# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); int congruence ( int a, int b, int c, int *error ); int i4_gcd ( int i, int j ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int i4_sign ( int i ); void lcrg_anbn ( int a, int b, int c, int n, int *an, int *bn ); int lcrg_evaluate ( int a, int b, int c, int x ); int power_mod ( int a, int n, int m ); void timestamp ( ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for RANDOM_MPI. // // Discussion: // // This program demonstrates how P processors can generate the same // sequence of random numbers as 1 processor. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 June 2016 // // Author: // // John Burkardt // // Reference: // // William Gropp, Ewing Lusk, Anthony Skjellum, // Using MPI: Portable Parallel Programming with the // Message-Passing Interface, // Second Edition, // MIT Press, 1999, // ISBN: 0262571323, // LC: QA76.642.G76. // { int a; int an; int b; int bn; int c; int id; int j; int k; int k_hi; int p; int u; int v; // // Initialize MPI. // MPI_Init ( &argc, &argv ); // // Get the number of processors. // MPI_Comm_size ( MPI_COMM_WORLD, &p ); // // Get the rank of this processor. // MPI_Comm_rank ( MPI_COMM_WORLD, &id ); // // Print a message. // if ( id == 0 ) { timestamp ( ); cout << "\n"; cout << "RANDOM_MPI - Master process:\n"; cout << " C++ version\n"; cout << " The number of processors is P = " << p << "\n"; cout << "\n"; cout << " This program shows how a stream of random numbers\n"; cout << " can be computed 'in parallel' in an MPI program.\n"; cout << "\n"; cout << " We assume we are using a linear congruential\n"; cout << " random number generator or LCRG, which takes\n"; cout << " an integer input and returns a new integer output:\n"; cout << "\n"; cout << " U = ( A * V + B ) mod C\n"; cout << "\n"; cout << " We assume that we want the MPI program to produce\n"; cout << " the same sequence of random values as a sequential\n"; cout << " program would - but we want each processor to compute\n"; cout << " one part of that sequence.\n"; cout << "\n"; cout << " We do this by computing a new LCRG which can compute\n"; cout << " every P'th entry of the original one.\n"; cout << "\n"; cout << " Our LCRG works with integers, but it is easy to\n"; cout << " turn each integer into a real number between [0,1].\n"; } // // A, B and C define the linear congruential random number generator. // a = 16807; b = 0; c = 2147483647; if ( id == 0 ) { cout << "\n"; cout << " LCRG parameters:\n"; cout << "\n"; cout << " A = " << a << "\n"; cout << " B = " << b << "\n"; cout << " C = " << c << "\n"; } k_hi = p * 10; // // Processor 0 generates 10 * P random values. // if ( id == 0 ) { cout << "\n"; cout << " Let processor 0 generate the entire random number sequence.\n"; cout << "\n"; cout << " K ID Input Output\n"; cout << "\n"; k = 0; v = 12345; cout << " " << setw(4) << k << " " << setw(4) << id << " " << " " << " " << setw(12) << v << "\n"; for ( k = 1; k <= k_hi; k++ ) { u = v; v = lcrg_evaluate ( a, b, c, u ); cout << " " << setw(4) << k << " " << setw(4) << id << " " << setw(12) << u << " " << setw(12) << v << "\n"; } } // // Processor P now participates by computing the P-th part of the sequence. // lcrg_anbn ( a, b, c, p, &an, &bn ); if ( id == 0 ) { cout << "\n"; cout << " LCRG parameters for P processors:\n"; cout << "\n"; cout << " AN = " << an << "\n"; cout << " BN = " << bn << "\n"; cout << " C = " << c << "\n"; cout << "\n"; cout << " Have ALL the processors participate in computing\n"; cout << " the same random number sequence.\n"; cout << "\n"; cout << " K ID Input Output\n"; cout << "\n"; } // // On System X, just to try to keep the output of the various processors // sorted, I had to resort to a SLEEP command to keep the processors from // competing. Obviously, this is only to make the output readable // so we can verify it. It's NOT what you want to do in a production // situation! // // sleep ( id * 2 ); // // Use the basis LCRG to get the ID-th value in the sequence. // v = 12345; for ( j = 1; j <= id; j++ ) { u = v; v = lcrg_evaluate ( a, b, c, u ); } k = id; cout << " " << setw(4) << k << " " << setw(4) << id << " " << " " << " " << setw(12) << v << "\n"; // // Now use the "skipping" LCRG to compute the values with indices // ID, ID+P, ID+2P, ..., // for ( k = id + p; k <= k_hi; k = k + p ) { u = v; v = lcrg_evaluate ( an, bn, c, u ); cout << " " << setw(4) << k << " " << setw(4) << id << " " << setw(12) << u << " " << setw(12) << v << "\n"; } // // Terminate MPI. // MPI_Finalize ( ); // // Terminate. // if ( id == 0 ) { cout << "\n"; cout << "RANDOM_MPI:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); } return 0; } //****************************************************************************80 int congruence ( int a, int b, int c, bool *error ) //****************************************************************************80 // // Purpose: // // CONGRUENCE solves a congruence of the form ( A * X = C ) mod B. // // Discussion: // // A, B and C are given integers. The equation is solvable if and only // if the greatest common divisor of A and B also divides C. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 May 2008 // // Author: // // John Burkardt // // Reference: // // Eric Weisstein, editor, // CRC Concise Encylopedia of Mathematics, // CRC Press, 2002, // Second edition, // ISBN: 1584883472, // LC: QA5.W45. // // Parameters: // // Input, int A, B, C, the coefficients of the Diophantine equation. // // Output, bool *ERROR, error flag, is TRUE if an error occurred.. // // Output, int CONGRUENCE, the solution of the Diophantine equation. // X will be between 0 and B-1. // { # define N_MAX 100 int a_copy; int a_mag; int a_sign; int b_copy; int b_mag; int c_copy; int g; int k; int n; int q[N_MAX]; bool swap; int x; int y; int z; // // Defaults for output parameters. // *error = false; x = 0; y = 0; // // Special cases. // if ( a == 0 && b == 0 && c == 0 ) { x = 0; return x; } else if ( a == 0 && b == 0 && c != 0 ) { *error = true; x = 0; return x; } else if ( a == 0 && b != 0 && c == 0 ) { x = 0; return x; } else if ( a == 0 && b != 0 && c != 0 ) { x = 0; if ( ( c % b ) != 0 ) { *error = true; } return x; } else if ( a != 0 && b == 0 && c == 0 ) { x = 0; return x; } else if ( a != 0 && b == 0 && c != 0 ) { x = c / a; if ( ( c % a ) != 0 ) { *error = true; } return x; } else if ( a != 0 && b != 0 && c == 0 ) { // g = i4_gcd ( a, b ); // x = b / g; x = 0; return x; } // // Now handle the "general" case: A, B and C are nonzero. // // Step 1: Compute the GCD of A and B, which must also divide C. // g = i4_gcd ( a, b ); if ( ( c % g ) != 0 ) { *error = true; return x; } a_copy = a / g; b_copy = b / g; c_copy = c / g; // // Step 2: Split A and B into sign and magnitude. // a_mag = abs ( a_copy ); a_sign = i4_sign ( a_copy ); b_mag = abs ( b_copy ); // // Another special case, A_MAG = 1 or B_MAG = 1. // if ( a_mag == 1 ) { x = a_sign * c_copy; return x; } else if ( b_mag == 1 ) { x = 0; return x; } // // Step 3: Produce the Euclidean remainder sequence. // if ( b_mag <= a_mag ) { swap = false; q[0] = a_mag; q[1] = b_mag; } else { swap = true; q[0] = b_mag; q[1] = a_mag; } n = 3; for ( ; ; ) { q[n-1] = ( q[n-3] % q[n-2] ); if ( q[n-1] == 1 ) { break; } n = n + 1; if ( N_MAX < n ) { *error = true; cout << "\n"; cout << "CONGRUENCE - Fatal error!\n"; cout << " Exceeded number of iterations.\n"; exit ( 1 ); } } // // Step 4: Now go backwards to solve X * A_MAG + Y * B_MAG = 1. // y = 0; for ( k = n; 2 <= k; k-- ) { x = y; y = ( 1 - x * q[k-2] ) / q[k-1]; } // // Step 5: Undo the swapping. // if ( swap ) { z = x; x = y; y = z; } // // Step 6: Now apply signs to X and Y so that X * A + Y * B = 1. // x = x * a_sign; // // Step 7: Multiply by C, so that X * A + Y * B = C. // x = x * c_copy; // // Step 8: Now force 0 <= X < B. // x = x % b; // // Step 9: Force positivity. // if ( x < 0 ) { x = x + b; } return x; # undef N_MAX } //****************************************************************************80 int i4_gcd ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_GCD finds the greatest common divisor of I and J. // // Discussion: // // Only the absolute values of I and J are considered, so that the // result is always nonnegative. // // If I or J is 0, I4_GCD is returned as max ( 1, abs ( I ), abs ( J ) ). // // If I and J have no common factor, I4_GCD is returned as 1. // // Otherwise, using the Euclidean algorithm, I4_GCD is the // largest common factor of I and J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, two numbers whose greatest common divisor // is desired. // // Output, int I4_GCD, the greatest common divisor of I and J. // { int ip; int iq; int ir; // // Return immediately if either I or J is zero. // if ( i == 0 ) { return i4_max ( 1, abs ( j ) ); } else if ( j == 0 ) { return i4_max ( 1, abs ( i ) ); } // // Set IP to the larger of I and J, IQ to the smaller. // This way, we can alter IP and IQ as we go. // ip = i4_max ( abs ( i ), abs ( j ) ); iq = i4_min ( abs ( i ), abs ( j ) ); // // Carry out the Euclidean algorithm. // for ( ; ; ) { ir = ip % iq; if ( ir == 0 ) { break; } ip = iq; iq = ir; } return iq; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_sign ( int i ) //****************************************************************************80 // // Purpose: // // I4_SIGN returns the sign of an I4. // // Discussion: // // The sign of 0 and all positive integers is taken to be +1. // The sign of all negative integers is -1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer whose sign is desired. // // Output, int I4_SIGN, the sign of I. { int value; if ( i < 0 ) { value = -1; } else { value = 1; } return value; } //****************************************************************************80 void lcrg_anbn ( int a, int b, int c, int n, int *an, int *bn ) //****************************************************************************80 // // Purpose: // // LCRG_ANBN computes the "N-th power" of a linear congruential generator. // // Discussion: // // We are considering a linear congruential random number generator. // The LCRG takes as input an integer value called SEED, and returns // an updated value of SEED, // // SEED(out) = ( a * SEED(in) + b ) mod c. // // and an associated pseudorandom real value // // U = SEED(out) / c. // // In most cases, a user is content to call the LCRG repeatedly, with // the updating of SEED being taken care of automatically. // // The purpose of this routine is to determine the values of AN and BN // that describe the LCRG that is equivalent to N applications of the // original LCRG. // // One use for such a facility would be to do random number computations // in parallel. If each of N processors is to compute many random values, // you can guarantee that they work with distinct random values // by starting with a single value of SEED, using the original LCRG to generate // the first N-1 "iterates" of SEED, so that you now have N "seed" values, // and from now on, applying the N-th power of the LCRG to the seeds. // // If the K-th processor starts from the K-th seed, it will essentially // be computing every N-th entry of the original random number sequence, // offset by K. Thus the individual processors will be using a random // number stream as good as the original one, and without repeating, and // without having to communicate. // // To evaluate the N-th value of SEED directly, we start by ignoring // the modular arithmetic, and working out the sequence of calculations // as follows: // // SEED(0) = SEED. // SEED(1) = a * SEED + b // SEED(2) = a * SEED(1) + b = a^2 * SEED + a * b + b // SEED(3) = a * SEED(2) + b = a^3 * SEED + a^2 * b + a * b + b // ... // SEED(N-1) = a * SEED(N-2) + b // // SEED(N) = a * SEED(N-1) + b = a^N * SEED // + ( a^(n-1) + a^(n-2) + ... + a + 1 ) * b // // or, using the geometric series, // // SEED(N) = a^N * SEED + ( a^N - 1) / ( a - 1 ) * b // = AN * SEED + BN // // Thus, from any SEED, we can determine the result of N applications of the // original LCRG directly if we can solve // // ( a - 1 ) * BN = ( a^N - 1 ) * b in modular arithmetic, // // and evaluate: // // AN = a^N // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 April 2008 // // Author: // // John Burkardt // // Reference: // // Barry Wilkinson, Michael Allen, // Parallel Programming: // Techniques and Applications Using Networked Workstations and Parallel Computers, // Prentice Hall, // ISBN: 0-13-140563-2, // LC: QA76.642.W54. // // Parameters: // // Input, int A, the multiplier for the LCRG. // // Input, int B, the added value for the LCRG. // // Input, int C, the base for the modular arithmetic. // For 32 bit arithmetic, this is often 2^31 - 1, or 2147483647. It is // required that 0 < C. // // Input, int N, the "index", or number of times that the // LCRG is to be applied. It is required that 0 <= N. // // Output, int *AN, *BN, the multiplier and added value for // the LCRG that represent N applications of the original LCRG. // { int am1; int anm1tb; bool ierror; if ( n < 0 ) { cerr << "\n"; cerr << "LCRG_ANBN - Fatal error!\n"; cerr << " Illegal input value of N = " << n << "\n"; exit ( 1 ); } if ( c <= 0 ) { cerr << "\n"; cerr << "LCRG_ANBN - Fatal error!\n"; cerr << " Illegal input value of C = " << c << "\n"; exit ( 1 ); } if ( n == 0 ) { *an = 1; *bn = 0; } else if ( n == 1 ) { *an = a; *bn = b; } else { // // Compute A^N. // *an = power_mod ( a, n, c ); // // Solve // ( a - 1 ) * BN = ( a^N - 1 ) mod B // for BN. // am1 = a - 1; anm1tb = ( *an - 1 ) * b; *bn = congruence ( am1, c, anm1tb, &ierror ); if ( ierror ) { cerr << "\n"; cerr << "LCRG_ANBN - Fatal error!\n"; cerr << " An error occurred in the CONGRUENCE routine.\n"; exit ( 1 ); } } return; } //****************************************************************************80 int lcrg_evaluate ( int a, int b, int c, int x ) //****************************************************************************80 // // Purpose: // // LCRG_EVALUATE evaluates an LCRG, y = ( A * x + B ) mod C. // // Discussion: // // This routine cannot be recommended for production use. Because we want // to do modular arithmetic, but the base is not a power of 2, we need to // use "double precision" integers to keep accuracy. // // If we knew the base C, we could try to avoid overflow while not changing // precision. // // If the base C was a power of 2, we could rely on the usual properties of // integer arithmetic on computers, in which overflow bits, which are always // ignored, don ot actually matter. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 April 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int A, the multiplier for the LCRG. // // Input, int B, the added value for the LCRG. // // Input, int C, the base for the modular arithmetic. // For 32 bit arithmetic, this is often 2^31 - 1, or 2147483647. It is // required that 0 < C. // // Input, int X, the value to be processed. // // Output, int LCRG_EVALUATE, the processed value. // { long long int a8; long long int b8; long long int c8; long long int x8; int y; long long int y8; // // To avoid roundoff issues, we need to go to "double precision" integers. // (Not available on all planets.) // a8 = ( long long int ) a; b8 = ( long long int ) b; c8 = ( long long int ) c; x8 = ( long long int ) x; y8 = ( a8 * x8 + b8 ) % c8; y = ( int ) ( y8 ); if ( y < 0 ) { y = y + c; } return y; } //****************************************************************************80 int power_mod ( int a, int n, int m ) //****************************************************************************80 // // Purpose: // // POWER_MOD computes ( A^N ) mod M. // // Discussion: // // Some programming tricks are used to speed up the computation, and to // allow computations in which A^N is much too large to store in a // real word. // // First, for efficiency, the power A**N is computed by determining // the binary expansion of N, then computing A, A^2, A^4, and so on // by repeated squaring, and multiplying only those factors that // contribute to A^N. // // Secondly, the intermediate products are immediately "mod'ed", which // keeps them small. // // For instance, to compute mod ( A**13, 11 ), we essentially compute // // 13 = 1 + 4 + 8 // // A^13 = A * A^4 * A^8 // // A^13 mod ( 11 ) = A mod ( 11 ) * A^4 mod ( 11 ) * A^8 mod ( 11 ). // // Fermat's little theorem says that if P is prime, and A is not divisible // by P, then ( A^(P-1) - 1 ) is divisible by P. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 May 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int A, the base of the expression to be tested. // A should be nonnegative. // // Input, int N, the power to which the base is raised. // N should be nonnegative. // // Input, int M, the divisor against which the expression is tested. // M should be positive. // // Output, int POWER_MOD, the remainder when A^N is divided by M. // { long long int a_square2; int d; long long int m2; int x; long long int x2; if ( a < 0 ) { return -1; } if ( m <= 0 ) { return -1; } if ( n < 0 ) { return -1; } // // A_SQUARE contains the successive squares of A. // a_square2 = ( long long int ) a; m2 = ( long long int ) m; x2 = ( long long int ) 1; while ( 0 < n ) { d = n % 2; if ( d == 1 ) { x2 = ( x2 * a_square2 ) % m2; } a_square2 = ( a_square2 * a_square2 ) % m2; n = ( n - d ) / 2; } // // Ensure that 0 <= X. // while ( x2 < 0 ) { x2 = x2 + m2; } x = ( int ) x2; return x; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }