374010687, -0.97940628167086268381, -0.97714151463970571416, -0.97473445975240266776, -0.97218287474858179658, -0.96948465950245923177, -0.96663785155841656709, -0.96364062156981213252, -0.96049126870802028342, -0.95718821610986096274, -0.95373000642576113641, -0.95011529752129487656, -0.94634285837340290515, -0.94241156519108305981, -0.93832039777959288365, -0.93406843615772578800, -0.92965485742974005667, -0.92507893290707565236, -0.92034002547001242073, -0.91543758715576504064, -0.91037115695700429250, -0.90514035881326159519, -0.89974489977694003664, -0.89418456833555902286, -0.88845923287225699889, -0.88256884024734190684, -0.87651341448470526974, -0.87029305554811390585, -0.86390793819369047715, -0.85735831088623215653, -0.85064449476835027976, -0.84376688267270860104, -0.83672593816886873550, -0.82952219463740140018, -0.82215625436498040737, -0.81462878765513741344, -0.80694053195021761186, -0.79909229096084140180, -0.79108493379984836143, -0.78291939411828301639, -0.77459666924148337704, -0.76611781930376009072, -0.75748396638051363793, -0.74869629361693660282, -0.73975604435269475868, -0.73066452124218126133, -0.72142308537009891548, -0.71203315536225203459, -0.70249620649152707861, -0.69281376977911470289, -0.68298743109107922809, -0.67301883023041847920, -0.66290966002478059546, -0.65266166541001749610, -0.64227664250975951377, -0.63175643771119423041, -0.62110294673722640294, -0.61031811371518640016, -0.59940393024224289297, -0.58836243444766254143, -0.57719571005204581484, -0.56590588542365442262, -0.55449513263193254887, -0.54296566649831149049, -0.53131974364437562397, -0.51955966153745702199, -0.50768775753371660215, -0.49570640791876146017, -0.48361802694584102756, -0.47142506587165887693, -0.45913001198983233287, -0.44673538766202847374, -0.43424374934680255800, -0.42165768662616330006, -0.40897982122988867241, -0.39621280605761593918, -0.38335932419873034692, -0.37042208795007823014, -0.35740383783153215238, -0.34430734159943802278, -0.33113539325797683309, -0.31789081206847668318, -0.30457644155671404334, -0.29119514851824668196, -0.27774982202182431507, -0.26424337241092676194, -0.25067873030348317661, -0.23705884558982972721, -0.22338668642896688163, -0.20966523824318119477, -0.19589750271110015392, -0.18208649675925219825, -0.16823525155220746498, -0.15434681148137810869, -0.14042423315256017459, -0.12647058437230196685, -0.11248894313318662575, -0.098482396598119202090, -0.084454040083710883710, -0.070406976042855179063, -0.056344313046592789972, -0.042269164765363603212, -0.028184648949745694339, -0.014093886410782462614, 0.0, 0.014093886410782462614, 0.028184648949745694339, 0.042269164765363603212, 0.056344313046592789972, 0.070406976042855179063, 0.084454040083710883710, 0.098482396598119202090, 0.11248894313318662575, 0.12647058437230196685, 0.14042423315256017459, 0.15434681148137810869, 0.16823525155220746498, 0.18208649675925219825, 0.19589750271110015392, 0.20966523824318119477, 0.22338668642896688163, 0.23705884558982972721, 0.25067873030348317661, 0.26424337241092676194, 0.27774982202182431507, 0.29119514851824668196, 0.30457644155671404334, 0.31789081206847668318, 0.33113539325797683309, 0.34430734159943802278, 0.35740383783153215238, 0.37042208795007823014, 0.38335932419873034692, 0.39621280605761593918, 0.40897982122988867241, 0.42165768662616330006, 0.43424374934680255800, 0.44673538766202847374, 0.45913001198983233287, 0.47142506587165887693, 0.48361802694584102756, 0.49570640791876146017, 0.50768775753371660215, 0.51955966153745702199, 0.53131974364437562397, 0.54296566649831149049, 0.55449513263193254887, 0.56590588542365442262, 0.57719571005204581484, 0.58836243444766254143, 0.59940393024224289297, 0.61031811371518640016, 0.62110294673722640294, 0.63175643771119423041, 0.64227664250975951377, 0.65266166541001749610, 0.66290966002478059546, 0.67301883023041847920, 0.68298743109107922809, 0.69281376977911470289, 0.70249620649152707861, 0.71203315536225203459, 0.72142308537009891548, 0.73066452124218126133, 0.73975604435269475868, 0.74869629361693660282, 0.75748396638051363793, 0.76611781930376009072, 0.77459666924148337704, 0.78291939411828301639, 0.79108493379984836143, 0.79909229096084140180, 0.80694053195021761186, 0.81462878765513741344, 0.82215625436498040737, 0.82952219463740140018, 0.83672593816886873550, 0.84376688267270860104, 0.85064449476835027976, 0.85735831088623215653, 0.86390793819369047715, 0.87029305554811390585, 0.87651341448470526974, 0.88256884024734190684, 0.88845923287225699889, 0.89418456833555902286, 0.89974489977694003664, 0.90514035881326159519, 0.91037115695700429250, 0.91543758715576504064, 0.92034002547001242073, 0.92507893290707565236, 0.92965485742974005667, 0.93406843615772578800, 0.93832039777959288365, 0.94241156519108305981, 0.94634285837340290515, 0.95011529752129487656, 0.95373000642576113641, 0.95718821610986096274, 0.96049126870802028342, 0.96364062156981213252, 0.96663785155841656709, 0.96948465950245923177, 0.97218287474858179658, 0.97473445975240266776, 0.97714151463970571416, 0.97940628167086268381, 0.98153114955374010687, 0.98351865757863272876, 0.98537149959852037111, 0.98709252795403406719, 0.98868475754742947994, 0.99015137040077015918, 0.99149572117810613240, 0.99272134428278861533, 0.99383196321275502221, 0.99483150280062100052, 0.99572410469840718851, 0.99651414591489027385, 0.99720625937222195908, 0.99780535449595727456, 0.99831663531840739253, 0.99874561446809511470, 0.99909812496766759766, 0.99938033802502358193, 0.99959879967191068325, 0.99976049092443204733, 0.99987288812035761194, 0.99994399620705437576, 0.99998243035489159858, 0.99999759637974846462 }; static double x_511[511] = { -0.999999672956734384381, -0.999997596379748464620, -0.999992298136257588028, -0.999982430354891598580, -0.999966730098486276883, -0.999943996207054375764, -0.999913081144678282800, -0.999872888120357611938, -0.999822363679787739196, -0.999760490924432047330, -0.999686286448317731776, -0.999598799671910683252, -0.999497112467187190535, -0.999380338025023581928, -0.999247618943342473599, -0.999098124967667597662, -0.998931050830810562236, -0.998745614468095114704, -0.998541055697167906027, -0.998316635318407392531, -0.998071634524930323302, -0.997805354495957274562, -0.997517116063472399965, -0.997206259372221959076, -0.996872143485260161299, -0.996514145914890273849, -0.996131662079315037786, -0.995724104698407188509, -0.995290903148810302261, -0.994831502800621000519, -0.994345364356723405931, -0.993831963212755022209, -0.993290788851684966211, -0.992721344282788615328, -0.992123145530863117683, -0.991495721178106132399, -0.990838611958294243677, -0.990151370400770159181, -0.989433560520240838716, -0.988684757547429479939, -0.987904547695124280467, -0.987092527954034067190, -0.986248305913007552681, -0.985371499598520371114, -0.984461737328814534596, -0.983518657578632728762, -0.982541908851080604251, -0.981531149553740106867, -0.980486047876721339416, -0.979406281670862683806, -0.978291538324758539526, -0.977141514639705714156, -0.975955916702011753129, -0.974734459752402667761, -0.973476868052506926773, -0.972182874748581796578, -0.970852221732792443256, -0.969484659502459231771, -0.968079947017759947964, -0.966637851558416567092, -0.965158148579915665979, -0.963640621569812132521, -0.962085061904651475741, -0.960491268708020283423, -0.958859048710200221356, -0.957188216109860962736, -0.955478592438183697574, -0.953730006425761136415, -0.951942293872573589498, -0.950115297521294876558, -0.948248866934137357063, -0.946342858373402905148, -0.944397134685866648591, -0.942411565191083059813, -0.940386025573669721370, -0.938320397779592883655, -0.936214569916450806625, -0.934068436157725787999, -0.931881896650953639345, -0.929654857429740056670, -0.927387230329536696843, -0.925078932907075652364, -0.922729888363349241523, -0.920340025470012420730, -0.917909278499077501636, -0.915437587155765040644, -0.912924896514370590080, -0.910371156957004292498, -0.907776324115058903624, -0.905140358813261595189, -0.902463227016165675048, -0.899744899776940036639, -0.896985353188316590376, -0.894184568335559022859, -0.891342531251319871666, -0.888459232872256998890, -0.885534668997285008926, -0.882568840247341906842, -0.879561752026556262568, -0.876513414484705269742, -0.873423842480859310192, -0.870293055548113905851, -0.867121077859315215614, -0.863907938193690477146, -0.860653669904299969802, -0.857358310886232156525, -0.854021903545468625813, -0.850644494768350279758, -0.847226135891580884381, -0.843766882672708601038, -0.840266795261030442350, -0.836725938168868735503, -0.833144380243172624728, -0.829522194637401400178, -0.825859458783650001088, -0.822156254364980407373, -0.818412667287925807395, -0.814628787655137413436, -0.810804709738146594361, -0.806940531950217611856, -0.803036356819268687782, -0.799092290960841401800, -0.795108445051100526780, -0.791084933799848361435, -0.787021875923539422170, -0.782919394118283016385, -0.778777615032822744702, -0.774596669241483377036, -0.770376691217076824278, -0.766117819303760090717, -0.761820195689839149173, -0.757483966380513637926, -0.753109281170558142523, -0.748696293616936602823, -0.744245161011347082309, -0.739756044352694758677, -0.735229108319491547663, -0.730664521242181261329, -0.726062455075389632685, -0.721423085370098915485, -0.716746591245747095767, -0.712033155362252034587, -0.707282963891961103412, -0.702496206491527078610, -0.697673076273711232906, -0.692813769779114702895, -0.687918486947839325756, -0.682987431091079228087, -0.678020808862644517838, -0.673018830230418479199, -0.667981708447749702165, -0.662909660024780595461, -0.657802904699713735422, -0.652661665410017496101, -0.647486168263572388782, -0.642276642509759513774, -0.637033320510492495071, -0.631756437711194230414, -0.626446232611719746542, -0.621102946737226402941, -0.615726824608992638014, -0.610318113715186400156, -0.604877064481584353319, -0.599403930242242892974, -0.593898967210121954393, -0.588362434447662541434, -0.582794593837318850840, -0.577195710052045814844, -0.571566050525742833992, -0.565905885423654422623, -0.560215487612728441818, -0.554495132631932548866, -0.548745098662529448608, -0.542965666498311490492, -0.537157119515795115982, -0.531319743644375623972, -0.525453827336442687395, -0.519559661537457021993, -0.513637539655988578507, -0.507687757533716602155, -0.501710613415391878251, -0.495706407918761460170, -0.489675444004456155436, -0.483618026945841027562, -0.477534464298829155284, -0.471425065871658876934, -0.465290143694634735858, -0.459130011989832332874, -0.452944987140767283784, -0.446735387662028473742, -0.440501534168875795783, -0.434243749346802558002, -0.427962357921062742583, -0.421657686626163300056, -0.415330064175321663764, -0.408979821229888672409, -0.402607290368737092671, -0.396212806057615939183, -0.389796704618470795479, -0.383359324198730346916, -0.376901004740559344802, -0.370422087950078230138, -0.363922917266549655269, -0.357403837831532152376, -0.350865196458001209011, -0.344307341599438022777, -0.337730623318886219621, -0.331135393257976833093, -0.324522004605921855207, -0.317890812068476683182, -0.311242171836871800300, -0.304576441556714043335, -0.297893980296857823437, -0.291195148518246681964, -0.284480308042725577496, -0.277749822021824315065, -0.271004054905512543536, -0.264243372410926761945, -0.257468141491069790481, -0.250678730303483176613, -0.243875508178893021593, -0.237058845589829727213, -0.230229114119222177156, -0.223386686428966881628, -0.216531936228472628081, -0.209665238243181194766, -0.202786968183064697557, -0.195897502711100153915, -0.188997219411721861059, -0.182086496759252198246, -0.175165714086311475707, -0.168235251552207464982, -0.161295490111305257361, -0.154346811481378108692, -0.147389598111939940054, -0.140424233152560174594, -0.133451100421161601344, -0.126470584372301966851, -0.119483070065440005133, -0.112488943133186625746, -0.105488589749541988533, -0.984823965981192020903E-01, -0.914707508403553909095E-01, -0.844540400837108837102E-01, -0.774326523498572825675E-01, -0.704069760428551790633E-01, -0.633773999173222898797E-01, -0.563443130465927899720E-01, -0.493081047908686267156E-01, -0.422691647653636032124E-01, -0.352278828084410232603E-01, -0.281846489497456943394E-01, -0.211398533783310883350E-01, -0.140938864107824626142E-01, -0.704713845933674648514E-02, +0.000000000000000000000, +0.704713845933674648514E-02, +0.140938864107824626142E-01, +0.211398533783310883350E-01, +0.281846489497456943394E-01, +0.352278828084410232603E-01, +0.422691647653636032124E-01, +0.493081047908686267156E-01, +0.563443130465927899720E-01, +0.633773999173222898797E-01, +0.704069760428551790633E-01, +0.774326523498572825675E-01, +0.844540400837108837102E-01, +0.914707508403553909095E-01, +0.984823965981192020903E-01, +0.105488589749541988533, +0.112488943133186625746, +0.119483070065440005133, +0.126470584372301966851, +0.133451100421161601344, +0.140424233152560174594, +0.147389598111939940054, +0.154346811481378108692, +0.161295490111305257361, +0.168235251552207464982, +0.175165714086311475707, +0.182086496759252198246, +0.188997219411721861059, +0.195897502711100153915, +0.202786968183064697557, +0.209665238243181194766, +0.216531936228472628081, +0.223386686428966881628, +0.230229114119222177156, +0.237058845589829727213, +0.243875508178893021593, +0.250678730303483176613, +0.257468141491069790481, +0.264243372410926761945, +0.271004054905512543536, +0.277749822021824315065, +0.284480308042725577496, +0.291195148518246681964, +0.297893980296857823437, +0.304576441556714043335, +0.311242171836871800300, +0.317890812068476683182, +0.324522004605921855207, +0.331135393257976833093, +0.337730623318886219621, +0.344307341599438022777, +0.350865196458001209011, +0.357403837831532152376, +0.363922917266549655269, +0.370422087950078230138, +0.376901004740559344802, +0.383359324198730346916, +0.389796704618470795479, +0.396212806057615939183, +0.402607290368737092671, +0.408979821229888672409, +0.415330064175321663764, +0.421657686626163300056, +0.427962357921062742583, +0.434243749346802558002, +0.440501534168875795783, +0.446735387662028473742, +0.452944987140767283784, +0.459130011989832332874, +0.465290143694634735858, +0.471425065871658876934, +0.477534464298829155284, +0.483618026945841027562, +0.489675444004456155436, +0.495706407918761460170, +0.501710613415391878251, +0.507687757533716602155, +0.513637539655988578507, +0.519559661537457021993, +0.525453827336442687395, +0.531319743644375623972, +0.537157119515795115982, +0.542965666498311490492, +0.548745098662529448608, +0.554495132631932548866, +0.560215487612728441818, +0.565905885423654422623, +0.571566050525742833992, +0.577195710052045814844, +0.582794593837318850840, +0.588362434447662541434, +0.593898967210121954393, +0.599403930242242892974, +0.604877064481584353319, +0.610318113715186400156, +0.615726824608992638014, +0.621102946737226402941, +0.626446232611719746542, +0.631756437711194230414, +0.637033320510492495071, +0.642276642509759513774, +0.647486168263572388782, +0.652661665410017496101, +0.657802904699713735422, +0.662909660024780595461, +0.667981708447749702165, +0.673018830230418479199, +0.678020808862644517838, +0.682987431091079228087, +0.687918486947839325756, +0.692813769779114702895, +0.697673076273711232906, +0.702496206491527078610, +0.707282963891961103412, +0.712033155362252034587, +0.716746591245747095767, +0.721423085370098915485, +0.726062455075389632685, +0.730664521242181261329, +0.735229108319491547663, +0.739756044352694758677, +0.744245161011347082309, +0.748696293616936602823, +0.753109281170558142523, +0.757483966380513637926, +0.761820195689839149173, +0.766117819303760090717, +0.770376691217076824278, +0.774596669241483377036, +0.778777615032822744702, +0.782919394118283016385, +0.787021875923539422170, +0.791084933799848361435, +0.795108445051100526780, +0.799092290960841401800, +0.803036356819268687782, +0.806940531950217611856, +0.810804709738146594361, +0.814628787655137413436, +0.818412667287925807395, +0.822156254364980407373, +0.825859458783650001088, +0.829522194637401400178, +0.833144380243172624728, +0.836725938168868735503, +0.840266795261030442350, +0.843766882672708601038, +0.847226135891580884381, +0.850644494768350279758, +0.854021903545468625813, +0.857358310886232156525, +0.860653669904299969802, +0.863907938193690477146, +0.867121077859315215614, +0.870293055548113905851, +0.873423842480859310192, +0.876513414484705269742, +0.879561752026556262568, +0.882568840247341906842, +0.885534668997285008926, +0.888459232872256998890, +0.891342531251319871666, +0.894184568335559022859, +0.896985353188316590376, +0.899744899776940036639, +0.902463227016165675048, +0.905140358813261595189, +0.907776324115058903624, +0.910371156957004292498, +0.912924896514370590080, +0.915437587155765040644, +0.917909278499077501636, +0.920340025470012420730, +0.922729888363349241523, +0.925078932907075652364, +0.927387230329536696843, +0.929654857429740056670, +0.931881896650953639345, +0.934068436157725787999, +0.936214569916450806625, +0.938320397779592883655, +0.940386025573669721370, +0.942411565191083059813, +0.944397134685866648591, +0.946342858373402905148, +0.948248866934137357063, +0.950115297521294876558, +0.951942293872573589498, +0.953730006425761136415, +0.955478592438183697574, +0.957188216109860962736, +0.958859048710200221356, +0.960491268708020283423, +0.962085061904651475741, +0.963640621569812132521, +0.965158148579915665979, +0.966637851558416567092, +0.968079947017759947964, +0.969484659502459231771, +0.970852221732792443256, +0.972182874748581796578, +0.973476868052506926773, +0.974734459752402667761, +0.975955916702011753129, +0.977141514639705714156, +0.978291538324758539526, +0.979406281670862683806, +0.980486047876721339416, +0.981531149553740106867, +0.982541908851080604251, +0.983518657578632728762, +0.984461737328814534596, +0.985371499598520371114, +0.986248305913007552681, +0.987092527954034067190, +0.987904547695124280467, +0.988684757547429479939, +0.989433560520240838716, +0.990151370400770159181, +0.990838611958294243677, +0.991495721178106132399, +0.992123145530863117683, +0.992721344282788615328, +0.993290788851684966211, +0.993831963212755022209, +0.994345364356723405931, +0.994831502800621000519, +0.995290903148810302261, +0.995724104698407188509, +0.996131662079315037786, +0.996514145914890273849, +0.996872143485260161299, +0.997206259372221959076, +0.997517116063472399965, +0.997805354495957274562, +0.998071634524930323302, +0.998316635318407392531, +0.998541055697167906027, +0.998745614468095114704, +0.998931050830810562236, +0.999098124967667597662, +0.999247618943342473599, +0.999380338025023581928, +0.999497112467187190535, +0.999598799671910683252, +0.999686286448317731776, +0.999760490924432047330, +0.999822363679787739196, +0.999872888120357611938, +0.999913081144678282800, +0.999943996207054375764, +0.999966730098486276883, +0.999982430354891598580, +0.999992298136257588028, +0.999997596379748464620, +0.999999672956734384381 }; if ( n == 1 ) { webbur::r8vec_copy ( n, x_001, x ); } else if ( n == 3 ) { webbur::r8vec_copy ( n, x_003, x ); } else if ( n == 7 ) { webbur::r8vec_copy ( n, x_007, x ); } else if ( n == 15 ) { webbur::r8vec_copy ( n, x_015, x ); } else if ( n == 31 ) { webbur::r8vec_copy ( n, x_031, x ); } else if ( n == 63 ) { webbur::r8vec_copy ( n, x_063, x ); } else if ( n == 127 ) { webbur::r8vec_copy ( n, x_127, x ); } else if ( n == 255 ) { webbur::r8vec_copy ( n, x_255, x ); } else if ( n == 511 ) { webbur::r8vec_copy ( n, x_511, x ); } else { std::cerr << "\n"; std::cerr << "PATTERSON_LOOKUP_POINTS - Fatal error!\n"; std::cerr << " Unexpected value of N = " << n << "\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void patterson_lookup_points_np ( int n, int np, double p[], double x[] ) //****************************************************************************80 // // Purpose: // // PATTERSON_LOOKUP_POINTS_NP looks up Patterson quadrature points. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // The rule is defined on [-1,1], // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 December 2009 // // Author: // // John Burkardt // // Reference: // // Prem Kythe, Michael Schaeferkotter, // Handbook of Computational Methods for Integration, // Chapman and Hall, 2004, // ISBN: 1-58488-428-2, // LC: QA299.3.K98. // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // Legal values are 1, 3, 7, 15, 31, 63, 127, 255 and 511. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double X[N], the abscissas. // { patterson_lookup_points ( n, x ); return; } //****************************************************************************80 void patterson_lookup_weights ( int n, double w[] ) //****************************************************************************80 // // Purpose: // // PATTERSON_LOOKUP_WEIGHTS looks up Patterson quadrature weights. // // Discussion: // // The allowed orders are 1, 3, 7, 15, 31, 63, 127, 255 and 511. // // The weights are positive, symmetric and should sum to 2. // // The user must preallocate space for the output array W. // // These rules constitute a nested family. The rules can integrate exactly // any polynomial of degree 1, 5, 11, 23, 47, 95, 191, 383 or 767, // respectively. // // The data for N = 511 was supplied by Dirk Laurie, and is derived // from a NAG Library function d01arf. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2011 // // Author: // // John Burkardt // // Reference: // // Prem Kythe, Michael Schaeferkotter, // Handbook of Computational Methods for Integration, // Chapman and Hall, 2004, // ISBN: 1-58488-428-2, // LC: QA299.3.K98. // // NAG Library Documentation, // D01ARF, // The Numerical Algorithms Group. // // Thomas Patterson, // The Optimal Addition of Points to Quadrature Formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order. // Legal values are 1, 3, 7, 15, 31, 63, 127, 255 or 511. // // Output, double W[N], the weights. // { static double w_001[1] = { 2.0 }; static double w_003[3] = { 0.555555555555555555556, 0.888888888888888888889, 0.555555555555555555556 }; static double w_007[7] = { 0.104656226026467265194, 0.268488089868333440729, 0.401397414775962222905, 0.450916538658474142345, 0.401397414775962222905, 0.268488089868333440729, 0.104656226026467265194 }; static double w_015[15] = { 0.0170017196299402603390, 0.0516032829970797396969, 0.0929271953151245376859, 0.134415255243784220360, 0.171511909136391380787, 0.200628529376989021034, 0.219156858401587496404, 0.225510499798206687386, 0.219156858401587496404, 0.200628529376989021034, 0.171511909136391380787, 0.134415255243784220360, 0.0929271953151245376859, 0.0516032829970797396969, 0.0170017196299402603390 }; static double w_031[31] = { 0.00254478079156187441540, 0.00843456573932110624631, 0.0164460498543878109338, 0.0258075980961766535646, 0.0359571033071293220968, 0.0464628932617579865414, 0.0569795094941233574122, 0.0672077542959907035404, 0.0768796204990035310427, 0.0857559200499903511542, 0.0936271099812644736167, 0.100314278611795578771, 0.105669893580234809744, 0.109578421055924638237, 0.111956873020953456880, 0.112755256720768691607, 0.111956873020953456880, 0.109578421055924638237, 0.105669893580234809744, 0.100314278611795578771, 0.0936271099812644736167, 0.0857559200499903511542, 0.0768796204990035310427, 0.0672077542959907035404, 0.0569795094941233574122, 0.0464628932617579865414, 0.0359571033071293220968, 0.0258075980961766535646, 0.0164460498543878109338, 0.00843456573932110624631, 0.00254478079156187441540 }; static double w_063[63] = { 0.000363221481845530659694, 0.00126515655623006801137, 0.00257904979468568827243, 0.00421763044155885483908, 0.00611550682211724633968, 0.00822300795723592966926, 0.0104982469096213218983, 0.0129038001003512656260, 0.0154067504665594978021, 0.0179785515681282703329, 0.0205942339159127111492, 0.0232314466399102694433, 0.0258696793272147469108, 0.0284897547458335486125, 0.0310735511116879648799, 0.0336038771482077305417, 0.0360644327807825726401, 0.0384398102494555320386, 0.0407155101169443189339, 0.0428779600250077344929, 0.0449145316536321974143, 0.0468135549906280124026, 0.0485643304066731987159, 0.0501571393058995374137, 0.0515832539520484587768, 0.0528349467901165198621, 0.0539054993352660639269, 0.0547892105279628650322, 0.0554814043565593639878, 0.0559784365104763194076, 0.0562776998312543012726, 0.0563776283603847173877, 0.0562776998312543012726, 0.0559784365104763194076, 0.0554814043565593639878, 0.0547892105279628650322, 0.0539054993352660639269, 0.0528349467901165198621, 0.0515832539520484587768, 0.0501571393058995374137, 0.0485643304066731987159, 0.0468135549906280124026, 0.0449145316536321974143, 0.0428779600250077344929, 0.0407155101169443189339, 0.0384398102494555320386, 0.0360644327807825726401, 0.0336038771482077305417, 0.0310735511116879648799, 0.0284897547458335486125, 0.0258696793272147469108, 0.0232314466399102694433, 0.0205942339159127111492, 0.0179785515681282703329, 0.0154067504665594978021, 0.0129038001003512656260, 0.0104982469096213218983, 0.00822300795723592966926, 0.00611550682211724633968, 0.00421763044155885483908, 0.00257904979468568827243, 0.00126515655623006801137, 0.000363221481845530659694 }; static double w_127[127] = { 0.0000505360952078625176247, 0.000180739564445388357820, 0.000377746646326984660274, 0.000632607319362633544219, 0.000938369848542381500794, 0.00128952408261041739210, 0.00168114286542146990631, 0.00210881524572663287933, 0.00256876494379402037313, 0.00305775341017553113613, 0.00357289278351729964938, 0.00411150397865469304717, 0.00467105037211432174741, 0.00524912345480885912513, 0.00584344987583563950756, 0.00645190005017573692280, 0.00707248999543355546805, 0.00770337523327974184817, 0.00834283875396815770558, 0.00898927578406413572328, 0.00964117772970253669530, 0.0102971169579563555237, 0.0109557333878379016480, 0.0116157233199551347270, 0.0122758305600827700870, 0.0129348396636073734547, 0.0135915710097655467896, 0.0142448773729167743063, 0.0148936416648151820348, 0.0155367755558439824399, 0.0161732187295777199419, 0.0168019385741038652709, 0.0174219301594641737472, 0.0180322163903912863201, 0.0186318482561387901863, 0.0192199051247277660193, 0.0197954950480974994880, 0.0203577550584721594669, 0.0209058514458120238522, 0.0214389800125038672465, 0.0219563663053178249393, 0.0224572658268160987071, 0.0229409642293877487608, 0.0234067774953140062013, 0.0238540521060385400804, 0.0242821652033365993580, 0.0246905247444876769091, 0.0250785696529497687068, 0.0254457699654647658126, 0.0257916269760242293884, 0.0261156733767060976805, 0.0264174733950582599310, 0.0266966229274503599062, 0.0269527496676330319634, 0.0271855132296247918192, 0.0273946052639814325161, 0.0275797495664818730349, 0.0277407021782796819939, 0.0278772514766137016085, 0.0279892182552381597038, 0.0280764557938172466068, 0.0281388499156271506363, 0.0281763190330166021307, 0.0281888141801923586938, 0.0281763190330166021307, 0.0281388499156271506363, 0.0280764557938172466068, 0.0279892182552381597038, 0.0278772514766137016085, 0.0277407021782796819939, 0.0275797495664818730349, 0.0273946052639814325161, 0.0271855132296247918192, 0.0269527496676330319634, 0.0266966229274503599062, 0.0264174733950582599310, 0.0261156733767060976805, 0.0257916269760242293884, 0.0254457699654647658126, 0.0250785696529497687068, 0.0246905247444876769091, 0.0242821652033365993580, 0.0238540521060385400804, 0.0234067774953140062013, 0.0229409642293877487608, 0.0224572658268160987071, 0.0219563663053178249393, 0.0214389800125038672465, 0.0209058514458120238522, 0.0203577550584721594669, 0.0197954950480974994880, 0.0192199051247277660193, 0.0186318482561387901863, 0.0180322163903912863201, 0.0174219301594641737472, 0.0168019385741038652709, 0.0161732187295777199419, 0.0155367755558439824399, 0.0148936416648151820348, 0.0142448773729167743063, 0.0135915710097655467896, 0.0129348396636073734547, 0.0122758305600827700870, 0.0116157233199551347270, 0.0109557333878379016480, 0.0102971169579563555237, 0.00964117772970253669530, 0.00898927578406413572328, 0.00834283875396815770558, 0.00770337523327974184817, 0.00707248999543355546805, 0.00645190005017573692280, 0.00584344987583563950756, 0.00524912345480885912513, 0.00467105037211432174741, 0.00411150397865469304717, 0.00357289278351729964938, 0.00305775341017553113613, 0.00256876494379402037313, 0.00210881524572663287933, 0.00168114286542146990631, 0.00128952408261041739210, 0.000938369848542381500794, 0.000632607319362633544219, 0.000377746646326984660274, 0.000180739564445388357820, 0.0000505360952078625176247 }; static double w_255[255] = { 0.69379364324108267170E-05, 0.25157870384280661489E-04, 0.53275293669780613125E-04, 0.90372734658751149261E-04, 0.13575491094922871973E-03, 0.18887326450650491366E-03, 0.24921240048299729402E-03, 0.31630366082226447689E-03, 0.38974528447328229322E-03, 0.46918492424785040975E-03, 0.55429531493037471492E-03, 0.64476204130572477933E-03, 0.74028280424450333046E-03, 0.84057143271072246365E-03, 0.94536151685852538246E-03, 0.10544076228633167722E-02, 0.11674841174299594077E-02, 0.12843824718970101768E-02, 0.14049079956551446427E-02, 0.15288767050877655684E-02, 0.16561127281544526052E-02, 0.17864463917586498247E-02, 0.19197129710138724125E-02, 0.20557519893273465236E-02, 0.21944069253638388388E-02, 0.23355251860571608737E-02, 0.24789582266575679307E-02, 0.26245617274044295626E-02, 0.27721957645934509940E-02, 0.29217249379178197538E-02, 0.30730184347025783234E-02, 0.32259500250878684614E-02, 0.33803979910869203823E-02, 0.35362449977167777340E-02, 0.36933779170256508183E-02, 0.38516876166398709241E-02, 0.40110687240750233989E-02, 0.41714193769840788528E-02, 0.43326409680929828545E-02, 0.44946378920320678616E-02, 0.46573172997568547773E-02, 0.48205888648512683476E-02, 0.49843645647655386012E-02, 0.51485584789781777618E-02, 0.53130866051870565663E-02, 0.54778666939189508240E-02, 0.56428181013844441585E-02, 0.58078616599775673635E-02, 0.59729195655081658049E-02, 0.61379152800413850435E-02, 0.63027734490857587172E-02, 0.64674198318036867274E-02, 0.66317812429018878941E-02, 0.67957855048827733948E-02, 0.69593614093904229394E-02, 0.71224386864583871532E-02, 0.72849479805538070639E-02, 0.74468208324075910174E-02, 0.76079896657190565832E-02, 0.77683877779219912200E-02, 0.79279493342948491103E-02, 0.80866093647888599710E-02, 0.82443037630328680306E-02, 0.84009692870519326354E-02, 0.85565435613076896192E-02, 0.87109650797320868736E-02, 0.88641732094824942641E-02, 0.90161081951956431600E-02, 0.91667111635607884067E-02, 0.93159241280693950932E-02, 0.94636899938300652943E-02, 0.96099525623638830097E-02, 0.97546565363174114611E-02, 0.98977475240487497440E-02, 0.10039172044056840798E-01, 0.10178877529236079733E-01, 0.10316812330947621682E-01, 0.10452925722906011926E-01, 0.10587167904885197931E-01, 0.10719490006251933623E-01, 0.10849844089337314099E-01, 0.10978183152658912470E-01, 0.11104461134006926537E-01, 0.11228632913408049354E-01, 0.11350654315980596602E-01, 0.11470482114693874380E-01, 0.11588074033043952568E-01, 0.11703388747657003101E-01, 0.11816385890830235763E-01, 0.11927026053019270040E-01, 0.12035270785279562630E-01, 0.12141082601668299679E-01, 0.12244424981611985899E-01, 0.12345262372243838455E-01, 0.12443560190714035263E-01, 0.12539284826474884353E-01, 0.12632403643542078765E-01, 0.12722884982732382906E-01, 0.12810698163877361967E-01, 0.12895813488012114694E-01, 0.12978202239537399286E-01, 0.13057836688353048840E-01, 0.13134690091960152836E-01, 0.13208736697529129966E-01, 0.13279951743930530650E-01, 0.13348311463725179953E-01, 0.13413793085110098513E-01, 0.13476374833816515982E-01, 0.13536035934956213614E-01, 0.13592756614812395910E-01, 0.13646518102571291428E-01, 0.13697302631990716258E-01, 0.13745093443001896632E-01, 0.13789874783240936517E-01, 0.13831631909506428676E-01, 0.13870351089139840997E-01, 0.13906019601325461264E-01, 0.13938625738306850804E-01, 0.13968158806516938516E-01, 0.13994609127619079852E-01, 0.14017968039456608810E-01, 0.14038227896908623303E-01, 0.14055382072649964277E-01, 0.14069424957813575318E-01, 0.14080351962553661325E-01, 0.14088159516508301065E-01, 0.14092845069160408355E-01, 0.14094407090096179347E-01, 0.14092845069160408355E-01, 0.14088159516508301065E-01, 0.14080351962553661325E-01, 0.14069424957813575318E-01, 0.14055382072649964277E-01, 0.14038227896908623303E-01, 0.14017968039456608810E-01, 0.13994609127619079852E-01, 0.13968158806516938516E-01, 0.13938625738306850804E-01, 0.13906019601325461264E-01, 0.13870351089139840997E-01, 0.13831631909506428676E-01, 0.13789874783240936517E-01, 0.13745093443001896632E-01, 0.13697302631990716258E-01, 0.13646518102571291428E-01, 0.13592756614812395910E-01, 0.13536035934956213614E-01, 0.13476374833816515982E-01, 0.13413793085110098513E-01, 0.13348311463725179953E-01, 0.13279951743930530650E-01, 0.13208736697529129966E-01, 0.13134690091960152836E-01, 0.13057836688353048840E-01, 0.12978202239537399286E-01, 0.12895813488012114694E-01, 0.12810698163877361967E-01, 0.12722884982732382906E-01, 0.12632403643542078765E-01, 0.12539284826474884353E-01, 0.12443560190714035263E-01, 0.12345262372243838455E-01, 0.12244424981611985899E-01, 0.12141082601668299679E-01, 0.12035270785279562630E-01, 0.11927026053019270040E-01, 0.11816385890830235763E-01, 0.11703388747657003101E-01, 0.11588074033043952568E-01, 0.11470482114693874380E-01, 0.11350654315980596602E-01, 0.11228632913408049354E-01, 0.11104461134006926537E-01, 0.10978183152658912470E-01, 0.10849844089337314099E-01, 0.10719490006251933623E-01, 0.10587167904885197931E-01, 0.10452925722906011926E-01, 0.10316812330947621682E-01, 0.10178877529236079733E-01, 0.10039172044056840798E-01, 0.98977475240487497440E-02, 0.97546565363174114611E-02, 0.96099525623638830097E-02, 0.94636899938300652943E-02, 0.93159241280693950932E-02, 0.91667111635607884067E-02, 0.90161081951956431600E-02, 0.88641732094824942641E-02, 0.87109650797320868736E-02, 0.85565435613076896192E-02, 0.84009692870519326354E-02, 0.82443037630328680306E-02, 0.80866093647888599710E-02, 0.79279493342948491103E-02, 0.77683877779219912200E-02, 0.76079896657190565832E-02, 0.74468208324075910174E-02, 0.72849479805538070639E-02, 0.71224386864583871532E-02, 0.69593614093904229394E-02, 0.67957855048827733948E-02, 0.66317812429018878941E-02, 0.64674198318036867274E-02, 0.63027734490857587172E-02, 0.61379152800413850435E-02, 0.59729195655081658049E-02, 0.58078616599775673635E-02, 0.56428181013844441585E-02, 0.54778666939189508240E-02, 0.53130866051870565663E-02, 0.51485584789781777618E-02, 0.49843645647655386012E-02, 0.48205888648512683476E-02, 0.46573172997568547773E-02, 0.44946378920320678616E-02, 0.43326409680929828545E-02, 0.41714193769840788528E-02, 0.40110687240750233989E-02, 0.38516876166398709241E-02, 0.36933779170256508183E-02, 0.35362449977167777340E-02, 0.33803979910869203823E-02, 0.32259500250878684614E-02, 0.30730184347025783234E-02, 0.29217249379178197538E-02, 0.27721957645934509940E-02, 0.26245617274044295626E-02, 0.24789582266575679307E-02, 0.23355251860571608737E-02, 0.21944069253638388388E-02, 0.20557519893273465236E-02, 0.19197129710138724125E-02, 0.17864463917586498247E-02, 0.16561127281544526052E-02, 0.15288767050877655684E-02, 0.14049079956551446427E-02, 0.12843824718970101768E-02, 0.11674841174299594077E-02, 0.10544076228633167722E-02, 0.94536151685852538246E-03, 0.84057143271072246365E-03, 0.74028280424450333046E-03, 0.64476204130572477933E-03, 0.55429531493037471492E-03, 0.46918492424785040975E-03, 0.38974528447328229322E-03, 0.31630366082226447689E-03, 0.24921240048299729402E-03, 0.18887326450650491366E-03, 0.13575491094922871973E-03, 0.90372734658751149261E-04, 0.53275293669780613125E-04, 0.25157870384280661489E-04, 0.69379364324108267170E-05 }; static double w_511[511] = { 0.945715933950007048827E-06, 0.345456507169149134898E-05, 0.736624069102321668857E-05, 0.125792781889592743525E-04, 0.190213681905875816679E-04, 0.266376412339000901358E-04, 0.353751372055189588628E-04, 0.451863674126296143105E-04, 0.560319507856164252140E-04, 0.678774554733972416227E-04, 0.806899228014035293851E-04, 0.944366322532705527066E-04, 0.109085545645741522051E-03, 0.124606200241498368482E-03, 0.140970302204104791413E-03, 0.158151830411132242924E-03, 0.176126765545083195474E-03, 0.194872642236641146532E-03, 0.214368090034216937149E-03, 0.234592462123925204879E-03, 0.255525589595236862014E-03, 0.277147657465187357459E-03, 0.299439176850911730874E-03, 0.322381020652862389664E-03, 0.345954492129903871350E-03, 0.370141402122251665232E-03, 0.394924138246873704434E-03, 0.420285716355361231823E-03, 0.446209810101403247488E-03, 0.472680758429262691232E-03, 0.499683553312800484519E-03, 0.527203811431658386125E-03, 0.555227733977307579715E-03, 0.583742058714979703847E-03, 0.612734008012225209294E-03, 0.642191235948505088403E-03, 0.672101776960108194646E-03, 0.702453997827572321358E-03, 0.733236554224767912055E-03, 0.764438352543882784191E-03, 0.796048517297550871506E-03, 0.828056364077226302608E-03, 0.860451377808527848128E-03, 0.893223195879324912340E-03, 0.926361595613111283368E-03, 0.959856485506936206261E-03, 0.993697899638760857945E-03, 0.102787599466367326179E-02, 0.106238104885340071375E-02, 0.109720346268191941940E-02, 0.113233376051597664917E-02, 0.116776259302858043685E-02, 0.120348074001265964881E-02, 0.123947911332878396534E-02, 0.127574875977346947345E-02, 0.131228086370221478128E-02, 0.134906674928353113127E-02, 0.138609788229672549700E-02, 0.142336587141720519900E-02, 0.146086246895890987689E-02, 0.149857957106456636214E-02, 0.153650921735128916170E-02, 0.157464359003212166189E-02, 0.161297501254393423070E-02, 0.165149594771914570655E-02, 0.169019899554346019117E-02, 0.172907689054461607168E-02, 0.176812249885838886701E-02, 0.180732881501808930079E-02, 0.184668895851282540913E-02, 0.188619617015808475394E-02, 0.192584380831993546204E-02, 0.196562534503150547732E-02, 0.200553436203751169944E-02, 0.204556454679958293446E-02, 0.208570968849203942640E-02, 0.212596367401472533045E-02, 0.216632048404649142727E-02, 0.220677418916003329194E-02, 0.224731894601603393082E-02, 0.228794899365195972378E-02, 0.232865864987842738864E-02, 0.236944230779380495146E-02, 0.241029443242563417382E-02, 0.245120955750556483923E-02, 0.249218228238276930060E-02, 0.253320726907925325750E-02, 0.257427923948908888092E-02, 0.261539297272236109225E-02, 0.265654330259352828314E-02, 0.269772511525294586667E-02, 0.273893334695947541201E-02, 0.278016298199139435045E-02, 0.282140905069222207923E-02, 0.286266662764757868253E-02, 0.290393082998878368175E-02, 0.294519681581857582284E-02, 0.298645978275408290247E-02, 0.302771496658198544480E-02, 0.306895764002069252174E-02, 0.311018311158427546158E-02, 0.315138672454287935858E-02, 0.319256385597434736790E-02, 0.323370991590184336368E-02, 0.327482034651233969564E-02, 0.331589062145094394706E-02, 0.335691624518616761342E-02, 0.339789275244138669739E-02, 0.343881570768790591876E-02, 0.347968070469521146972E-02, 0.352048336613417922682E-02, 0.356121934322919357659E-02, 0.360188431545532431869E-02, 0.364247399027690353194E-02, 0.368298410292403911967E-02, 0.372341041620379550870E-02, 0.376374872034296338241E-02, 0.380399483285952829161E-02, 0.384414459846013158917E-02, 0.388419388896099560998E-02, 0.392413860322995774660E-02, 0.396397466714742455513E-02, 0.400369803358421688562E-02, 0.404330468239442998549E-02, 0.408279062042157838350E-02, 0.412215188151643401528E-02, 0.416138452656509745764E-02, 0.420048464352596631772E-02, 0.423944834747438184434E-02, 0.427827178065384480959E-02, 0.431695111253279479928E-02, 0.435548253986604343679E-02, 0.439386228676004195260E-02, 0.443208660474124713206E-02, 0.447015177282692726900E-02, 0.450805409759782158001E-02, 0.454578991327213285488E-02, 0.458335558178039420335E-02, 0.462074749284080687482E-02, 0.465796206403469754658E-02, 0.469499574088179046532E-02, 0.473184499691503264714E-02, 0.476850633375474925263E-02, 0.480497628118194150483E-02, 0.484125139721057135214E-02, 0.487732826815870573054E-02, 0.491320350871841897367E-02, 0.494887376202437487201E-02, 0.498433569972103029914E-02, 0.501958602202842039909E-02, 0.505462145780650125058E-02, 0.508943876461803986674E-02, 0.512403472879005351831E-02, 0.515840616547381084096E-02, 0.519254991870341614863E-02, 0.522646286145300596306E-02, 0.526014189569259311205E-02, 0.529358395244259896547E-02, 0.532678599182711857974E-02, 0.535974500312596681161E-02, 0.539245800482555593606E-02, 0.542492204466865704951E-02, 0.545713419970309863995E-02, 0.548909157632945623482E-02, 0.552079131034778706457E-02, 0.555223056700346326850E-02, 0.558340654103215637610E-02, 0.561431645670402467678E-02, 0.564495756786715368885E-02, 0.567532715799029830087E-02, 0.570542254020497332312E-02, 0.573524105734693719020E-02, 0.576478008199711142954E-02, 0.579403701652197628421E-02, 0.582300929311348057702E-02, 0.585169437382850155033E-02, 0.588008975062788803205E-02, 0.590819294541511788161E-02, 0.593600151007459827614E-02, 0.596351302650963502011E-02, 0.599072510668009471472E-02, 0.601763539263978131522E-02, 0.604424155657354634589E-02, 0.607054130083414983949E-02, 0.609653235797888692923E-02, 0.612221249080599294931E-02, 0.614757949239083790214E-02, 0.617263118612191922727E-02, 0.619736542573665996342E-02, 0.622178009535701763157E-02, 0.624587310952490748541E-02, 0.626964241323744217671E-02, 0.629308598198198836688E-02, 0.631620182177103938227E-02, 0.633898796917690165912E-02, 0.636144249136619145314E-02, 0.638356348613413709795E-02, 0.640534908193868098342E-02, 0.642679743793437438922E-02, 0.644790674400605734710E-02, 0.646867522080231481688E-02, 0.648910111976869964292E-02, 0.650918272318071200827E-02, 0.652891834417652442012E-02, 0.654830632678944064054E-02, 0.656734504598007641819E-02, 0.658603290766824937794E-02, 0.660436834876456498276E-02, 0.662234983720168509457E-02, 0.663997587196526532519E-02, 0.665724498312454708217E-02, 0.667415573186258997654E-02, 0.669070671050613006584E-02, 0.670689654255504925648E-02, 0.672272388271144108036E-02, 0.673818741690825799086E-02, 0.675328586233752529078E-02, 0.676801796747810680683E-02, 0.678238251212300746082E-02, 0.679637830740619795480E-02, 0.681000419582894688374E-02, 0.682325905128564571420E-02, 0.683614177908911221841E-02, 0.684865131599535812903E-02, 0.686078663022780697951E-02, 0.687254672150094831613E-02, 0.688393062104341470995E-02, 0.689493739162046825872E-02, 0.690556612755588354803E-02, 0.691581595475321433825E-02, 0.692568603071643155621E-02, 0.693517554456992049848E-02, 0.694428371707782549438E-02, 0.695300980066273063177E-02, 0.696135307942366551493E-02, 0.696931286915342540213E-02, 0.697688851735519545845E-02, 0.698407940325846925786E-02, 0.699088493783425207545E-02, 0.699730456380953992594E-02, 0.700333775568106572820E-02, 0.700898401972830440494E-02, 0.701424289402572916425E-02, 0.701911394845431165171E-02, 0.702359678471225911031E-02, 0.702769103632498213858E-02, 0.703139636865428709508E-02, 0.703471247890678765907E-02, 0.703763909614153052319E-02, 0.704017598127683066242E-02, 0.704232292709631209597E-02, 0.704407975825415053266E-02, 0.704544633127951476780E-02, 0.704642253458020417748E-02, 0.704700828844548013730E-02, 0.704720354504808967346E-02, 0.704700828844548013730E-02, 0.704642253458020417748E-02, 0.704544633127951476780E-02, 0.704407975825415053266E-02, 0.704232292709631209597E-02, 0.704017598127683066242E-02, 0.703763909614153052319E-02, 0.703471247890678765907E-02, 0.703139636865428709508E-02, 0.702769103632498213858E-02, 0.702359678471225911031E-02, 0.701911394845431165171E-02, 0.701424289402572916425E-02, 0.700898401972830440494E-02, 0.700333775568106572820E-02, 0.699730456380953992594E-02, 0.699088493783425207545E-02, 0.698407940325846925786E-02, 0.697688851735519545845E-02, 0.696931286915342540213E-02, 0.696135307942366551493E-02, 0.695300980066273063177E-02, 0.694428371707782549438E-02, 0.693517554456992049848E-02, 0.692568603071643155621E-02, 0.691581595475321433825E-02, 0.690556612755588354803E-02, 0.689493739162046825872E-02, 0.688393062104341470995E-02, 0.687254672150094831613E-02, 0.686078663022780697951E-02, 0.684865131599535812903E-02, 0.683614177908911221841E-02, 0.682325905128564571420E-02, 0.681000419582894688374E-02, 0.679637830740619795480E-02, 0.678238251212300746082E-02, 0.676801796747810680683E-02, 0.675328586233752529078E-02, 0.673818741690825799086E-02, 0.672272388271144108036E-02, 0.670689654255504925648E-02, 0.669070671050613006584E-02, 0.667415573186258997654E-02, 0.665724498312454708217E-02, 0.663997587196526532519E-02, 0.662234983720168509457E-02, 0.660436834876456498276E-02, 0.658603290766824937794E-02, 0.656734504598007641819E-02, 0.654830632678944064054E-02, 0.652891834417652442012E-02, 0.650918272318071200827E-02, 0.648910111976869964292E-02, 0.646867522080231481688E-02, 0.644790674400605734710E-02, 0.642679743793437438922E-02, 0.640534908193868098342E-02, 0.638356348613413709795E-02, 0.636144249136619145314E-02, 0.633898796917690165912E-02, 0.631620182177103938227E-02, 0.629308598198198836688E-02, 0.626964241323744217671E-02, 0.624587310952490748541E-02, 0.622178009535701763157E-02, 0.619736542573665996342E-02, 0.617263118612191922727E-02, 0.614757949239083790214E-02, 0.612221249080599294931E-02, 0.609653235797888692923E-02, 0.607054130083414983949E-02, 0.604424155657354634589E-02, 0.601763539263978131522E-02, 0.599072510668009471472E-02, 0.596351302650963502011E-02, 0.593600151007459827614E-02, 0.590819294541511788161E-02, 0.588008975062788803205E-02, 0.585169437382850155033E-02, 0.582300929311348057702E-02, 0.579403701652197628421E-02, 0.576478008199711142954E-02, 0.573524105734693719020E-02, 0.570542254020497332312E-02, 0.567532715799029830087E-02, 0.564495756786715368885E-02, 0.561431645670402467678E-02, 0.558340654103215637610E-02, 0.555223056700346326850E-02, 0.552079131034778706457E-02, 0.548909157632945623482E-02, 0.545713419970309863995E-02, 0.542492204466865704951E-02, 0.539245800482555593606E-02, 0.535974500312596681161E-02, 0.532678599182711857974E-02, 0.529358395244259896547E-02, 0.526014189569259311205E-02, 0.522646286145300596306E-02, 0.519254991870341614863E-02, 0.515840616547381084096E-02, 0.512403472879005351831E-02, 0.508943876461803986674E-02, 0.505462145780650125058E-02, 0.501958602202842039909E-02, 0.498433569972103029914E-02, 0.494887376202437487201E-02, 0.491320350871841897367E-02, 0.487732826815870573054E-02, 0.484125139721057135214E-02, 0.480497628118194150483E-02, 0.476850633375474925263E-02, 0.473184499691503264714E-02, 0.469499574088179046532E-02, 0.465796206403469754658E-02, 0.462074749284080687482E-02, 0.458335558178039420335E-02, 0.454578991327213285488E-02, 0.450805409759782158001E-02, 0.447015177282692726900E-02, 0.443208660474124713206E-02, 0.439386228676004195260E-02, 0.435548253986604343679E-02, 0.431695111253279479928E-02, 0.427827178065384480959E-02, 0.423944834747438184434E-02, 0.420048464352596631772E-02, 0.416138452656509745764E-02, 0.412215188151643401528E-02, 0.408279062042157838350E-02, 0.404330468239442998549E-02, 0.400369803358421688562E-02, 0.396397466714742455513E-02, 0.392413860322995774660E-02, 0.388419388896099560998E-02, 0.384414459846013158917E-02, 0.380399483285952829161E-02, 0.376374872034296338241E-02, 0.372341041620379550870E-02, 0.368298410292403911967E-02, 0.364247399027690353194E-02, 0.360188431545532431869E-02, 0.356121934322919357659E-02, 0.352048336613417922682E-02, 0.347968070469521146972E-02, 0.343881570768790591876E-02, 0.339789275244138669739E-02, 0.335691624518616761342E-02, 0.331589062145094394706E-02, 0.327482034651233969564E-02, 0.323370991590184336368E-02, 0.319256385597434736790E-02, 0.315138672454287935858E-02, 0.311018311158427546158E-02, 0.306895764002069252174E-02, 0.302771496658198544480E-02, 0.298645978275408290247E-02, 0.294519681581857582284E-02, 0.290393082998878368175E-02, 0.286266662764757868253E-02, 0.282140905069222207923E-02, 0.278016298199139435045E-02, 0.273893334695947541201E-02, 0.269772511525294586667E-02, 0.265654330259352828314E-02, 0.261539297272236109225E-02, 0.257427923948908888092E-02, 0.253320726907925325750E-02, 0.249218228238276930060E-02, 0.245120955750556483923E-02, 0.241029443242563417382E-02, 0.236944230779380495146E-02, 0.232865864987842738864E-02, 0.228794899365195972378E-02, 0.224731894601603393082E-02, 0.220677418916003329194E-02, 0.216632048404649142727E-02, 0.212596367401472533045E-02, 0.208570968849203942640E-02, 0.204556454679958293446E-02, 0.200553436203751169944E-02, 0.196562534503150547732E-02, 0.192584380831993546204E-02, 0.188619617015808475394E-02, 0.184668895851282540913E-02, 0.180732881501808930079E-02, 0.176812249885838886701E-02, 0.172907689054461607168E-02, 0.169019899554346019117E-02, 0.165149594771914570655E-02, 0.161297501254393423070E-02, 0.157464359003212166189E-02, 0.153650921735128916170E-02, 0.149857957106456636214E-02, 0.146086246895890987689E-02, 0.142336587141720519900E-02, 0.138609788229672549700E-02, 0.134906674928353113127E-02, 0.131228086370221478128E-02, 0.127574875977346947345E-02, 0.123947911332878396534E-02, 0.120348074001265964881E-02, 0.116776259302858043685E-02, 0.113233376051597664917E-02, 0.109720346268191941940E-02, 0.106238104885340071375E-02, 0.102787599466367326179E-02, 0.993697899638760857945E-03, 0.959856485506936206261E-03, 0.926361595613111283368E-03, 0.893223195879324912340E-03, 0.860451377808527848128E-03, 0.828056364077226302608E-03, 0.796048517297550871506E-03, 0.764438352543882784191E-03, 0.733236554224767912055E-03, 0.702453997827572321358E-03, 0.672101776960108194646E-03, 0.642191235948505088403E-03, 0.612734008012225209294E-03, 0.583742058714979703847E-03, 0.555227733977307579715E-03, 0.527203811431658386125E-03, 0.499683553312800484519E-03, 0.472680758429262691232E-03, 0.446209810101403247488E-03, 0.420285716355361231823E-03, 0.394924138246873704434E-03, 0.370141402122251665232E-03, 0.345954492129903871350E-03, 0.322381020652862389664E-03, 0.299439176850911730874E-03, 0.277147657465187357459E-03, 0.255525589595236862014E-03, 0.234592462123925204879E-03, 0.214368090034216937149E-03, 0.194872642236641146532E-03, 0.176126765545083195474E-03, 0.158151830411132242924E-03, 0.140970302204104791413E-03, 0.124606200241498368482E-03, 0.109085545645741522051E-03, 0.944366322532705527066E-04, 0.806899228014035293851E-04, 0.678774554733972416227E-04, 0.560319507856164252140E-04, 0.451863674126296143105E-04, 0.353751372055189588628E-04, 0.266376412339000901358E-04, 0.190213681905875816679E-04, 0.125792781889592743525E-04, 0.736624069102321668857E-05, 0.345456507169149134898E-05, 0.945715933950007048827E-06, }; if ( n == 1 ) { webbur::r8vec_copy ( n, w_001, w ); } else if ( n == 3 ) { webbur::r8vec_copy ( n, w_003, w ); } else if ( n == 7 ) { webbur::r8vec_copy ( n, w_007, w ); } else if ( n == 15 ) { webbur::r8vec_copy ( n, w_015, w ); } else if ( n == 31 ) { webbur::r8vec_copy ( n, w_031, w ); } else if ( n == 63 ) { webbur::r8vec_copy ( n, w_063, w ); } else if ( n == 127 ) { webbur::r8vec_copy ( n, w_127, w ); } else if ( n == 255 ) { webbur::r8vec_copy ( n, w_255, w ); } else if ( n == 511 ) { webbur::r8vec_copy ( n, w_511, w ); } else { std::cerr << "\n"; std::cerr << "PATTERSON_LOOKUP_WEIGHTS - Fatal error!\n"; std::cerr << " Unexpected value of N = " << n << ".\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void patterson_lookup_weights_np ( int n, int np, double p[], double w[] ) //****************************************************************************80 // // Purpose: // // PATTERSON_LOOKUP_WEIGHTS_NP looks up Patterson quadrature weights. // // Discussion: // // The allowed orders are 1, 3, 7, 15, 31, 63, 127, 255 and 511. // // The weights are positive, symmetric and should sum to 2. // // The user must preallocate space for the output array W. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 April 2011 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int N, the order. // Legal values are 1, 3, 7, 15, 31, 63, 127, 255 or 511. // // Input, int NP, the number of parameters. // // Input, double P[NP], parameters which are not needed by this function. // // Output, double W[N], the weights. // { patterson_lookup_weights ( n, w ); return; } //****************************************************************************80 int point_radial_tol_unique_count ( int m, int n, double a[], double tol, int *seed ) //****************************************************************************80 // // Purpose: // // POINT_RADIAL_TOL_UNIQUE_COUNT counts the tolerably unique points. // // Discussion: // // The input data is an M x N array A, representing the M-dimensional // coordinates of N points. // // The output is the number of tolerably unique points in the list. // // This program performs the same task as POINT_TOL_UNIQUE_COUNT. // But that program is guaranteed to use N^2 comparisons. // // It is hoped that this function, on the other hand, will tend // to use O(N) comparisons after an O(NLog(N)) sort. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N, the number of columns. // // Input, double A[M*N], the array of N columns of data. // // Input, double TOL, a tolerance for equality. // // Input/output, int *SEED, a seed for the random // number generator. // // Output, int POINT_RADIAL_TOL_UNIQUE_COUNT, the number of tolerably // unique points. // { double dist; int hi; int i; int *indx; int j; int k; double *r; bool *unique; int unique_num; double *w; double w_sum; double *z; if ( n <= 0 ) { unique_num = 0; return unique_num; } // // Assign a base point Z randomly in the convex hull. // w = webbur::r8vec_uniform_01_new ( n, seed ); w_sum = webbur::r8vec_sum ( n, w ); for ( j = 0; j < n; j++ ) { w[j] = w[j] / w_sum; } z = new double[m]; for ( i = 0; i < m; i++ ) { z[i] = 0.0; for ( j = 0; j < n; j++ ) { z[i] = z[i] + a[i+j*m] * w[j]; } } // // Compute the radial distance R of each point to Z. // r = new double[n]; for ( j = 0; j < n; j++ ) { r[j] = 0.0; for ( i = 0; i < m; i++ ) { r[j] = r[j] + std::pow ( a[i+j*m] - z[i], 2 ); } r[j] = std::sqrt ( r[j] ); } // // Implicitly sort the R array. // indx = webbur::r8vec_sort_heap_index_a_new ( n, r ); // // To determine if a point I is tolerably unique, we only have to check // whether it is distinct from all points J such that R(I) <= R(J) <= R(J)+TOL. // unique_num = 0; unique = new bool[n]; for ( i = 0; i < n; i++ ) { unique[i] = true; } for ( i = 0; i < n; i++ ) { if ( unique[indx[i]] ) { // // Point INDX(I) is unique, in that no earlier point is near it. // unique_num = unique_num + 1; // // Look for later points which are close to point INDX(I) // in terms of R. // hi = i; while ( hi < n - 1 ) { if ( r[indx[i]] + tol < r[indx[hi+1]] ) { break; } hi = hi + 1; } // // Points INDX(I+1) through INDX(HI) have an R value close to // point INDX(I). Are they truly close to point INDEX(I)? // for ( j = i + 1; j <= hi; j++ ) { if ( unique[indx[j]] ) { dist = 0.0; for ( k = 0; k < m; k++ ) { dist = dist + std::pow ( a[k+indx[i]*m] - a[k+indx[j]*m], 2 ); } dist = std::sqrt ( dist ); if ( dist <= tol ) { unique[indx[j]] = false; } } } } } delete [] indx; delete [] r; delete [] unique; delete [] w; delete [] z; return unique_num; } //****************************************************************************80 void point_radial_tol_unique_count_inc1 ( int m, int n1, double a1[], double tol, int *seed, double z[], double r1[], int indx1[], bool unique1[], int *unique_num1 ) //****************************************************************************80 // // Purpose: // // POINT_RADIAL_TOL_UNIQUE_COUNT_INC1 counts the tolerably unique points. // // Discussion: // // The input data includes an M x N1 array A1 of a set of N1 // "permanent" points and N2 "temporary" points. // // This is a two step version of POINT_RADIAL_TOL_UNIQUE_COUNT_INC. // // This means that we want to identify the tolerably unique points // among the permanent points before processing the temporary points. // // If many sets of temporary data are considered, this function will // do a lot of unnecessary work resorting the permanent data; it would // be possible to avoid repetitions of that work at the expense of saving // various work vectors. This function accepts the overhead of the // repeated calculations for the benefit of only having to "remember" // the number of unique points discovered. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N1, the number of permanent points. // // Input, double A1[M*N1], the permanent points. // // Input, double TOL, a tolerance for equality. // // Input/output, int *SEED, a seed for the random // number generator. // // Output, double Z[M], a random base vector used to // linearly sort the data. // // Output, double R1[N1], the scalar values assigned to // the data for sorting. // // Output, int INDX1[N1], the ascending sort index // for A1. // // Output, bool UNIQUE1[N1], is TRUE for each unique permanent point. // // Output, int *UNIQUE_NUM1, the number of tolerably // unique permanent points. // { double dist; int hi; int i; int j1; int k1; double *w; double w_sum; // // Assign a base point Z randomly in the convex hull of the permanent points. // w = webbur::r8vec_uniform_01_new ( n1, seed ); w_sum = webbur::r8vec_sum ( n1, w ); for ( j1 = 0; j1 < n1; j1++ ) { w[j1] = w[j1] / w_sum; } for ( i = 0; i < m; i++ ) { z[i] = 0.0; for ( j1 = 0; j1 < n1; j1++ ) { z[i] = z[i] + a1[i+j1*m] * w[j1]; } } // // Initialize the permanent point data. // for ( j1 = 0; j1 < n1; j1++ ) { r1[j1] = 0.0; for ( i = 0; i < m; i++ ) { r1[j1] = r1[j1] + std::pow ( a1[i+j1*m] - z[i], 2 ); } r1[j1] = std::sqrt ( r1[j1] ); } webbur::r8vec_sort_heap_index_a ( n1, r1, indx1 ); *unique_num1 = 0; for ( j1 = 0; j1 < n1; j1++ ) { unique1[j1] = true; } // // STEP 1: // Compare PERMANENT POINTS to PERMANENT POINTS. // for ( j1 = 0; j1 < n1; j1++ ) { if ( unique1[indx1[j1]] ) { *unique_num1 = *unique_num1 + 1; hi = j1; while ( hi < n1 - 1 ) { if ( r1[indx1[j1]] + tol < r1[indx1[hi+1]] ) { break; } hi = hi + 1; } for ( k1 = j1 + 1; k1 <= hi; k1++ ) { if ( unique1[indx1[k1]] ) { dist = 0.0; for ( i = 0; i < m; i++ ) { dist = dist + std::pow ( a1[i+indx1[j1]*m] - a1[i+indx1[k1]*m], 2 ); } dist = std::sqrt ( dist ); if ( dist <= tol ) { unique1[indx1[k1]] = false; } } } } } delete [] w; return; } //****************************************************************************80 void point_radial_tol_unique_count_inc2 ( int m, int n1, double a1[], int n2, double a2[], double tol, double z[], double r1[], int indx1[], bool unique1[], int *unique_num2 ) //****************************************************************************80 // // Purpose: // // POINT_RADIAL_TOL_UNIQUE_COUNT_INC2 counts the tolerably unique points. // // Discussion: // // The input data includes an M x N1 array A1 and an M x N2 array A2, // representing the M-dimensional coordinates of a set of N1 // "permanent" points and N2 "temporary" points. // // This is an "incremental" version of POINT_RADIAL_TOL_UNIQUE_COUNT. // // This means that we want to identify the tolerably unique points // among the permanent points before processing the temporary points. // // If many sets of temporary data are considered, this function will // do a lot of unnecessary work resorting the permanent data; it would // be possible to avoid repetitions of that work at the expense of saving // various work vectors. This function accepts the overhead of the // repeated calculations for the benefit of only having to "remember" // the number of unique points discovered. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N1, the number of permanent points. // // Input, double A1[M*N1], the permanent points. // // Input, int N2, the number of temporary points. // // Input, double A2[M*N2], the temporary points. // // Input, double TOL, a tolerance for equality. // // Input, double Z[M], a random base vector used to // linearly sort the data. // // Input, double R1[N1], the scalar values assigned to // the data for sorting. // // Input, int INDX1[N1], the ascending sort index // for A1. // // Input, bool UNIQUE1[N1], is TRUE for each unique permanent point. // // Output, int *UNIQUE_NUM2, the number of additional // tolerably unique points if the temporary points are included. // { double dist; int hi; int i; int *indx2; int j1; int j2; int j2_hi; int j2_lo; int k2; double r_hi; double r_lo; double *r2; bool *unique2; // // Initialize the temporary point data. // r2 = new double[n2]; for ( j2 = 0; j2 < n2; j2++ ) { r2[j2] = 0.0; for ( i = 0; i < m; i++ ) { r2[j2] = r2[j2] + std::pow ( a2[i+j2*m] - z[i], 2 ); } r2[j2] = std::sqrt ( r2[j2] ); } indx2 = new int[n2]; webbur::r8vec_sort_heap_index_a ( n2, r2, indx2 ); unique2 = new bool[n2]; for ( j2 = 0; j2 < n2; j2++ ) { unique2[j2] = true; } *unique_num2 = 0; // // STEP 2: // Use PERMANENT points to eliminate TEMPORARY points. // for ( j1 = 0; j1 < n1; j1++ ) { if ( unique1[indx1[j1]] ) { r_lo = r1[indx1[j1]] - tol; r_hi = r1[indx1[j1]] + tol; webbur::r8vec_index_sorted_range ( n2, r2, indx2, r_lo, r_hi, &j2_lo, &j2_hi ); for ( j2 = j2_lo; j2 <= j2_hi; j2++ ) { if ( unique2[indx2[j2]] ) { dist = 0.0; for ( i = 0; i < m; i++ ) { dist = dist + std::pow ( a1[i+indx1[j1]*m] - a2[i+indx2[j2]*m], 2 ); } dist = std::sqrt ( dist ); if ( dist <= tol ) { unique2[indx2[j2]] = false; } } } } } // // STEP 3: // Use TEMPORARY points to eliminate TEMPORARY points. // for ( j2 = 0; j2 < n2; j2++ ) { if ( unique2[indx2[j2]] ) { *unique_num2 = *unique_num2 + 1; hi = j2; while ( hi < n2 - 1 ) { if ( r2[indx2[j2]] + tol < r2[indx2[hi+1]] ) { break; } hi = hi + 1; } for ( k2 = j2 + 1; k2 <= hi; k2++ ) { if ( unique2[indx2[k2]] ) { dist = 0.0; for ( i = 0; i < m; i++ ) { dist = dist + std::pow ( a2[i+indx2[j2]*m] - a2[i+indx2[k2]*m], 2 ); } dist = std::sqrt ( dist ); if ( dist <= tol ) { unique2[indx2[k2]] = false; } } } } } delete [] indx2; delete [] r2; delete [] unique2; return; } //****************************************************************************80 int point_radial_tol_unique_index ( int m, int n, double a[], double tol, int *seed, int undx[], int xdnu[] ) //****************************************************************************80 // // Purpose: // // POINT_RADIAL_TOL_UNIQUE_INDEX indexes the tolerably unique points. // // Discussion: // // The input data is an M x N array A, representing the M-dimensional // coordinates of N points. // // The output is: // * the number of tolerably unique points in the list; // * the index, in the list of unique items, of the representatives // of each point; // * the index, in A, of the tolerably unique representatives. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N, the number of columns. // // Input, double A[M*N], the array of N columns of data. // // Input, double TOL, a tolerance for equality. // // Input/output, int SEED, a seed for the random // number generator. // // Output, int UNDX[UNIQUE_NUM], the index, in A, of the // tolerably unique points. // // Output, int XDNU[N], the index, in UNDX, of the // tolerably unique point that "represents" this point. // // Output, int POINT_RADIAL_TOL_UNIQUE_INDEX, the number of tolerably // unique points. // { double dist; int hi; int i; int *indx; int j; int k; double *r; bool *unique; int unique_num; double *w; double w_sum; double *z; if ( n <= 0 ) { unique_num = 0; return unique_num; } // // Assign a base point Z randomly in the convex hull. // w = webbur::r8vec_uniform_01_new ( n, seed ); w_sum = webbur::r8vec_sum ( n, w ); for ( j = 0; j < n; j++ ) { w[j] = w[j] / w_sum; } z = new double[m]; for ( i = 0; i < m; i++ ) { z[i] = 0.0; for ( j = 0; j < n; j++ ) { z[i] = z[i] + a[i+j*m] * w[j]; } } // // Compute the radial distance R of each point to Z. // r = new double[n]; for ( j = 0; j < n; j++ ) { r[j] = 0.0; for ( i = 0; i < m; i++ ) { r[j] = r[j] + std::pow ( a[i+j*m] - z[i], 2 ); } r[j] = std::sqrt ( r[j] ); } // // Implicitly sort the R array. // indx = webbur::r8vec_sort_heap_index_a_new ( n, r ); // // To determine if a point I is tolerably unique, we only have to check // whether it is distinct from all points J such that R(I) <= R(J) <= R(J)+TOL. // unique_num = 0; unique = new bool[n]; for ( i = 0; i < n; i++ ) { unique[i] = true; } for ( i = 0; i < n; i++ ) { if ( unique[indx[i]] ) { // // Point INDX(I) is unique, in that no earlier point is near it. // xdnu[indx[i]] = unique_num; undx[unique_num] = indx[i]; unique_num = unique_num + 1; // // Look for later points which are close to point INDX(I) // in terms of R. // hi = i; while ( hi < n - 1 ) { if ( r[indx[i]] + tol < r[indx[hi+1]] ) { break; } hi = hi + 1; } // // Points INDX(I+1) through INDX(HI) have an R value close to // point INDX(I). Are they truly close to point INDEX(I)? // for ( j = i + 1; j <= hi; j++ ) { if ( unique[indx[j]] ) { dist = 0.0; for ( k = 0; k < m; k++ ) { dist = dist + std::pow ( a[k+indx[i]*m] - a[k+indx[j]*m], 2 ); } dist = std::sqrt ( dist ); if ( dist <= tol ) { unique[indx[j]] = false; xdnu[indx[j]] = xdnu[indx[i]]; } } } } } delete [] indx; delete [] r; delete [] unique; delete [] w; delete [] z; return unique_num; } //****************************************************************************80 void point_radial_tol_unique_index_inc1 ( int m, int n1, double a1[], double tol, int *seed, double z[], double r1[], int indx1[], bool unique1[], int *unique_num1, int undx1[], int xdnu1[] ) //****************************************************************************80 // // Purpose: // // POINT_RADIAL_TOL_UNIQUE_INDEX_INC1 indexes the tolerably unique points. // // Discussion: // // The input data includes an M x N1 array A1 of // "permanent" points. // // This is a two step version of POINT_RADIAL_TOL_UNIQUE_INDEX_INC. // // The output is: // * the number of tolerably unique points in the list; // * the index, in the list of unique items, of the representatives // of each point; // * the index, in A1, of the tolerably unique representatives. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N1, the number of permanent points. // // Input, double A1[M*N1], the permanent points. // // Input, double TOL, a tolerance for equality. // // Input/output, int *SEED, a seed for the random // number generator. // // Output, double Z[M], a random base vector used to // linearly sort the data. // // Output, double R1[N1], the scalar values assigned to // the data for sorting. // // Output, int INDX1[N1], the ascending sort index for A1. // // Output, bool UNIQUE1[N1], is TRUE for unique permanent points. // // Output, int *UNIQUE_NUM1, the number of tolerably unique points // with just the permanent points. // // Output, int UNDX1[UNIQUE_NUM1], the index, in A1, of the tolerably // unique points. // // Output, int XDNU1[N1], the index, in UNDX1, of the tolerably unique // point that "represents" this point. // { double dist; int hi; int i; int j1; int k1; double *w; double w_sum; // // Assign a base point Z randomly in the convex hull of the permanent points. // w = webbur::r8vec_uniform_01_new ( n1, seed ); w_sum = webbur::r8vec_sum ( n1, w ); for ( j1 = 0; j1 < n1; j1++ ) { w[j1] = w[j1] / w_sum; } for ( i = 0; i < m; i++ ) { z[i] = 0.0; for ( j1 = 0; j1 < n1; j1++ ) { z[i] = z[i] + a1[i+j1*m] * w[j1]; } } // // Initialize the permanent point data. // for ( j1 = 0; j1 < n1; j1++ ) { r1[j1] = 0.0; for ( i = 0; i < m; i++ ) { r1[j1] = r1[j1] + std::pow ( a1[i+j1*m] - z[i], 2 ); } r1[j1] = std::sqrt ( r1[j1] ); } webbur::r8vec_sort_heap_index_a ( n1, r1, indx1 ); *unique_num1 = 0; for ( j1 = 0; j1 < n1; j1++ ) { unique1[j1] = true; } // // STEP 1: // Compare PERMANENT POINTS to PERMANENT POINTS. // for ( j1 = 0; j1 < n1; j1++ ) { if ( unique1[indx1[j1]] ) { xdnu1[indx1[j1]] = *unique_num1; undx1[*unique_num1] = indx1[j1]; *unique_num1 = *unique_num1 + 1; hi = j1; while ( hi < n1 - 1 ) { if ( r1[indx1[j1]] + tol < r1[indx1[hi+1]] ) { break; } hi = hi + 1; } for ( k1 = j1 + 1; k1 <= hi; k1++ ) { if ( unique1[indx1[k1]] ) { dist = 0.0; for ( i = 0; i < m; i++ ) { dist = dist + std::pow ( a1[i+indx1[j1]*m] - a1[i+indx1[k1]*m], 2 ); } dist = std::sqrt ( dist ); if ( dist <= tol ) { unique1[indx1[k1]] = false; xdnu1[indx1[k1]] = xdnu1[indx1[j1]]; } } } } } delete [] w; return; } //****************************************************************************80 void point_radial_tol_unique_index_inc2 ( int m, int n1, double a1[], int n2, double a2[], double tol, double z[], double r1[], int indx1[], bool unique1[], int unique_num1, int undx1[], int xdnu1[], double r2[], int indx2[], bool unique2[], int *unique_num2, int undx2[], int xdnu2[] ) //****************************************************************************80 // // Purpose: // // POINT_RADIAL_TOL_UNIQUE_INDEX_INC2 indexes unique temporary points. // // Discussion: // // The input data includes an M x N1 array A1 and an M x N2 array A2, // representing the M-dimensional coordinates of a set of N1 // "permanent" points and N2 "temporary" points. // // For notation, we use "A" to describe the M x (N1+N2) array that would be // formed by starting with A1 and appending A2. // // The output is: // * the number of tolerably unique points in the list; // * the index, in the list of unique items, of the representatives // of each point; // * the index, in A, of the tolerably unique representatives. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N1, the number of permanent points. // // Input, double A1[M*N1], the permanent points. // // Input, int N2, the number of temporary points. // // Input, double A2[M*N2], the temporary points. // // Input, double TOL, a tolerance for equality. // // Input, double Z[M], a random base vector used to // linearly sort the data. // // Input, double R1[N1], the scalar values assigned to // A1 for sorting. // // Input, int INDX1[N1], the ascending sort index for A1. // // Input, bool UNIQUE1[N1], is TRUE for unique permanent points. // // Input, int UNIQUE_NUM1, the number of tolerably unique permanent points. // // Input, int UNDX1[UNIQUE_NUM1], // the index in A1 of the tolerably unique permanent points. // // Input, int XDNU1[N1], the index in UNDX1 // of the tolerably unique permanent point that "represents" this point. // // Output, double R2[N2], the scalar values assigned to // A2 for sorting. // // Output, int INDX2[N2], the ascending sort index for A2. // // Output, bool UNIQUE2[N2], is TRUE for unique temporary points. // // Output, int *UNIQUE_NUM2, the number // of tolerably unique temporary points. // // Output, int UNDX2[UNIQUE_NUM2], // the index in A2 of the tolerably unique points, incremented by N1. // // Output, int XDNU2[N2], the index, in UNDX1 // or UNDX2, of the tolerably unique point that "represents" this // temporary point. If the value represents an index in UNDX2, this // can be inferred by the fact that its value is greater than or // equal to UNIQUE_NUM1. To reference UNDX2, the value should then be // decremented by UNIQUE_NUM1. // { double dist; int hi; int i; int j1; int j2; int j2_hi; int j2_lo; int k2; double r_hi; double r_lo; // // Initialize the temporary point data. // for ( j2 = 0; j2 < n2; j2++ ) { r2[j2] = 0.0; for ( i = 0; i < m; i++ ) { r2[j2] = r2[j2] + std::pow ( a2[i+j2*m] - z[i], 2 ); } r2[j2] = std::sqrt ( r2[j2] ); } webbur::r8vec_sort_heap_index_a ( n2, r2, indx2 ); for ( j2 = 0; j2 < n2; j2++ ) { unique2[j2] = true; } *unique_num2 = 0; // // STEP 2: // Use PERMANENT points to eliminate TEMPORARY points. // for ( j1 = 0; j1 < n1; j1++ ) { if ( unique1[indx1[j1]] ) { r_lo = r1[indx1[j1]] - tol; r_hi = r1[indx1[j1]] + tol; webbur::r8vec_index_sorted_range ( n2, r2, indx2, r_lo, r_hi, &j2_lo, &j2_hi ); for ( j2 = j2_lo; j2 <= j2_hi; j2++ ) { if ( unique2[indx2[j2]] ) { dist = 0.0; for ( i = 0; i < m; i++ ) { dist = dist + std::pow ( a1[i+indx1[j1]*m] - a2[i+indx2[j2]*m], 2 ); } dist = std::sqrt ( dist ); if ( dist <= tol ) { unique2[indx2[j2]] = false; xdnu2[indx2[j2]] = xdnu1[indx1[j1]]; } } } } } // // STEP 3: // Use TEMPORARY points to eliminate TEMPORARY points. // for ( j2 = 0; j2 < n2; j2++ ) { if ( unique2[indx2[j2]] ) { xdnu2[indx2[j2]] = unique_num1 + *unique_num2; undx2[*unique_num2] = indx2[j2] + n1; *unique_num2 = *unique_num2 + 1; hi = j2; while ( hi < n2 - 1 ) { if ( r2[indx2[j2]] + tol < r2[indx2[hi+1]] ) { break; } hi = hi + 1; } for ( k2 = j2 + 1; k2 <= hi; k2++ ) { if ( unique2[indx2[k2]] ) { dist = 0.0; for ( i = 0; i < m; i++ ) { dist = dist + std::pow ( a2[i+indx2[j2]*m] - a2[i+indx2[k2]*m], 2 ); } dist = std::sqrt ( dist ); if ( dist <= tol ) { unique2[indx2[k2]] = false; xdnu2[indx2[k2]] = xdnu2[indx2[j2]]; } } } } } return; } //****************************************************************************80 void point_radial_tol_unique_index_inc3 ( int m, int n1, double a1[], double r1[], int indx1[], bool unique1[], int unique_num1, int undx1[], int xdnu1[], int n2, double a2[], double r2[], int indx2[], bool unique2[], int unique_num2, int undx2[], int xdnu2[], int *n3, double a3[], double r3[], int indx3[], bool unique3[], int *unique_num3, int undx3[], int xdnu3[] ) //****************************************************************************80 // // Purpose: // // POINT_RADIAL_TOL_UNIQUE_INDEX_INC3 merges index data. // // Discussion: // // This function may be called after *INDEX_INC1 has created index // information for the permanent data, and *INDEX_INC2 has created // augmenting information for a set of temporary data which now is // to be merged with the permanent data. // // The function merges the data and index information to create a // new "permanent" data set. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N1, the number of permanent points. // // Input, double A1[M*N1], the permanent points. // // Input, double R1[N1], the scalar values assigned to // the data for sorting. // // Input, int INDX1[N1], the ascending sort index // for A1. // // Input, bool UNIQUE1[N1], is TRUE for each unique permanent point. // // Input, int UNIQUE_NUM1, the number // of tolerably unique points with just the permanent points. // // Input, int UNDX1[UNIQUE_NUM1], // the index in A1 of the tolerably unique points. // // Input, int XDNU1[N1], the index in UNDX1 // of the tolerably unique point that "represents" this point. // // Input, int N2, the number of temporary points. // // Input, double A2[M,N2], the temporary points. // // Input, double R2[N2], the scalar values assigned to // the data for sorting. // // Input, int INDX2[N2], the ascending sort index // for A2. // // Input, bool UNIQUE2[N2], is TRUE for each unique temporary point. // // Input, int UNIQUE_NUM2, the number // of tolerably unique temporary points. // // Input, int UNDX2[UNIQUE_NUM2], // the index in A2 of the tolerably unique points, incremented by UNIQUE_NUM1. // // Input, int XDNU2[N2], the index in UNDX1 or UNDX2 // of the tolerably unique point that "represents" this point. // // Output, int *N3, the number of permanent points. // // Output, double A3[M,N3], the permanent points. // // Output, double R3[N3], the scalar values assigned to // the data for sorting. // // Output, int INDX3[N3], the ascending sort index // for A3. // // Output, bool UNIQUE3[N3], is TRUE for each unique permanent point. // // Output, int *UNIQUE_NUM3, the number // of tolerably unique points. // // Output, int UNDX3[UNIQUE_NUM3], // the index in A3 of the tolerably unique points. // // Output, int XDNU3[N3], the index in UNDX3 // of the tolerably unique point that "represents" this point. // { int i; int i1; int i2; int i3; double v1; double v2; *n3 = n1 + n2; for ( i1 = 0; i1 < n1; i1++ ) { for ( i = 0; i < m; i++ ) { a3[i+i1*m] = a1[i+i1*m]; } } for ( i2 = 0; i2 < n2; i2++ ) { i3 = n1 + i2; for ( i = 0; i < m; i++ ) { a3[i+i3*m] = a2[i+i2*m]; } } for ( i1 = 0; i1 < n1; i1++ ) { r3[i1]= r1[i1]; } for ( i2 = 0; i2 < n2; i2++ ) { i3 = n1 + i2; r3[i3] = r2[i2]; } // // Interleave the two INDX arrays so that INDX3 presents the entries // of A3 in ascending R3 order. // i1 = 0; i2 = 0; for ( i3 = 0; i3 < *n3; i3++ ) { if ( i1 < n1 ) { v1 = r1[indx1[i1]]; } else { v1 = r8_huge ( ); } if ( i2 < n2 ) { v2 = r2[indx2[i2]]; } else { v2 = r8_huge ( ); } if ( v1 <= v2 ) { indx3[i3] = indx1[i1]; i1 = i1 + 1; } else { indx3[i3] = indx2[i2] + n1; i2 = i2 + 1; } } *unique_num3 = unique_num1 + unique_num2; for ( i1 = 0; i1 < n1; i1++ ) { unique3[i1] = unique1[i1]; } for ( i2 = 0; i2 < n2; i2++ ) { i3 = n1 + i2; unique3[i3] = unique2[i2]; } // // The entries in UNDX2 were already incremented by N2 if they pointed // to an entry of A2, so all entries in UNDX2 correctly index A3. // for ( i1 = 0; i1 < unique_num1; i1++ ) { undx3[i1] = undx1[i1]; } for ( i2 = 0; i2 < unique_num2; i2++ ) { i3 = unique_num1 + i2; undx3[i3] = undx2[i2]; } // // Note that the entries of XDNU2 were already incremented by N2 // so that they correctly index A3, not A2. // for ( i1 = 0; i1 < n1; i1++ ) { xdnu3[i1] = xdnu1[i1]; } for ( i2 = 0; i2 < n2; i2++ ) { i3 = n1 + i2; xdnu3[i3] = xdnu2[i2]; } return; } //****************************************************************************80 void point_unique_index ( int m, int n, double a[], int unique_num, int undx[], int xdnu[] ) //****************************************************************************80 // // Purpose: // // POINT_UNIQUE_INDEX indexes unique points. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // The goal of this routine is to determine a vector UNDX, // which points to the unique elements of A, in sorted order, // and a vector XDNU, which identifies, for each entry of A, the index of // the unique sorted element of A. // // This is all done with index vectors, so that the elements of // A are never moved. // // The first step of the algorithm requires the indexed sorting // of A, which creates arrays INDX and XDNI. (If all the entries // of A are unique, then these arrays are the same as UNDX and XDNU.) // // We then use INDX to examine the entries of A in sorted order, // noting the unique entries, creating the entries of XDNU and // UNDX as we go. // // Once this process has been completed, the vector A could be // replaced by a compressed vector XU, containing the unique entries // of A in sorted order, using the formula // // XU(*) = A(UNDX(*)). // // We could then, if we wished, reconstruct the entire vector A, or // any element of it, by index, as follows: // // A(I) = XU(XDNU(I)). // // We could then replace A by the combination of XU and XDNU. // // Later, when we need the I-th entry of A, we can locate it as // the XDNU(I)-th entry of XU. // // Here is an example of a vector A, the sort and inverse sort // index vectors, and the unique sort and inverse unique sort vectors // and the compressed unique sorted vector. // // I A Indx Xdni XU Undx Xdnu // ----+-----+-----+-----+--------+-----+-----+ // 0 | 11. 0 0 | 11. 0 0 // 1 | 22. 2 4 | 22. 1 1 // 2 | 11. 5 1 | 33. 3 0 // 3 | 33. 8 7 | 55. 4 2 // 4 | 55. 1 8 | 3 // 5 | 11. 6 2 | 0 // 6 | 22. 7 5 | 1 // 7 | 22. 3 6 | 1 // 8 | 11. 4 3 | 0 // // INDX(2) = 3 means that sorted item(2) is A(3). // XDNI(2) = 5 means that A(2) is sorted item(5). // // UNDX(3) = 4 means that unique sorted item(3) is at A(4). // XDNU(8) = 2 means that A(8) is at unique sorted item(2). // // XU(XDNU(I))) = A(I). // XU(I) = A(UNDX(I)). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the dimension of the data values. // // Input, int N, the number of data values, // // Input, double A[M*N], the data values. // // Input, int UNIQUE_NUM, the number of unique values in A. // This value is only required for languages in which the size of // UNDX must be known in advance. // // Output, int UNDX[UNIQUE_NUM], the UNDX vector. // // Output, int XDNU[N], the XDNU vector. // { double diff; int i; int *indx; int j; int k; // // Implicitly sort the array. // indx = webbur::r8col_sort_heap_index_a ( m, n, a ); // // Walk through the implicitly sorted array. // i = 0; j = 0; undx[j] = indx[i]; xdnu[indx[i]] = j; for ( i = 1; i < n; i++ ) { diff = 0.0; for ( k = 0; k < m; k++ ) { diff = webbur::r8_max ( diff, webbur::r8_abs ( a[k+indx[i]*m] - a[k+undx[j]*m] ) ); } if ( 0.0 < diff ) { j = j + 1; undx[j] = indx[i]; } xdnu[indx[i]] = j; } delete [] indx; return; } //****************************************************************************80 void product_mixed_weight ( int dim_num, int order_1d[], int order_nd, int rule[], double alpha[], double beta[], double weight_nd[] ) //****************************************************************************80 // // Purpose: // // PRODUCT_MIXED_WEIGHT computes the weights of a mixed product rule. // // Discussion: // // This routine computes the weights for a quadrature rule which is // a product of 1D rules of varying order and kind. // // The user must preallocate space for the output array WEIGHT_ND. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int ORDER_1D[DIM_NUM], the order of the 1D rules. // // Input, int ORDER_ND, the order of the product rule. // // Input, int RULE[DIM_NUM], the rule in each dimension. // 1, "CC", Clenshaw Curtis, Closed Fully Nested rule. // 2, "F2", Fejer Type 2, Open Fully Nested rule. // 3, "GP", Gauss Patterson, Open Fully Nested rule. // 4, "GL", Gauss Legendre, Open Weakly Nested rule. // 5, "GH", Gauss Hermite, Open Weakly Nested rule. // 6, "GGH", Generalized Gauss Hermite, Open Weakly Nested rule. // 7, "LG", Gauss Laguerre, Open Non Nested rule. // 8, "GLG", Generalized Gauss Laguerre, Open Non Nested rule. // 9, "GJ", Gauss Jacobi, Open Non Nested rule. // 10, "GW", Golub Welsch, (presumed) Open Non Nested rule. // 11, "CC_SE", Clenshaw Curtis Slow Exponential, Closed Fully Nested rule. // 12, "F2_SE", Fejer Type 2 Slow Exponential, Open Fully Nested rule. // 13, "GP_SE", Gauss Patterson Slow Exponential, Open Fully Nested rule. // 14, "CC_ME", Clenshaw Curtis Moderate Exponential, Closed Fully Nested rule. // 15, "F2_ME", Fejer Type 2 Moderate Exponential, Open Fully Nested rule. // 16, "GP_ME", Gauss Patterson Moderate Exponential, Open Fully Nested rule. // 17, "CCN", Clenshaw Curtis Nested, Linear, Closed Fully Nested rule. // // Input, double ALPHA[DIM_NUM], BETA[DIM_NUM], parameters used for // Generalized Gauss Hermite, Generalized Gauss Laguerre, // and Gauss Jacobi rules. // // Output, double WEIGHT_ND[ORDER_ND], the product rule weights. // { int dim; int i; double *weight_1d; for ( i = 0; i < order_nd; i++ ) { weight_nd[i] = 1.0; } for ( dim = 0; dim < dim_num; dim++ ) { weight_1d = new double[order_1d[dim]]; if ( rule[dim] == 1 ) { webbur::clenshaw_curtis_compute_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 2 ) { webbur::fejer2_compute_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 3 ) { webbur::patterson_lookup_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 4 ) { webbur::legendre_compute_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 5 ) { webbur::hermite_compute_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 6 ) { webbur::gen_hermite_compute_weights ( order_1d[dim], alpha[dim], weight_1d ); } else if ( rule[dim] == 7 ) { webbur::laguerre_compute_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 8 ) { webbur::gen_laguerre_compute_weights ( order_1d[dim], alpha[dim], weight_1d ); } else if ( rule[dim] == 9 ) { webbur::jacobi_compute_weights ( order_1d[dim], alpha[dim], beta[dim], weight_1d ); } else if ( rule[dim] == 10 ) { std::cerr << "\n"; std::cerr << "PRODUCT_MIXED_WEIGHT - Fatal error!\n"; std::cerr << " Do not know how to set weights for rule 10.\n"; std::exit ( 1 ); } else if ( rule[dim] == 11 ) { webbur::clenshaw_curtis_compute_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 12 ) { webbur::fejer2_compute_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 13 ) { webbur::patterson_lookup_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 14 ) { webbur::clenshaw_curtis_compute_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 15 ) { webbur::fejer2_compute_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 16 ) { webbur::patterson_lookup_weights ( order_1d[dim], weight_1d ); } else if ( rule[dim] == 17 ) { webbur::ccn_compute_weights ( order_1d[dim], weight_1d ); } else { std::cerr << "\n"; std::cerr << "PRODUCT_MIXED_WEIGHT - Fatal error!\n"; std::cerr << " Unexpected value of RULE[" << dim << "] = " << rule[dim] << ".\n"; std::exit ( 1 ); } webbur::r8vec_direct_product2 ( dim, order_1d[dim], weight_1d, dim_num, order_nd, weight_nd ); delete [] weight_1d; } return; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 double r8_ceiling ( double x ) //****************************************************************************80 // // Purpose: // // R8_CEILING rounds an R8 "up" (towards +oo) to the next integer. // // Example: // // X R8_CEILING(X) // // -1.1 -1.0 // -1.0 -1.0 // -0.9 0.0 // -0.1 0.0 // 0.0 0.0 // 0.1 1.0 // 0.9 1.0 // 1.0 1.0 // 1.1 2.0 // 2.9 3.0 // 3.0 3.0 // 3.14159 4.0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose ceiling is desired. // // Output, double R8_CEILING, the ceiling of X. // { double value; value = ( int ) x; if ( value < x ) { value = value + 1.0; } return value; } //****************************************************************************80 double r8_choose ( int n, int k ) //****************************************************************************80 // // Purpose: // // R8_CHOOSE computes the binomial coefficient C(N,K) as an R8. // // Discussion: // // The value is calculated in such a way as to avoid overflow and // roundoff. The calculation is done in R8 arithmetic. // // The formula used is: // // C(N,K) = N! / ( K! * (N-K)! ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 March 2008 // // Author: // // John Burkardt // // Reference: // // ML Wolfson, HV Wright, // Algorithm 160: // Combinatorial of M Things Taken N at a Time, // Communications of the ACM, // Volume 6, Number 4, April 1963, page 161. // // Parameters: // // Input, int N, K, the values of N and K. // // Output, double R8_CHOOSE, the number of combinations of N // things taken K at a time. // { int i; int mn; int mx; int value; mn = webbur::i4_min ( k, n - k ); if ( mn < 0 ) { value = 0.0; } else if ( mn == 0 ) { value = 1.0; } else { mx = webbur::i4_max ( k, n - k ); value = ( double ) ( mx + 1 ); for ( i = 2; i <= mn; i++ ) { value = ( value * ( double ) ( mx + i ) ) / ( double ) i; } } return value; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_factorial ( int n ) //****************************************************************************80 // // Purpose: // // R8_FACTORIAL computes the factorial of N. // // Discussion: // // factorial ( N ) = product ( 1 <= I <= N ) I // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 January 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the factorial function. // If N is less than 1, the function value is returned as 1. // // Output, double R8_FACTORIAL, the factorial function. // { int i; double value; value = 1.0; for ( i = 1; i <= n; i++ ) { value = value * ( double ) ( i ); } return value; } //****************************************************************************80 double r8_factorial2 ( int n ) //****************************************************************************80 // // Purpose: // // R8_FACTORIAL2 computes the double factorial function. // // Discussion: // // FACTORIAL2( N ) = Product ( N * (N-2) * (N-4) * ... * 2 ) (N even) // = Product ( N * (N-2) * (N-4) * ... * 1 ) (N odd) // // Example: // // N FACTORIAL2(N) // // 0 1 // 1 1 // 2 2 // 3 3 // 4 8 // 5 15 // 6 48 // 7 105 // 8 384 // 9 945 // 10 3840 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 January 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the double factorial // function. If N is less than 1, R8_FACTORIAL2 is returned as 1.0. // // Output, double R8_FACTORIAL2, the double factorial function. // { int n_copy; double value; value = 1.0; if ( n < 1 ) { return value; } n_copy = n; while ( 1 < n_copy ) { value = value * ( double ) n_copy; n_copy = n_copy - 2; } return value; } //****************************************************************************80 double r8_floor ( double x ) //****************************************************************************80 // // Purpose: // // R8_FLOOR rounds an R8 "down" (towards -infinity) to the next integer. // // Example: // // X R8_FLOOR(X) // // -1.1 -2.0 // -1.0 -1.0 // -0.9 -1.0 // -0.1 -1.0 // 0.0 0.0 // 0.1 0.0 // 0.9 0.0 // 1.0 1.0 // 1.1 1.0 // 2.9 2.0 // 3.0 3.0 // 3.14159 3.0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 April 2007 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose floor is desired. // // Output, double R8_FLOOR, the floor of X. // { double value; value = ( int ) x; if ( x < value ) { value = value - 1.0; } return value; } //****************************************************************************80 double r8_gamma ( double x ) //****************************************************************************80 // // Purpose: // // R8_GAMMA evaluates Gamma(X) for a real argument. // // Discussion: // // This routine calculates the gamma function for a real argument X. // // Computation is based on an algorithm outlined in reference 1. // The program uses rational functions that approximate the gamma // function to at least 20 significant decimal digits. Coefficients // for the approximation over the interval (1,2) are unpublished. // Those for the approximation for 12 <= X are from reference 2. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 January 2008 // // Author: // // Original FORTRAN77 version by William Cody, Laura Stoltz. // C++ version by John Burkardt. // // Reference: // // William Cody, // An Overview of Software Development for Special Functions, // in Numerical Analysis Dundee, 1975, // edited by GA Watson, // Lecture Notes in Mathematics 506, // Springer, 1976. // // John Hart, Ward Cheney, Charles Lawson, Hans Maehly, // Charles Mesztenyi, John Rice, Henry Thatcher, // Christoph Witzgall, // Computer Approximations, // Wiley, 1968, // LC: QA297.C64. // // Parameters: // // Input, double X, the argument of the function. // // Output, double R8_GAMMA, the value of the function. // { // // Coefficients for minimax approximation over (12, INF). // double c[7] = { -1.910444077728E-03, 8.4171387781295E-04, -5.952379913043012E-04, 7.93650793500350248E-04, -2.777777777777681622553E-03, 8.333333333333333331554247E-02, 5.7083835261E-03 }; double eps = 2.22E-16; double fact; int i; int n; double one = 1.0; double p[8] = { -1.71618513886549492533811E+00, 2.47656508055759199108314E+01, -3.79804256470945635097577E+02, 6.29331155312818442661052E+02, 8.66966202790413211295064E+02, -3.14512729688483675254357E+04, -3.61444134186911729807069E+04, 6.64561438202405440627855E+04 }; bool parity; double pi = 3.1415926535897932384626434; double q[8] = { -3.08402300119738975254353E+01, 3.15350626979604161529144E+02, -1.01515636749021914166146E+03, -3.10777167157231109440444E+03, 2.25381184209801510330112E+04, 4.75584627752788110767815E+03, -1.34659959864969306392456E+05, -1.15132259675553483497211E+05 }; double res; double sqrtpi = 0.9189385332046727417803297; double sum; double twelve = 12.0; double two = 2.0; double value; double xbig = 171.624; double xden; double xinf = 1.79E+308; double xminin = 2.23E-308; double xnum; double y; double y1; double ysq; double z; parity = false; fact = one; n = 0; y = x; // // Argument is negative. // if ( y <= 0.0 ) { y = - x; y1 = ( double ) ( int ) ( y ); res = y - y1; if ( res != 0.0 ) { if ( y1 != ( double ) ( int ) ( y1 * 0.5 ) * two ) { parity = true; } fact = - pi / std::sin ( pi * res ); y = y + one; } else { res = xinf; value = res; return value; } } // // Argument is positive. // if ( y < eps ) { // // Argument < EPS. // if ( xminin <= y ) { res = one / y; } else { res = xinf; value = res; return value; } } else if ( y < twelve ) { y1 = y; // // 0.0 < argument < 1.0. // if ( y < one ) { z = y; y = y + one; } // // 1.0 < argument < 12.0. // Reduce argument if necessary. // else { n = ( int ) ( y ) - 1; y = y - ( double ) ( n ); z = y - one; } // // Evaluate approximation for 1.0 < argument < 2.0. // xnum = 0.0; xden = one; for ( i = 0; i < 8; i++ ) { xnum = ( xnum + p[i] ) * z; xden = xden * z + q[i]; } res = xnum / xden + one; // // Adjust result for case 0.0 < argument < 1.0. // if ( y1 < y ) { res = res / y1; } // // Adjust result for case 2.0 < argument < 12.0. // else if ( y < y1 ) { for ( i = 1; i <= n; i++ ) { res = res * y; y = y + one; } } } else { // // Evaluate for 12.0 <= argument. // if ( y <= xbig ) { ysq = y * y; sum = c[6]; for ( i = 0; i < 6; i++ ) { sum = sum / ysq + c[i]; } sum = sum / y - y + sqrtpi; sum = sum + ( y - 0.5 ) * std::log ( y ); res = std::exp ( sum ); } else { res = xinf; value = res; return value; } } // // Final adjustments and return. // if ( parity ) { res = - res; } if ( fact != one ) { res = fact / res; } value = res; return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_hyper_2f1 ( double a, double b, double c, double x ) //****************************************************************************80 // // Purpose: // // R8_HYPER_2F1 evaluates the hypergeometric function 2F1(A,B,C,X). // // Discussion: // // A bug was corrected. A line which read // c1 = - ( - 1.0, m ) * gc / ( gam * gbm * rm ); // was corrected to read // c1 = - std::pow ( - 1.0, m ) * gc / ( gam * gbm * rm ); // JVB, 05 July 2009. // // A minor bug was corrected. The HW variable, used in several places as // the "old" value of a quantity being iteratively improved, was not // being initialized. JVB, 11 February 2008. // // The FORTRAN77 original version of this routine is copyrighted by // Shanjie Zhang and Jianming Jin. However, they give permission to // incorporate this routine into a user program provided that the copyright // is acknowledged. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // Original FORTRAN77 version by Shanjie Zhang, Jianming Jin. // C++ version by John Burkardt. // // Reference: // // Shanjie Zhang, Jianming Jin, // Computation of Special Functions, // Wiley, 1996, // ISBN: 0-471-11963-6, // LC: QA351.C45 // // Parameters: // // Input, double A, B, C, X, the arguments of the function. // C must not be equal to a nonpositive integer. // X < 1. // // Output, double R8_HYPER_2F1, the value of the function. // { double a0; double aa; double bb; double c0; double c1; double el = 0.5772156649015329; double eps; double f0; double f1; double g0; double g1; double g2; double g3; double ga; double gabc; double gam; double gb; double gbm; double gc; double gca; double gcab; double gcb; double gm; double hf; double hw; int j; int k; bool l0; bool l1; bool l2; bool l3; bool l4; bool l5; int m; int nm; double pa; double pb; double pi = 3.141592653589793; double r; double r0; double r1; double rm; double rp; double sm; double sp; double sp0; double x1; l0 = ( c == ( int ) ( c ) ) && ( c < 0.0 ); l1 = ( 1.0 - x < 1.0E-15 ) && ( c - a - b <= 0.0 ); l2 = ( a == ( int ) ( a ) ) && ( a < 0.0 ); l3 = ( b == ( int ) ( b ) ) && ( b < 0.0 ); l4 = ( c - a == ( int ) ( c - a ) ) && ( c - a <= 0.0 ); l5 = ( c - b == ( int ) ( c - b ) ) && ( c - b <= 0.0 ); if ( l0 ) { std::cerr << "\n"; std::cerr << "R8_HYPER_2F1 - Fatal error!\n"; std::cerr << " The hypergeometric series is divergent.\n"; std::cerr << " C is integral and negative.\n"; std::cerr << " C = " << c << "\n"; std::exit ( 1 ); } if ( l1 ) { std::cerr << "\n"; std::cerr << "R8_HYPER_2F1 - Fatal error!\n"; std::cerr << " The hypergeometric series is divergent.\n"; std::cerr << " 1 - X < 0, C - A - B <= 0\n"; std::cerr << " A = " << a << "\n"; std::cerr << " B = " << b << "\n"; std::cerr << " C = " << c << "\n"; std::cerr << " X = " << x << "\n"; std::exit ( 1 ); } if ( 0.95 < x ) { eps = 1.0E-08; } else { eps = 1.0E-15; } if ( x == 0.0 || a == 0.0 || b == 0.0 ) { hf = 1.0; return hf; } else if ( 1.0 - x == eps && 0.0 < c - a - b ) { gc = webbur::r8_gamma ( c ); gcab = webbur::r8_gamma ( c - a - b ); gca = webbur::r8_gamma ( c - a ); gcb = webbur::r8_gamma ( c - b ); hf = gc * gcab / ( gca * gcb ); return hf; } else if ( 1.0 + x <= eps && r8_abs ( c - a + b - 1.0 ) <= eps ) { g0 = std::sqrt ( pi ) * std::pow ( 2.0, - a ); g1 = webbur::r8_gamma ( c ); g2 = webbur::r8_gamma ( 1.0 + a / 2.0 - b ); g3 = webbur::r8_gamma ( 0.5 + 0.5 * a ); hf = g0 * g1 / ( g2 * g3 ); return hf; } else if ( l2 || l3 ) { if ( l2 ) { nm = ( int ) ( webbur::r8_abs ( a ) ); } if ( l3 ) { nm = ( int ) ( webbur::r8_abs ( b ) ); } hf = 1.0; r = 1.0; for ( k = 1; k <= nm; k++ ) { r = r * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; } return hf; } else if ( l4 || l5 ) { if ( l4 ) { nm = ( int ) ( webbur::r8_abs ( c - a ) ); } if ( l5 ) { nm = ( int ) ( webbur::r8_abs ( c - b ) ); } hf = 1.0; r = 1.0; for ( k = 1; k <= nm; k++ ) { r = r * ( c - a + k - 1.0 ) * ( c - b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; } hf = std::pow ( 1.0 - x, c - a - b ) * hf; return hf; } aa = a; bb = b; x1 = x; if ( x < 0.0 ) { x = x / ( x - 1.0 ); if ( a < c && b < a && 0.0 < b ) { a = bb; b = aa; } b = c - b; } if ( 0.75 <= x ) { gm = 0.0; if ( webbur::r8_abs ( c - a - b - ( int ) ( c - a - b ) ) < 1.0E-15 ) { m = ( int ) ( c - a - b ); ga = webbur::r8_gamma ( a ); gb = webbur::r8_gamma ( b ); gc = webbur::r8_gamma ( c ); gam = webbur::r8_gamma ( a + m ); gbm = webbur::r8_gamma ( b + m ); pa = webbur::r8_psi ( a ); pb = webbur::r8_psi ( b ); if ( m != 0 ) { gm = 1.0; } for ( j = 1; j <= std::abs ( m ) - 1; j++ ) { gm = gm * j; } rm = 1.0; for ( j = 1; j <= std::abs ( m ); j++ ) { rm = rm * j; } f0 = 1.0; r0 = 1.0;; r1 = 1.0; sp0 = 0.0;; sp = 0.0; if ( 0 <= m ) { c0 = gm * gc / ( gam * gbm ); c1 = - gc * std::pow ( x - 1.0, m ) / ( ga * gb * rm ); for ( k = 1; k <= m - 1; k++ ) { r0 = r0 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( k - m ) ) * ( 1.0 - x ); f0 = f0 + r0; } for ( k = 1; k <= m; k++ ) { sp0 = sp0 + 1.0 / ( a + k - 1.0 ) + 1.0 / ( b + k - 1.0 ) - 1.0 / ( double ) ( k ); } f1 = pa + pb + sp0 + 2.0 * el + std::log ( 1.0 - x ); hw = f1; for ( k = 1; k <= 250; k++ ) { sp = sp + ( 1.0 - a ) / ( k * ( a + k - 1.0 ) ) + ( 1.0 - b ) / ( k * ( b + k - 1.0 ) ); sm = 0.0; for ( j = 1; j <= m; j++ ) { sm = sm + ( 1.0 - a ) / ( ( j + k ) * ( a + j + k - 1.0 ) ) + 1.0 / ( b + j + k - 1.0 ); } rp = pa + pb + 2.0 * el + sp + sm + std::log ( 1.0 - x ); r1 = r1 * ( a + m + k - 1.0 ) * ( b + m + k - 1.0 ) / ( k * ( m + k ) ) * ( 1.0 - x ); f1 = f1 + r1 * rp; if ( r8_abs ( f1 - hw ) < r8_abs ( f1 ) * eps ) { break; } hw = f1; } hf = f0 * c0 + f1 * c1; } else if ( m < 0 ) { m = - m; c0 = gm * gc / ( ga * gb * std::pow ( 1.0 - x, m ) ); c1 = - std::pow ( - 1.0, m ) * gc / ( gam * gbm * rm ); for ( k = 1; k <= m - 1; k++ ) { r0 = r0 * ( a - m + k - 1.0 ) * ( b - m + k - 1.0 ) / ( k * ( k - m ) ) * ( 1.0 - x ); f0 = f0 + r0; } for ( k = 1; k <= m; k++ ) { sp0 = sp0 + 1.0 / ( double ) ( k ); } f1 = pa + pb - sp0 + 2.0 * el + std::log ( 1.0 - x ); hw = f1; for ( k = 1; k <= 250; k++ ) { sp = sp + ( 1.0 - a ) / ( k * ( a + k - 1.0 ) ) + ( 1.0 - b ) / ( k * ( b + k - 1.0 ) ); sm = 0.0; for ( j = 1; j <= m; j++ ) { sm = sm + 1.0 / ( double ) ( j + k ); } rp = pa + pb + 2.0 * el + sp - sm + std::log ( 1.0 - x ); r1 = r1 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( m + k ) ) * ( 1.0 - x ); f1 = f1 + r1 * rp; if ( webbur::r8_abs ( f1 - hw ) < webbur::r8_abs ( f1 ) * eps ) { break; } hw = f1; } hf = f0 * c0 + f1 * c1; } } else { ga = webbur::r8_gamma ( a ); gb = webbur::r8_gamma ( b ); gc = webbur::r8_gamma ( c ); gca = webbur::r8_gamma ( c - a ); gcb = webbur::r8_gamma ( c - b ); gcab = webbur::r8_gamma ( c - a - b ); gabc = webbur::r8_gamma ( a + b - c ); c0 = gc * gcab / ( gca * gcb ); c1 = gc * gabc / ( ga * gb ) * std::pow ( 1.0 - x, c - a - b ); hf = 0.0; hw = hf; r0 = c0; r1 = c1; for ( k = 1; k <= 250; k++ ) { r0 = r0 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( a + b - c + k ) ) * ( 1.0 - x ); r1 = r1 * ( c - a + k - 1.0 ) * ( c - b + k - 1.0 ) / ( k * ( c - a - b + k ) ) * ( 1.0 - x ); hf = hf + r0 + r1; if ( webbur::r8_abs ( hf - hw ) < webbur::r8_abs ( hf ) * eps ) { break; } hw = hf; } hf = hf + c0 + c1; } } else { a0 = 1.0; if ( a < c && c < 2.0 * a && b < c && c < 2.0 * b ) { a0 = std::pow ( 1.0 - x, c - a - b ); a = c - a; b = c - b; } hf = 1.0; hw = hf; r = 1.0; for ( k = 1; k <= 250; k++ ) { r = r * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; if ( webbur::r8_abs ( hf - hw ) <= webbur::r8_abs ( hf ) * eps ) { break; } hw = hf; } hf = a0 * hf; } if ( x1 < 0.0 ) { x = x1; c0 = 1.0 / std::pow ( 1.0 - x, aa ); hf = c0 * hf; } a = aa; b = bb; if ( 120 < k ) { std::cerr << "\n"; std::cerr << "R8_HYPER_2F1 - Warning!\n"; std::cerr << " A large number of iterations were needed.\n"; std::cerr << " The accuracy of the results should be checked.\n"; } return hf; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 double r8_mop ( int i ) //****************************************************************************80 // // Purpose: // // R8_MOP returns the I-th power of -1 as an R8 value. // // Discussion: // // An R8 is an double value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 November 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the power of -1. // // Output, double R8_MOP, the I-th power of -1. // { double value; if ( ( i % 2 ) == 0 ) { value = 1.0; } else { value = -1.0; } return value; } //****************************************************************************80 double r8_psi ( double xx ) //****************************************************************************80 // // Purpose: // // R8_PSI evaluates the function Psi(X). // // Discussion: // // This routine evaluates the logarithmic derivative of the // Gamma function, // // PSI(X) = d/dX ( GAMMA(X) ) / GAMMA(X) // = d/dX LN ( GAMMA(X) ) // // for real X, where either // // - XMAX1 < X < - XMIN, and X is not a negative integer, // // or // // XMIN < X. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2008 // // Author: // // Original FORTRAN77 version by William Cody. // C++ version by John Burkardt. // // Reference: // // William Cody, Anthony Strecok, Henry Thacher, // Chebyshev Approximations for the Psi Function, // Mathematics of Computation, // Volume 27, Number 121, January 1973, pages 123-127. // // Parameters: // // Input, double XX, the argument of the function. // // Output, double R8_PSI, the value of the function. // { double aug; double den; int i; int n; int nq; double one = 1.0; double p1[9] = { 4.5104681245762934160E-03, 5.4932855833000385356, 3.7646693175929276856E+02, 7.9525490849151998065E+03, 7.1451595818951933210E+04, 3.0655976301987365674E+05, 6.3606997788964458797E+05, 5.8041312783537569993E+05, 1.6585695029761022321E+05 }; double p2[7] = { -2.7103228277757834192, -1.5166271776896121383E+01, -1.9784554148719218667E+01, -8.8100958828312219821, -1.4479614616899842986, -7.3689600332394549911E-02, -6.5135387732718171306E-21 }; double piov4 = 0.78539816339744830962; double q1[8] = { 9.6141654774222358525E+01, 2.6287715790581193330E+03, 2.9862497022250277920E+04, 1.6206566091533671639E+05, 4.3487880712768329037E+05, 5.4256384537269993733E+05, 2.4242185002017985252E+05, 6.4155223783576225996E-08 }; double q2[6] = { 4.4992760373789365846E+01, 2.0240955312679931159E+02, 2.4736979003315290057E+02, 1.0742543875702278326E+02, 1.7463965060678569906E+01, 8.8427520398873480342E-01 }; double sgn; double three = 3.0; double upper; double value; double w; double x; double x01 = 187.0; double x01d = 128.0; double x02 = 6.9464496836234126266E-04; double xinf = 1.70E+38; double xlarge = 2.04E+15; double xmax1 = 3.60E+16; double xmin1 = 5.89E-39; double xsmall = 2.05E-09; double z; x = xx; w = webbur::r8_abs ( x ); aug = 0.0; // // Check for valid arguments, then branch to appropriate algorithm. // if ( xmax1 <= - x || w < xmin1 ) { if ( 0.0 < x ) { value = - xinf; } else { value = xinf; } return value; } if ( x < 0.5 ) { // // X < 0.5, use reflection formula: psi(1-x) = psi(x) + pi * cot(pi*x) // Use 1/X for PI*COTAN(PI*X) when XMIN1 < |X| <= XSMALL. // if ( w <= xsmall ) { aug = - one / x; } // // Argument reduction for cotangent. // else { if ( x < 0.0 ) { sgn = piov4; } else { sgn = - piov4; } w = w - ( double ) ( ( int ) ( w ) ); nq = ( int ) ( w * 4.0 ); w = 4.0 * ( w - ( double ) ( nq ) * 0.25 ); // // W is now related to the fractional part of 4.0 * X. // Adjust argument to correspond to values in the first // quadrant and determine the sign. // n = nq / 2; if ( n + n != nq ) { w = one - w; } z = piov4 * w; if ( ( n % 2 ) != 0 ) { sgn = - sgn; } // // Determine the final value for -pi * cotan(pi*x). // n = ( nq + 1 ) / 2; if ( ( n % 2 ) == 0 ) { // // Check for singularity. // if ( z == 0.0 ) { if ( 0.0 < x ) { value = -xinf; } else { value = xinf; } return value; } aug = sgn * ( 4.0 / std::tan ( z ) ); } else { aug = sgn * ( 4.0 * std::tan ( z ) ); } } x = one - x; } // // 0.5 <= X <= 3.0. // if ( x <= three ) { den = x; upper = p1[0] * x; for ( i = 1; i <= 7; i++ ) { den = ( den + q1[i-1] ) * x; upper = ( upper + p1[i]) * x; } den = ( upper + p1[8] ) / ( den + q1[7] ); x = ( x - x01 / x01d ) - x02; value = den * x + aug; return value; } // // 3.0 < X. // if ( x < xlarge ) { w = one / ( x * x ); den = w; upper = p2[0] * w; for ( i = 1; i <= 5; i++ ) { den = ( den + q2[i-1] ) * w; upper = ( upper + p2[i] ) * w; } aug = ( upper + p2[6] ) / ( den + q2[5] ) - 0.5 / x + aug; } value = aug + std::log ( x ); return value; } //****************************************************************************80 double r8_sign ( double x ) //****************************************************************************80 // // Purpose: // // R8_SIGN returns the sign of an R8. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose sign is desired. // // Output, double R8_SIGN, the sign of X. // { double value; if ( x < 0.0 ) { value = -1.0; } else { value = 1.0; } return value; } //****************************************************************************80 int r8col_compare ( int m, int n, double a[], int i, int j ) //****************************************************************************80 // // Purpose: // // R8COL_COMPARE compares two columns in an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // Example: // // Input: // // M = 3, N = 4, I = 2, J = 4 // // A = ( // 1. 2. 3. 4. // 5. 6. 7. 8. // 9. 10. 11. 12. ) // // Output: // // R8COL_COMPARE = -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], the M by N array. // // Input, int I, J, the columns to be compared. // I and J must be between 1 and N. // // Output, int R8COL_COMPARE, the results of the comparison: // -1, column I < column J, // 0, column I = column J, // +1, column J < column I. // { int k; int value; // // Check. // if ( i < 1 || n < i ) { std::cerr << "\n"; std::cerr << "R8COL_COMPARE - Fatal error!\n"; std::cerr << " Column index I is out of bounds.\n"; std::cerr << " I = " << i << "\n"; std::exit ( 1 ); } if ( j < 1 || n < j ) { std::cerr << "\n"; std::cerr << "R8COL_COMPARE - Fatal error!\n"; std::cerr << " Column index J is out of bounds.\n"; std::cerr << " J = " << j << "\n"; std::exit ( 1 ); } value = 0; if ( i == j ) { return value; } k = 0; while ( k < m ) { if ( a[k+(i-1)*m] < a[k+(j-1)*m] ) { value = -1; return value; } else if ( a[k+(j-1)*m] < a[k+(i-1)*m] ) { value = +1; return value; } k = k + 1; } return value; } //****************************************************************************80 void r8col_sort_heap_a ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8COL_SORT_HEAP_A ascending heapsorts an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // In lexicographic order, the statement "X < Y", applied to two real // vectors X and Y of length M, means that there is some index I, with // 1 <= I <= M, with the property that // // X(J) = Y(J) for J < I, // and // X(I) < Y(I). // // In other words, the first time they differ, X is smaller. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, double A[M*N]. // On input, the array of N columns of M-vectors. // On output, the columns of A have been sorted in lexicographic order. // { int i; int indx; int isgn; int j; if ( m <= 0 ) { return; } if ( n <= 1 ) { return; } // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { webbur::sort_heap_external ( n, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { webbur::r8col_swap ( m, n, a, i, j ); } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = webbur::r8col_compare ( m, n, a, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 int *r8col_sort_heap_index_a ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8COL_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // The sorting is not actually carried out. Rather an index array is // created which defines the sorting. This array may be used to sort // or index the array, or to sort or index related arrays keyed on the // original array. // // A(*,J1) < A(*,J2) if the first nonzero entry of A(*,J1)-A(*,J2) // is negative. // // Once the index array is computed, the sorting can be carried out // "implicitly: // // A(*,INDX(*)) is sorted, // // Note that the index vector is 0-based. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 November 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in each column of A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the array. // // Output, int R8COL_SORT_HEAP_INDEX_A[N], contains the sort index. The // I-th column of the sorted array is A(*,INDX(I)). // { double *column; int i; int *indx; int indxt; int ir; int isgn; int j; int k; int l; if ( n < 1 ) { return NULL; } indx = new int[n]; for ( i = 0; i < n; i++ ) { indx[i] = i; } if ( n == 1 ) { return indx; } column = new double[m]; l = n / 2 + 1; ir = n; for ( ; ; ) { if ( 1 < l ) { l = l - 1; indxt = indx[l-1]; for ( k = 0; k < m; k++ ) { column[k] = a[k+indxt*m]; } } else { indxt = indx[ir-1]; for ( k = 0; k < m; k++ ) { column[k] = a[k+indxt*m]; } indx[ir-1] = indx[0]; ir = ir - 1; if ( ir == 1 ) { indx[0] = indxt; break; } } i = l; j = l + l; while ( j <= ir ) { if ( j < ir ) { isgn = webbur::r8vec_compare ( m, a+indx[j-1]*m, a+indx[j]*m ); if ( isgn < 0 ) { j = j + 1; } } isgn = webbur::r8vec_compare ( m, column, a+indx[j-1]*m ); if ( isgn < 0 ) { indx[i-1] = indx[j-1]; i = j; j = j + j; } else { j = ir + 1; } } indx[i-1] = indxt; } delete [] column; return indx; } //****************************************************************************80 int r8col_sorted_unique_count ( int m, int n, double a[], double tol ) //****************************************************************************80 // // Purpose: // // R8COL_SORTED_UNIQUE_COUNT counts unique elements in a sorted R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // The columns of the array may be ascending or descending sorted. // // If the tolerance is large enough, then the concept of uniqueness // can become ambiguous. If we have a tolerance of 1.5, then in the // list ( 1, 2, 3, 4, 5, 6, 7, 8, 9 ) is it fair to say we have only // one unique entry? That would be because 1 may be regarded as unique, // and then 2 is too close to 1 to be unique, and 3 is too close to 2 to // be unique and so on. // // This seems wrongheaded. So I prefer the idea that an item is not // unique under a tolerance only if it is close to something that IS unique. // Thus, the unique items are guaranteed to cover the space if we include // a disk of radius TOL around each one. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 November 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], a sorted array, containing // N columns of data. // // Input, double TOL, a tolerance for equality. // // Output, int R8COL_SORTED_UNIQUE_COUNT, the number of unique columns. // { double diff; int i; int j1; int j2; int unique_num; unique_num = 0; if ( n <= 0 ) { return unique_num; } unique_num = 1; j1 = 0; for ( j2 = 1; j2 < n; j2++ ) { diff = 0.0; for ( i = 0; i < m; i++ ) { diff = webbur::r8_max ( diff, webbur::r8_abs ( a[i+j1*m] - a[i+j2*m] ) ); } if ( tol < diff ) { unique_num = unique_num + 1; j1 = j2; } } return unique_num; } //****************************************************************************80 void r8col_swap ( int m, int n, double a[], int j1, int j2 ) //****************************************************************************80 // // Purpose: // // R8COL_SWAP swaps columns J1 and J2 of an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // Example: // // Input: // // M = 3, N = 4, J1 = 2, J2 = 4 // // A = ( // 1. 2. 3. 4. // 5. 6. 7. 8. // 9. 10. 11. 12. ) // // Output: // // A = ( // 1. 4. 3. 2. // 5. 8. 7. 6. // 9. 12. 11. 10. ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, double A[M*N], the M by N array. // // Input, int J1, J2, the columns to be swapped. // These columns are 1-based. // { int i; double temp; if ( j1 < 1 || n < j1 || j2 < 1 || n < j2 ) { std::cerr << "\n"; std::cerr << "R8COL_SWAP - Fatal error!\n"; std::cerr << " J1 or J2 is out of bounds.\n"; std::cerr << " J1 = " << j1 << "\n"; std::cerr << " J2 = " << j2 << "\n"; std::cerr << " NCOL = " << n << "\n"; std::exit ( 1 ); } if ( j1 == j2 ) { return; } for ( i = 0; i < m; i++ ) { temp = a[i+(j1-1)*m]; a[i+(j1-1)*m] = a[i+(j2-1)*m]; a[i+(j2-1)*m] = temp; } return; } //****************************************************************************80 void r8col_tol_undex ( int m, int n, double a[], int unique_num, double tol, int undx[], int xdnu[] ) //****************************************************************************80 // // Purpose: // // R8COL_TOL_UNDEX indexes tolerably unique entries of an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // The goal of this routine is to determine a vector UNDX, // which points to the unique elements of A, in sorted order, // and a vector XDNU, which identifies, for each entry of A, the index of // the unique sorted element of A. // // This is all done with index vectors, so that the elements of // A are never moved. // // The first step of the algorithm requires the indexed sorting // of A, which creates arrays INDX and XDNI. (If all the entries // of A are unique, then these arrays are the same as UNDX and XDNU.) // // We then use INDX to examine the entries of A in sorted order, // noting the unique entries, creating the entries of XDNU and // UNDX as we go. // // Once this process has been completed, the vector A could be // replaced by a compressed vector XU, containing the unique entries // of A in sorted order, using the formula // // XU(*) = A(UNDX(*)). // // We could then, if we wished, reconstruct the entire vector A, or // any element of it, by index, as follows: // // A(I) = XU(XDNU(I)). // // We could then replace A by the combination of XU and XDNU. // // Later, when we need the I-th entry of A, we can locate it as // the XDNU(I)-th entry of XU. // // Here is an example of a vector A, the sort and inverse sort // index vectors, and the unique sort and inverse unique sort vectors // and the compressed unique sorted vector. // // I A Indx Xdni XU Undx Xdnu // ----+-----+-----+-----+--------+-----+-----+ // 0 | 11. 0 0 | 11. 0 0 // 1 | 22. 2 4 | 22. 1 1 // 2 | 11. 5 1 | 33. 3 0 // 3 | 33. 8 7 | 55. 4 2 // 4 | 55. 1 8 | 3 // 5 | 11. 6 2 | 0 // 6 | 22. 7 5 | 1 // 7 | 22. 3 6 | 1 // 8 | 11. 4 3 | 0 // // INDX(2) = 3 means that sorted item(2) is A(3). // XDNI(2) = 5 means that A(2) is sorted item(5). // // UNDX(3) = 4 means that unique sorted item(3) is at A(4). // XDNU(8) = 2 means that A(8) is at unique sorted item(2). // // XU(XDNU(I))) = X(I). // XU(I) = X(UNDX(I)). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the dimension of the data values. // // Input, int N, the number of data values, // // Input, double A[M*N], the data values. // // Input, int UNIQUE_NUM, the number of unique values in A. // This value is only required for languages in which the size of // UNDX must be known in advance. // // Input, double TOL, a tolerance for equality. // // Output, int UNDX[UNIQUE_NUM], the UNDX vector. // // Output, int XDNU[N], the XDNU vector. // { double diff; int i; int i2; int *indx; int j; int k; bool unique; // // Implicitly sort the array. // indx = webbur::r8col_sort_heap_index_a ( m, n, a ); // // Consider entry I = 0. // It is unique, so set the number of unique items to K. // Set the K-th unique item to I. // Set the representative of item I to the K-th unique item. // i = 0; k = 0; undx[k] = indx[i]; xdnu[indx[i]] = k; // // Consider entry I. // // If it is unique, increase the unique count K, set the // K-th unique item to I, and set the representative of I to K. // // If it is not unique, set the representative of item I to a // previously determined unique item that is close to it. // for ( i = 1; i < n; i++ ) { unique = true; for ( j = 0; j <= k; j++ ) { diff = 0.0; for ( i2 = 0; i2 < m; i2++ ) { diff = webbur::r8_max ( diff, webbur::r8_abs ( a[i2+indx[i]*m] - a[i2+undx[j]*m] ) ); } if ( diff <= tol ) { unique = false; xdnu[indx[i]] = j; break; } } if ( unique ) { k = k + 1; undx[k] = indx[i]; xdnu[indx[i]] = k; } } delete [] indx; return; } //****************************************************************************80 int r8col_tol_unique_count ( int m, int n, double a[], double tol ) //****************************************************************************80 // // Purpose: // // R8COL_TOL_UNIQUE_COUNT counts tolerably unique entries in an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // The columns of the array may be ascending or descending sorted. // // If the tolerance is large enough, then the concept of uniqueness // can become ambiguous. If we have a tolerance of 1.5, then in the // list ( 1, 2, 3, 4, 5, 6, 7, 8, 9 ) is it fair to say we have only // one unique entry? That would be because 1 may be regarded as unique, // and then 2 is too close to 1 to be unique, and 3 is too close to 2 to // be unique and so on. // // This seems wrongheaded. So I prefer the idea that an item is not // unique under a tolerance only if it is close to something that IS unique. // Thus, the unique items are guaranteed to cover the space if we include // a disk of radius TOL around each one. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], the array of N columns of data. // // Input, double TOL, a tolerance for equality. // // Output, int R8COL_TOL_UNIQUE_COUNT, the number of unique columns. // { double diff; int i; int i2; int *indx; int j; int k; bool unique; int *undx; undx = new int[n]; // // Implicitly sort the array. // indx = webbur::r8col_sort_heap_index_a ( m, n, a ); // // Consider entry I = 0. // It is unique, so set the number of unique items to K. // Set the K-th unique item to I. // Set the representative of item I to the K-th unique item. // i = 0; k = 0; undx[k] = indx[i]; // // Consider entry I. // // If it is unique, increase the unique count K, set the // K-th unique item to I, and set the representative of I to K. // // If it is not unique, set the representative of item I to a // previously determined unique item that is close to it. // for ( i = 1; i < n; i++ ) { unique = true; for ( j = 0; j <= k; j++ ) { diff = 0.0; for ( i2 = 0; i2 < m; i2++ ) { diff = webbur::r8_max ( diff, webbur::r8_abs ( a[i2+indx[i]*m] - a[i2+undx[j]*m] ) ); } if ( diff <= tol ) { unique = false; break; } } if ( unique ) { k = k + 1; undx[k] = indx[i]; } } delete [] indx; delete [] undx; k = k + 1; return k; } //****************************************************************************80 void r8col_undex ( int x_dim, int x_num, double x_val[], int x_unique_num, double tol, int undx[], int xdnu[] ) //****************************************************************************80 // // Purpose: // // R8COL_UNDEX returns unique sorted indexes for an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // The goal of this routine is to determine a vector UNDX, // which points to the unique elements of X, in sorted order, // and a vector XDNU, which identifies, for each entry of X, the index of // the unique sorted element of X. // // This is all done with index vectors, so that the elements of // X are never moved. // // The first step of the algorithm requires the indexed sorting // of X, which creates arrays INDX and XDNI. (If all the entries // of X are unique, then these arrays are the same as UNDX and XDNU.) // // We then use INDX to examine the entries of X in sorted order, // noting the unique entries, creating the entries of XDNU and // UNDX as we go. // // Once this process has been completed, the vector X could be // replaced by a compressed vector XU, containing the unique entries // of X in sorted order, using the formula // // XU(*) = X(UNDX(*)). // // We could then, if we wished, reconstruct the entire vector X, or // any element of it, by index, as follows: // // X(I) = XU(XDNU(I)). // // We could then replace X by the combination of XU and XDNU. // // Later, when we need the I-th entry of X, we can locate it as // the XDNU(I)-th entry of XU. // // Here is an example of a vector X, the sort and inverse sort // index vectors, and the unique sort and inverse unique sort vectors // and the compressed unique sorted vector. // // I X Indx Xdni XU Undx Xdnu // ----+-----+-----+-----+--------+-----+-----+ // 0 | 11. 0 0 | 11. 0 0 // 1 | 22. 2 4 | 22. 1 1 // 2 | 11. 5 1 | 33. 3 0 // 3 | 33. 8 7 | 55. 4 2 // 4 | 55. 1 8 | 3 // 5 | 11. 6 2 | 0 // 6 | 22. 7 5 | 1 // 7 | 22. 3 6 | 1 // 8 | 11. 4 3 | 0 // // INDX(2) = 3 means that sorted item(2) is X(3). // XDNI(2) = 5 means that X(2) is sorted item(5). // // UNDX(3) = 4 means that unique sorted item(3) is at X(4). // XDNU(8) = 2 means that X(8) is at unique sorted item(2). // // XU(XDNU(I))) = X(I). // XU(I) = X(UNDX(I)). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 November 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int X_DIM, the dimension of the data values. // (the number of rows in the R8COL). // // Input, int X_NUM, the number of data values, // (the number of columns in the R8COL). // // Input, double X_VAL[X_DIM*X_NUM], the data values. // // Input, int X_UNIQUE_NUM, the number of unique values in X_VAL. // This value is only required for languages in which the size of // UNDX must be known in advance. // // Input, double TOL, a tolerance for equality. // // Output, int UNDX[X_UNIQUE_NUM], the UNDX vector. // // Output, int XDNU[X_NUM], the XDNU vector. // { double diff; int i; int *indx; int j; int k; // // Implicitly sort the array. // indx = webbur::r8col_sort_heap_index_a ( x_dim, x_num, x_val ); // // Walk through the implicitly sorted array X. // i = 0; j = 0; undx[j] = indx[i]; xdnu[indx[i]] = j; for ( i = 1; i < x_num; i++ ) { diff = 0.0; for ( k = 0; k < x_dim; k++ ) { diff = r8_max ( diff, webbur::r8_abs ( x_val[k+indx[i]*x_dim] - x_val[k+undx[j]*x_dim] ) ); } if ( tol < diff ) { j = j + 1; undx[j] = indx[i]; } xdnu[indx[i]] = j; } delete [] indx; return; } //****************************************************************************80 void r8col_unique_index ( int m, int n, double a[], double tol, int unique_index[] ) //****************************************************************************80 // // Purpose: // // R8COL_UNIQUE_INDEX indexes the first occurrence of values in an R8COL. // // Discussion: // // An R8COL is an M by N array of R8 values. // It is regarded as an array of N columns of length M. // // For element A(1:M,J) of the matrix, UNIQUE_INDEX(J) is the uniqueness // index of A(1:M,J). That is, if A_UNIQUE contains the unique elements // of A, gathered in order, then // // A_UNIQUE ( 1:M, UNIQUE_INDEX(J) ) = A(1:M,J) // // The user must preallocate space for the output array UNIQUE_INDEX. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 November 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of A. // The length of an "element" of A, and the number of "elements". // // Input, double A[M*N], the array. // // Input, double TOL, a tolerance for equality. // // Output, int UNIQUE_INDEX[N], the unique index. // { double diff; int i; int j1; int j2; int unique_num; for ( j1 = 0; j1 < n; j1++ ) { unique_index[j1] = -1; } unique_num = 0; for ( j1 = 0; j1 < n; j1++ ) { if ( unique_index[j1] == -1 ) { unique_index[j1] = unique_num; for ( j2 = j1 + 1; j2 < n; j2++ ) { diff = 0.0; for ( i = 0; i < m; i++ ) { diff = webbur::r8_max ( diff, webbur::r8_abs ( a[i+j1*m] - a[i+j2*m] ) ); } if ( diff <= tol ) { unique_index[j2] = unique_num; } } unique_num = unique_num + 1; } } return; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], std::string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, std::string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; std::cout << "\n"; std::cout << title << "\n"; for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; std::cout << "\n"; std::cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { std::cout << std::setw(7) << i - 1 << " "; } std::cout << "\n"; std::cout << " Col\n"; std::cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { std::cout << std::setw(5) << j - 1 << ":"; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; std::cout << std::setw(14) << a[(i-1)+(j-1)*m]; } std::cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_write ( std::string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the table data. // { int i; int j; std::ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { std::cerr << "\n"; std::cerr << "R8MAT_WRITE - Fatal error!\n"; std::cerr << " Could not open the output file.\n"; return; } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << std::setw(24) << std::setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 double r8poly_ant_val ( int n, double poly_cof[], double xval ) //****************************************************************************80 // // Purpose: // // R8POLY_ANT_VAL evaluates the antiderivative of an R8POLY in standard form. // // Discussion: // // The constant term of the antiderivative is taken to be zero. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the polynomial. // // Input, double POLY_COF[N], the polynomial coefficients. POLY_COF[0] // is the constant term, and POLY_COF[N-1] is the coefficient of X**(N-1). // // Input, double XVAL, the point where the antiderivative is to be // evaluated. // // Output, double R8POLY_ANT_VAL, the value of the antiderivative of the polynomial // at XVAL. // { int i; double value; value = 0.0; for ( i = n - 1; 0 <= i; i-- ) { value = ( value + poly_cof[i] / ( double ) ( i + 1 ) ) * xval; } return value; } //****************************************************************************80 double *r8vec_chebyshev_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_CHEBYSHEV_NEW creates a vector of Chebyshev spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_CHEBYSHEV_NEW[N], a vector of Chebyshev spaced data. // { double *a; double c; int i; double pi = 3.141592653589793; double theta; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { theta = ( double ) ( n - i - 1 ) * pi / ( double ) ( n - 1 ); c = std::cos ( theta ); if ( ( n % 2 ) == 1 ) { if ( 2 * i + 1 == n ) { c = 0.0; } } a[i] = ( ( 1.0 - c ) * a_first + ( 1.0 + c ) * a_last ) / 2.0; } } return a; } //****************************************************************************80 int r8vec_compare ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COMPARE compares two R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // The lexicographic ordering is used. // // Example: // // Input: // // A1 = ( 2.0, 6.0, 2.0 ) // A2 = ( 2.0, 8.0, 12.0 ) // // Output: // // ISGN = -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A[N], B[N], the vectors to be compared. // // Output, int R8VEC_COMPARE, the results of the comparison: // -1, A is lexicographically less than B, // 0, A is equal to B, // +1, A is lexicographically greater than B. // { int isgn; int k; isgn = 0; for ( k = 0; k < n; k++ ) { if ( a[k] < b[k] ) { isgn = -1; return isgn; } else if ( b[k] < a[k] ) { isgn = +1; return isgn; } } return isgn; } //****************************************************************************80 void r8vec_copy ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COPY copies an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Output, double A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 double *r8vec_copy_new ( int n, double a1[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COPY_NEW copies an R8VEC to a "new" R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Output, double R8VEC_COPY_NEW[N], the copy of A1. // { double *a2; int i; a2 = new double[n]; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return a2; } //****************************************************************************80 double r8vec_diff_norm_li ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DIFF_NORM_LI returns the L-oo norm of the difference of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L-oo norm is defined as: // // R8VEC_NORM_LI = max ( 1 <= I <= N ) abs ( A(I) ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], B[N], the vectors. // // Output, double R8VEC_DIFF_NORM_LI, the L-oo norm of A - B. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = webbur::r8_max ( value, webbur::r8_abs ( a[i] - b[i] ) ); } return value; } //****************************************************************************80 void r8vec_direct_product2 ( int factor_index, int factor_order, double factor_value[], int factor_num, int point_num, double w[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DIRECT_PRODUCT2 creates a direct product of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // To explain what is going on here, suppose we had to construct // a multidimensional quadrature rule as the product of K rules // for 1D quadrature. // // The product rule will be represented as a list of points and weights. // // The J-th item in the product rule will be associated with // item J1 of 1D rule 1, // item J2 of 1D rule 2, // ..., // item JK of 1D rule K. // // In particular, // X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) // and // W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) // // So we can construct the quadrature rule if we can properly // distribute the information in the 1D quadrature rules. // // This routine carries out that task for the weights W. // // Another way to do this would be to compute, one by one, the // set of all possible indices (J1,J2,...,JK), and then index // the appropriate information. An advantage of the method shown // here is that you can process the K-th set of information and // then discard it. // // Example: // // Rule 1: // Order = 4 // W(1:4) = ( 2, 3, 5, 7 ) // // Rule 2: // Order = 3 // W(1:3) = ( 11, 13, 17 ) // // Rule 3: // Order = 2 // W(1:2) = ( 19, 23 ) // // Product Rule: // Order = 24 // W(1:24) = // ( 2 * 11 * 19 ) // ( 3 * 11 * 19 ) // ( 4 * 11 * 19 ) // ( 7 * 11 * 19 ) // ( 2 * 13 * 19 ) // ( 3 * 13 * 19 ) // ( 5 * 13 * 19 ) // ( 7 * 13 * 19 ) // ( 2 * 17 * 19 ) // ( 3 * 17 * 19 ) // ( 5 * 17 * 19 ) // ( 7 * 17 * 19 ) // ( 2 * 11 * 23 ) // ( 3 * 11 * 23 ) // ( 5 * 11 * 23 ) // ( 7 * 11 * 23 ) // ( 2 * 13 * 23 ) // ( 3 * 13 * 23 ) // ( 5 * 13 * 23 ) // ( 7 * 13 * 23 ) // ( 2 * 17 * 23 ) // ( 3 * 17 * 23 ) // ( 5 * 17 * 23 ) // ( 7 * 17 * 23 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int FACTOR_INDEX, the index of the factor being processed. // The first factor processed must be factor 0. // // Input, int FACTOR_ORDER, the order of the factor. // // Input, double FACTOR_VALUE[FACTOR_ORDER], the factor values for // factor FACTOR_INDEX. // // Input, int FACTOR_NUM, the number of factors. // // Input, int POINT_NUM, the number of elements in the direct product. // // Input/output, double W[POINT_NUM], the elements of the // direct product, which are built up gradually. // // Local Parameters: // // Local, integer START, the first location of a block of values to set. // // Local, integer CONTIG, the number of consecutive values to set. // // Local, integer SKIP, the distance from the current value of START // to the next location of a block of values to set. // // Local, integer REP, the number of blocks of values to set. // { static int contig = 0; int i; int j; int k; static int rep = 0; static int skip = 0; int start; if ( factor_index == 0 ) { contig = 1; skip = 1; rep = point_num; for ( i = 0; i < point_num; i++ ) { w[i] = 1.0; } } rep = rep / factor_order; skip = skip * factor_order; for ( j = 0; j < factor_order; j++ ) { start = 0 + j * contig; for ( k = 1; k <= rep; k++ ) { for ( i = start; i < start + contig; i++ ) { w[i] = w[i] * factor_value[j]; } start = start + skip; } } contig = contig * factor_order; return; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double r8vec_i4vec_dot_product ( int n, double r8vec[], int i4vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_I4VEC_DOT_PRODUCT computes the dot product of an R8VEC and an I4VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double R8VEC[N], the first vector. // // Input, int I4VEC[N], the second vector. // // Output, double R8VEC_I4VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + r8vec[i] * ( double ) ( i4vec[i] ); } return value; } //****************************************************************************80 void r8vec_index_sorted_range ( int n, double r[], int indx[], double r_lo, double r_hi, int *i_lo, int *i_hi ) //****************************************************************************80 // // Purpose: // // R8VEC_INDEX_SORTED_RANGE: search index sorted vector for elements in a range. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of items in the vector. // // Input, double R[N], the index sorted vector. // // Input, int INDX[N], the vector used to sort R. // The vector R[INDX[*]] is sorted. // // Input, double R_LO, R_HI, the limits of the range. // // Output, int *I_LO, *I_HI, the range of indices // so that I_LO <= I <= I_HI => R_LO <= R[INDX[I]] <= R_HI. If no // values in R lie in the range, then I_HI < I_LO will be returned. // { int i1; int i2; int j1; int j2; // // Cases we can handle immediately. // if ( r[indx[n-1]] < r_lo ) { *i_lo = n; *i_hi = n - 1; return; } if ( r_hi < r[indx[0]] ) { *i_lo = 0; *i_hi = -1; return; } // // Are there are least two intervals? // if ( n == 1 ) { if ( r_lo <= r[indx[0]] && r[indx[0]] <= r_hi ) { *i_lo = 0; *i_hi = 0; } else { *i_lo = -1; *i_hi = -2; } return; } // // Bracket R_LO. // if ( r_lo <= r[indx[0]] ) { *i_lo = 0; } else { // // R_LO is in one of the intervals spanned by R(INDX(J1)) to R(INDX(J2)). // Examine the intermediate interval [R(INDX(I1)), R(INDX(I1+1))]. // Does R_LO lie here, or below or above? // j1 = 0; j2 = n - 1; i1 = ( j1 + j2 - 1 ) / 2; i2 = i1 + 1; for ( ; ; ) { if ( r_lo < r[indx[i1]] ) { j2 = i1; i1 = ( j1 + j2 - 1 ) / 2; i2 = i1 + 1; } else if ( r[indx[i2]] < r_lo ) { j1 = i2; i1 = ( j1 + j2 - 1 ) / 2; i2 = i1 + 1; } else { *i_lo = i1; break; } } } // // Bracket R_HI. // if ( r[indx[n-1]] <= r_hi ) { *i_hi = n - 1; } else { j1 = *i_lo; j2 = n - 1; i1 = ( j1 + j2 - 1 ) / 2; i2 = i1 + 1; for ( ; ; ) { if ( r_hi < r[indx[i1]] ) { j2 = i1; i1 = ( j1 + j2 - 1 ) / 2; i2 = i1 + 1; } else if ( r[indx[i2]] < r_hi ) { j1 = i2; i1 = ( j1 + j2 - 1 ) / 2; i2 = i1 + 1; } else { *i_hi = i2; break; } } } // // We expect to have computed the largest I_LO and smallest I_HI such that // R(INDX(I_LO)) <= R_LO <= R_HI <= R(INDX(I_HI)) // but what we want is actually // R_LO <= R(INDX(I_LO)) <= R(INDX(I_HI)) <= R_HI // which we can usually get simply by incrementing I_LO and decrementing I_HI. // if ( r[indx[*i_lo]] < r_lo ) { *i_lo = *i_lo + 1; if ( n - 1 < *i_lo ) { *i_hi = *i_lo - 1; } } if ( r_hi < r[indx[*i_hi]] ) { *i_hi = *i_hi - 1; if ( i_hi < 0 ) { *i_lo = *i_hi + 1; } } return; } //****************************************************************************80 void r8vec_indexed_heap_d ( int n, double a[], int indx[] ) //****************************************************************************80 // // Purpose: // // R8VEC_INDEXED_HEAP_D creates a descending heap from an indexed R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // An indexed R8VEC is an R8VEC of data values, and an R8VEC of N indices, // each referencing an entry of the data vector. // // The function adjusts the index vector INDX so that, for 1 <= J <= N/2, // we have: // A[INDX[2*J+1]] <= A[INDX[J]] // and // A[INDX[2*J+2]] <= A[INDX[J]] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2010 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the size of the index array. // // Input, double A[*], the data vector. // // Input/output, int INDX[N], the index array. // Each entry of INDX must be a valid index for the array A. // On output, the indices have been reordered into a descending heap. // { int i; int ifree; int key; int m; // // Only nodes N/2 - 1 down to 0 can be "parent" nodes. // for ( i = ( n / 2 ) - 1; 0 <= i; i-- ) { // // Copy the value out of the parent node. // Position IFREE is now "open". // key = indx[i]; ifree = i; for ( ; ; ) { // // Positions 2*IFREE+1 and 2*IFREE+2 are the descendants of position // IFREE. (One or both may not exist because they exceed N-1.) // m = 2 * ifree + 1; // // Does the first position exist? // if ( n - 1 < m ) { break; } // // Does the second position exist? // if ( m + 1 <= n - 1 ) { // // If both positions exist, take the larger of the two values, // and update M if necessary. // if ( a[indx[m]] < a[indx[m+1]] ) { m = m + 1; } } // // If the large descendant is larger than KEY, move it up, // and update IFREE, the location of the free position, and // consider the descendants of THIS position. // if ( a[indx[m]] <= a[key] ) { break; } indx[ifree] = indx[m]; ifree = m; } // // Once there is no more shifting to do, KEY moves into the free spot IFREE. // indx[ifree] = key; } return; } //****************************************************************************80 int r8vec_indexed_heap_d_extract ( int *n, double a[], int indx[] ) //****************************************************************************80 // // Purpose: // // R8VEC_INDEXED_HEAP_D_EXTRACT: extract from heap descending indexed R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // An indexed R8VEC is an R8VEC of data values, and an R8VEC of N indices, // each referencing an entry of the data vector. // // The routine finds the maximum value in the heap, returns that value to the // user, deletes that value from the heap, and restores the heap to its // proper form. // // Note that the argument N must be a variable, which will be decremented // before return, and that INDX will hold one less value on output than it // held on input. // // This is one of three functions needed to model a priority queue. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2010 // // Author: // // John Burkardt // // Reference: // // Thomas Cormen, Charles Leiserson, Ronald Rivest, // Introduction to Algorithms, // MIT Press, 2001, // ISBN: 0262032937, // LC: QA76.C662. // // Parameters: // // Input/output, int *N, the number of items in the index vector. // // Input, double A[*], the data vector. // // Input/output, int INDX[N], the index vector. // // Output, int R8VEC_INDEXED_HEAP_D_EXTRACT, the index in A of the item of // maximum value, which has now been removed from the heap. // { int indx_extract; if ( *n < 1 ) { std::cerr << "\n"; std::cerr << "R8VEC_INDEXED_HEAP_D_EXTRACT - Fatal error!\n"; std::cerr << " The heap is empty.\n"; std::exit ( 1 ); } // // Get the index of the maximum value. // indx_extract = indx[0]; if ( *n == 1 ) { *n = 0; return indx_extract; } // // Shift the last index down. // indx[0] = indx[*n-1]; // // Restore the heap structure. // *n = *n - 1; webbur::r8vec_indexed_heap_d ( *n, a, indx ); return indx_extract; } //****************************************************************************80 void r8vec_indexed_heap_d_insert ( int *n, double a[], int indx[], int indx_insert ) //****************************************************************************80 // // Purpose: // // R8VEC_INDEXED_HEAP_D_INSERT: insert value into heap descending indexed R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // An indexed R8VEC is an R8VEC of data values, and an R8VEC of N indices, // each referencing an entry of the data vector. // // Note that the argument N must be a variable, and will be incremented before // return, and that INDX must be able to hold one more entry on output than // it held on input. // // This is one of three functions needed to model a priority queue. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2010 // // Author: // // John Burkardt // // Reference: // // Thomas Cormen, Charles Leiserson, Ronald Rivest, // Introduction to Algorithms, // MIT Press, 2001, // ISBN: 0262032937, // LC: QA76.C662. // // Parameters: // // Input/output, int *N, the number of items in the index vector. // // Input, double A[*], the data vector. // // Input/output, int INDX[N], the index vector. // // Input, int INDX_INSERT, the index in A of the value // to be inserted into the heap. // { int i; int parent; *n = *n + 1; i = *n - 1; while ( 0 < i ) { parent = ( i - 1 ) / 2; if ( a[indx_insert] <= a[indx[parent]] ) { break; } indx[i] = indx[parent]; i = parent; } indx[i] = indx_insert; return; } //****************************************************************************80 int r8vec_indexed_heap_d_max ( int n, double a[], int indx[] ) //****************************************************************************80 // // Purpose: // // R8VEC_INDEXED_HEAP_D_MAX: maximum value in heap descending indexed R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // An indexed R8VEC is an R8VEC of data values, and an R8VEC of N indices, // each referencing an entry of the data vector. // // This is one of three functions needed to model a priority queue. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2010 // // Author: // // John Burkardt // // Reference: // // Thomas Cormen, Charles Leiserson, Ronald Rivest, // Introduction to Algorithms, // MIT Press, 2001, // ISBN: 0262032937, // LC: QA76.C662. // // Parameters: // // Input, int N, the number of items in the index vector. // // Input, double A[*], the data vector. // // Input, int INDX[N], the index vector. // // Output, int R8VEC_INDEXED_HEAP_D_MAX, the index in A of the maximum value // in the heap. // { int indx_max; indx_max = indx[0]; return indx_max; } //****************************************************************************80 double *r8vec_legendre_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_LEGENDRE_NEW creates a vector of Chebyshev spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LEGENDRE_NEW[N], a vector of Legendre spaced data. // { double *a; int i; a = webbur::legendre_zeros ( n ); for ( i = 0; i < n; i++ ) { a[i] = ( ( 1.0 - a[i] ) * a_first + ( 1.0 + a[i] ) * a_last ) / 2.0; } return a; } //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_LINSPACE_NEW creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 double r8vec_min ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MIN returns the value of the minimum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], the array to be checked. // // Output, double R8VEC_MIN, the value of the minimum element. // { int i; double value; value = r8vec[0]; for ( i = 1; i < n; i++ ) { if ( r8vec[i] < value ) { value = r8vec[i]; } } return value; } //****************************************************************************80 double r8vec_min_pos ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MIN_POS returns the minimum positive value of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 November 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries. // // Input, double A[N], the array. // // Output, double R8VEC_MIN_POS, the smallest positive entry, // or R8_HUGE if no entry is positive. // { int i; double r8_huge = 1.0E+30; double value; value = r8_huge; for ( i = 0; i < n; i++ ) { if ( 0.0 < a[i] ) { if ( a[i] < value ) { value = a[i]; } } } return value; } //****************************************************************************80 void r8vec_print ( int n, double a[], std::string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; std::cout << "\n"; std::cout << title << "\n"; std::cout << "\n"; for ( i = 0; i < n; i++ ) { std::cout << " " << std::setw(8) << i << ": " << std::setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void r8vec_scale ( double s, int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SCALE multiples an R8VEC by a scale factor. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 September 2011 // // Author: // // John Burkardt // // Parameters: // // Input, double S, the scale factor. // // Input, int N, the number of entries in the vectors. // // Input/output, double A[N], the vector to be scaled. // On output, A[] = S * A[]. // { int i; for ( i = 0; i < n; i++ ) { a[i] = s * a[i]; } return; } //****************************************************************************80 void r8vec_sort_heap_index_a ( int n, double a[], int indx[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an R8VEC // // Discussion: // // An R8VEC is a vector of R8's. // // The sorting is not actually carried out. Rather an index array is // created which defines the sorting. This array may be used to sort // or index the array, or to sort or index related arrays keyed on the // original array. // // Once the index array is computed, the sorting can be carried out // "implicitly: // // a(indx(*)) // // or explicitly, by the call // // r8vec_permute ( n, indx, 0, a ) // // after which a(*) is sorted. // // Note that the index vector is 0-based. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[N], an array to be index-sorted. // // Output, int INDX[N], contains the sort index. The // I-th element of the sorted array is A(INDX(I)). // { double aval; int i; int indxt; int ir; int j; int l; if ( n < 1 ) { return; } for ( i = 0; i < n; i++ ) { indx[i] = i; } if ( n == 1 ) { return; } l = n / 2 + 1; ir = n; for ( ; ; ) { if ( 1 < l ) { l = l - 1; indxt = indx[l-1]; aval = a[indxt]; } else { indxt = indx[ir-1]; aval = a[indxt]; indx[ir-1] = indx[0]; ir = ir - 1; if ( ir == 1 ) { indx[0] = indxt; break; } } i = l; j = l + l; while ( j <= ir ) { if ( j < ir ) { if ( a[indx[j-1]] < a[indx[j]] ) { j = j + 1; } } if ( aval < a[indx[j-1]] ) { indx[i-1] = indx[j-1]; i = j; j = j + j; } else { j = ir + 1; } } indx[i-1] = indxt; } return; } //****************************************************************************80 int *r8vec_sort_heap_index_a_new ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SORT_HEAP_INDEX_A_NEW does an indexed heap ascending sort of an R8VEC // // Discussion: // // An R8VEC is a vector of R8's. // // The sorting is not actually carried out. Rather an index array is // created which defines the sorting. This array may be used to sort // or index the array, or to sort or index related arrays keyed on the // original array. // // Once the index array is computed, the sorting can be carried out // "implicitly: // // a(indx(*)) // // or explicitly, by the call // // r8vec_permute ( n, indx, 0, a ) // // after which a(*) is sorted. // // Note that the index vector is 0-based. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[N], an array to be index-sorted. // // Output, int R8VEC_SORT_HEAP_INDEX_A_NEW[N], contains the sort index. The // I-th element of the sorted array is A(INDX(I)). // { double aval; int i; int *indx; int indxt; int ir; int j; int l; if ( n < 1 ) { return NULL; } indx = new int[n]; for ( i = 0; i < n; i++ ) { indx[i] = i; } if ( n == 1 ) { return indx; } l = n / 2 + 1; ir = n; for ( ; ; ) { if ( 1 < l ) { l = l - 1; indxt = indx[l-1]; aval = a[indxt]; } else { indxt = indx[ir-1]; aval = a[indxt]; indx[ir-1] = indx[0]; ir = ir - 1; if ( ir == 1 ) { indx[0] = indxt; break; } } i = l; j = l + l; while ( j <= ir ) { if ( j < ir ) { if ( a[indx[j-1]] < a[indx[j]] ) { j = j + 1; } } if ( aval < a[indx[j-1]] ) { indx[i-1] = indx[j-1]; i = j; j = j + j; } else { j = ir + 1; } } indx[i-1] = indxt; } return indx; } //****************************************************************************80 void r8vec_stutter ( int n, double a[], int m, double am[] ) //****************************************************************************80 // // Purpose: // // R8VEC_STUTTER makes a "stuttering" copy of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Applying a stuttering factor M of 3, the vector A = ( 1, 5, 8 ) becomes // AM = ( 1, 1, 1, 5, 5, 5, 8, 8, 8 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the size of the input vector. // // Input, double A[N], the vector. // // Input, int M, the "stuttering factor". // // Output, double AM[M*N], the stuttering vector. // { int i; int j; int k; k = 0; for ( i = 0; i < n; i++ ) { for ( j = 0; j < m; j++ ) { am[k] = a[i]; k = k + 1; } } return; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a double precision vector. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 void r8vec_uniform_01 ( int n, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; if ( *seed == 0 ) { std::cerr << "\n"; std::cerr << "R8VEC_UNIFORM_01 - Fatal error!\n"; std::cerr << " Input value of SEED = 0.\n"; std::exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( *seed == 0 ) { std::cerr << "\n"; std::cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; std::cerr << " Input value of SEED = 0.\n"; std::exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void r8vec_zero ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_ZERO zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return; } //****************************************************************************80 void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 February 2004 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int *INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int *I, *J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( *indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( *indx < 0 ) { if ( *indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } if ( 0 < isgn ) { *indx = 2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; } *i = i_save; *j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( *indx == 1 ) { k1 = k; } for ( ; ; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; *indx = -2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; *i = i_save; *j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; *i = i_save; *j = j_save; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void vec_colex_next3 ( int dim_num, int base[], int a[], bool *more ) //****************************************************************************80 // // Purpose: // // VEC_COLEX_NEXT3 generates vectors in colex order. // // Discussion: // // The vectors are produced in colexical order, starting with // // (1, 1, ...,1), // (2, 1, ...,1), // ... // (BASE(1), 1, ...,1) // // (1, 2, ...,1) // (2, 2, ...,1) // ... // (BASE(1), 2, ...,1) // // (1, 3, ...,1) // (2, 3, ...,1) // ... // (BASE(1), BASE(2), ...,BASE(DIM_NUM)). // // Example: // // DIM_NUM = 2, // BASE = { 3, 3 } // // 1 1 // 2 1 // 3 1 // 1 2 // 2 2 // 3 2 // 1 3 // 2 3 // 3 3 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int BASE[DIM_NUM], the bases to be used in each dimension. // In dimension I, entries will range from 1 to BASE[I]. // // Output, int A[DIM_NUM], the next vector. // // Input/output, bool *MORE. Set this variable false before // the first call. On return, MORE is TRUE if another vector has // been computed. If MORE is returned FALSE, ignore the output // vector and stop calling the routine. // { int i; if ( !( *more ) ) { for ( i = 0; i < dim_num; i++ ) { a[i] = 1; } *more = true; } else { for ( i = 0; i < dim_num; i++ ) { a[i] = a[i] + 1; if ( a[i] <= base[i] ) { return; } a[i] = 1; } *more = false; } return; } }