# include # include # include # include # include using namespace std; # include "r8sto.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 double *r8ge_mm ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8GE_MM multiplies two R8GE matrices. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrices. // N must be positive. // // Input, double A[N*N], B[N*N], the R8GE factor matrices. // // Output, double C[N*N], the R8GE product matrix. // { double *c; int i; int j; int k; c = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { c[i+j*n] = 0.0; for ( k = 0; k < n; k++ ) { c[i+j*n] = c[i+j*n] + a[i+k*n] * b[k+j*n]; } } } return c; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8sto_dif2 ( int n ) //****************************************************************************80 // // Purpose: // // R8STO_DIF2 sets the second difference as an R8STO matrix. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Output, double R8STO_DIF2[N], the R8STO matrix. // { double *a; a = r8vec_zeros_new ( n ); a[0] = 2.0; a[1] = -1.0; return a; } //****************************************************************************80 double *r8sto_indicator ( int n ) //****************************************************************************80 // // Purpose: // // R8STO_INDICATOR sets up an R8STO indicator matrix. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Output, double R8STO_INDICATOR[N], the R8STO matrix. // { double *a; int fac; int i; int j; int k; a = new double[n]; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); i = 1; k = 0; for ( j = 1; j <= n; j++ ) { a[k] = ( double ) ( fac * i + j ); k = k + 1; } return a; } //****************************************************************************80 double *r8sto_inverse ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8STO_INVERSE computes the inverse of an R8STO matrix. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // For this routine, the matrix is also required to be positive definite. // // The original implementation of the algorithm assumed that the // diagonal element was 1. The algorithm has been modified so that // this is no longer necessary. // // The inverse matrix is NOT guaranteed to be a Toeplitz matrix. // It is guaranteed to be symmetric and persymmetric. // The inverse matrix is returned in general storage, that is, // as an "SGE" matrix. // // Example: // // To compute the inverse of // // 1.0 0.5 0.2 // 0.5 1.0 0.5 // 0.2 0.5 1.0 // // we input: // // N = 3 // A = { 1.0, 0.5, 0.2 } // // with output: // // B = ( 1/56) * [ 75, -40, 5, // -40, 96, -40, // 5, -40, 75 ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2004 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Section 4.7.3, "Computing the Inverse", // Matrix Computations, // Third Edition, // Johns Hopkins, 1996. // // Parameters: // // Input, int N, the order of the system. // // Input, double A[N], the R8STO matrix. // // Output, double R8STO_INVERSE[N*N], the inverse of the matrix. // { double *a2; double *b; int i; int j; double t; double *v; double vn; a2 = new double[n-1]; b = new double[n*n]; for ( i = 0; i < n-1; i++ ) { a2[i] = a[i+1] / a[0]; } v = r8sto_yw_sl ( n-1, a2 ); // // Compute the N-th entry of V. // t = 0.0; for ( i = 0; i < n-1; i++ ) { t = t + a2[i] * v[i]; } vn = 1.0 / ( 1.0 + t ); // // Reverse the first N-1 entries of V. // for ( i = 0; i < (n-1)/2; i++ ) { j = n - 2 - i; t = v[i]; v[i] = v[j]; v[j] = t; } // // Scale the entries. // for ( i = 0; i < n-1; i++ ) { v[i] = vn * v[i]; } // // Set the boundaries of B. // b[0+0*n] = vn; for ( j = 1; j < n; j++ ) { b[0+j*n] = v[n-j-1]; } for ( j = 0; j < n-1; j++ ) { b[n-1+j*n] = v[j]; } b[n-1+(n-1)*n] = vn; for ( i = 1; i < n-1; i++ ) { b[i+0*n] = v[n-1-i]; b[i+(n-1)*n] = v[i]; } // // Fill the interior. // for ( i = 2; i <= 1+(n-1)/2; i++ ) { for ( j = i; j <= n - i + 1; j++ ) { t = b[i-2+(j-2)*n] + ( v[n-j] * v[n-i] - v[i-2] * v[j-2] ) / vn; b[i-1+(j-1)*n] = t; b[j-1+(i-1)*n] = t; b[n-i+(n-j)*n] = t; b[n-j+(n-i)*n] = t; } } // // Scale B. // for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { b[i+j*n] = b[i+j*n] / a[0]; } } delete [] a2; delete [] v; return b; } //****************************************************************************80 double *r8sto_mv ( int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8STO_MV multiplies an R8STO matrix times a vector. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N], the R8STO matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8STO_MV[N], the product A * x. // { double *b; int i; int j; b = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { for ( j = 0; j <= i-1; j++ ) { b[i] = b[i] + a[i-j] * x[j]; } for ( j = i; j < n; j++ ) { b[i] = b[i] + a[j-i] * x[j]; } } return b; } //****************************************************************************80 void r8sto_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8STO_PRINT prints an R8STO matrix. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[N], the R8STO matrix. // // Input, string TITLE, a title. // { r8sto_print_some ( n, a, 0, 0, n - 1, n - 1, title ); return; } //****************************************************************************80 void r8sto_print_some ( int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8STO_PRINT_SOME prints some of am R8STO matrix. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[N], the R8STO matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 double aij; int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n - 1 ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 0 ); i2hi = i4_min ( ihi, n - 1 ); for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(4) << i << " "; // // Print out (up to) 5 entries in row I, that lie in the current strip. // for ( j = j2lo; j <= j2hi; j++ ) { if ( i <= j ) { aij = a[j-i]; } else { aij = a[i-j]; } cout << setw(12) << aij << " "; } cout << "\n"; } } cout << "\n"; return; # undef INCX } //****************************************************************************80 double *r8sto_random ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8STO_RANDOM randomizes an R8STO matrix. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8STO_RANDOM[N], the R8STO matrix. // { double *r; r = r8vec_uniform_01_new ( n, seed ); return r; } //****************************************************************************80 double *r8sto_sl ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8STO_SL solves an R8STO system. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // The matrix is also required to be positive definite. // // This implementation of the algorithm assumes that the diagonal element // (the first element of A) is 1. // // Note that there is a typographical error in the presentation // of this algorithm in the reference, and another in the presentation // of a sample problem. Both involve sign errors. A minor error // makes the algorithm incorrect for the case N = 1. // // Example: // // To solve // // 1.0 0.5 0.2 x1 4.0 // 0.5 1.0 0.5 * x2 = -1.0 // 0.2 0.5 1.0 x3 3.0 // // we input: // // N = 3 // A = (/ 1.0, 0.5, 0.2 /) // B = (/ 4.0, -1.0, 3.0 /) // // with output: // // X = (/ 355, -376, 285 /) / 56 // = (/ 6.339, -6.714, 5.089 /) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 September 2003 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Section 4.7.3, "The General Right Hand Side Problem", // Matrix Computations, // Third Edition, // Johns Hopkins, 1996. // // Parameters: // // Input, int N, the order of the system. // // Input, double A[N], the R8STO matrix, with the EXTRA CONDITION // that the first entry is 1. // // Input, double B[N], the right hand side of the linear system. // // Output, double R8STO_SL[N], the solution of the linear system. // { double beta; int i; int k; double *x; double *y; x = new double[n]; y = new double[n]; k = 0; beta = 1.0; x[k] = b[k] / beta; if ( k < n-1 ) { y[k] = -a[k+1] / beta; } for ( k = 1; k <= n-1; k++ ) { beta = ( 1.0 - y[k-1] * y[k-1] ) * beta; x[k] = b[k]; for ( i = 1; i <= k; i++ ) { x[k] = x[k] - a[i] * x[k-i]; } x[k] = x[k] / beta; for ( i = 1; i <= k; i++ ) { x[i-1] = x[i-1] + x[k] * y[k-i]; } if ( k < n - 1 ) { y[k] = -a[k+1]; for ( i = 1; i <= k; i++ ) { y[k] = y[k] - a[i] * y[k-i]; } y[k] = y[k] / beta; for ( i = 1; i <= k; i++ ) { y[i-1] = y[i-1] + y[k] * y[k-i]; } } } delete [] y; return x; } //****************************************************************************80 double *r8sto_to_r8ge ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8STO_TO_R8GE copies an R8STO matrix to an R8GE matrix. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double R8STO_TO_R8GE[N], the R8STO matrix. // // Output, double R8STO_TO_R8GE[N*N], the R8GE matrix. // { double *b; int i; int j; b = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { b[i+j*n] = a[i-j]; } for ( j = i; j < n; j++ ) { b[i+j*n] = a[j-i]; } } return b; } //****************************************************************************80 double *r8sto_yw_sl ( int n, double b[] ) //****************************************************************************80 // // Purpose: // // R8STO_YW_SL solves the Yule-Walker equations for an R8STO matrix. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // The matrix is also required to be positive definite. // // This implementation of the algorithm assumes that the diagonal element // is 1. // // The real symmetric Toeplitz matrix can be described by N numbers, which, // for convenience, we will label B(0:N-1). We assume there is one more // number, B(N). If we let A be the symmetric Toeplitz matrix whose first // row is B(0:N-1), then the Yule-Walker equations are: // // A * X = -B(1:N) // // Example: // // To solve // // 1.0 0.5 0.2 x1 0.5 // 0.5 1.0 0.5 * x2 = 0.2 // 0.2 0.5 1.0 x3 0.1 // // we input: // // N = 3 // B = (/ 0.5, 0.2, 0.1 /) // // with output: // // X = (/ -75, 12, -5 /) / 140 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 September 2003 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Section 4.7.2, "Solving the Yule-Walker Equations", // Matrix Computations, // Third Edition, // Johns Hopkins, 1996. // // Parameters: // // Input, int N, the order of the system. // // Input, double B[N], defines the linear system. The first entry of the // symmetric Toeplitz matrix is assumed to be a 1, which is NOT stored. The N-1 // remaining elements of the first row of are stored in B, followed by // the remaining scalar that defines the linear system. // // Output, double R8STO_YW_SL[N], the solution of the linear system. // { double alpha; double beta; int i; int j; double *x; double *x2; x = new double[n]; x2 = new double[n]; x[0] = -b[0]; beta = 1.0; alpha = -b[0]; for ( i = 1; i <= n-1; i++ ) { beta = ( 1.0 - alpha * alpha ) * beta; alpha = b[i]; for ( j = 1; j <= i; j++ ) { alpha = alpha + b[i-j] * x[j-1]; } alpha = -alpha / beta; for ( j = 1; j <= i; j++ ) { x2[j-1] = x[j-1]; } for ( j = 1; j <= i; j++ ) { x[j-1] = x[j-1] + alpha * x2[i-j]; } x[i] = alpha; } delete [] x2; return x; } //****************************************************************************80 double *r8sto_zeros ( int n ) //****************************************************************************80 // // Purpose: // // R8STO_ZEROS zeros an R8STO matrix. // // Discussion: // // The R8STO storage format is used for a symmetric Toeplitz matrix. // It stores the N elements of the first row. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of columns of the matrix. // N must be positive. // // Output, double R8STO_ZERO[N], the R8STO matrix. // { double *a; a = r8vec_zeros_new ( n ); return a; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n-1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; }