# include # include # include # include # include using namespace std; # include "r8ss.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i <= n - 1; i++ ) { cout << setw(6) << i + 1 << " " << setw(6) << a[i] << "\n"; } return; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double *r8ge_mv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8GE_MV multiplies an R8GE matrix times a vector. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8GE_MV[M], the product A * x. // { double *b; int i; int j; b = r8vec_zeros_new ( m ); for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { b[i] = b[i] + a[i+j*m] * x[j]; } } return b; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8ss_dif2 ( int n, int &na, int diag[], double a[] ) //****************************************************************************80 // // Purpose: // // R8SS_DIF2 sets up an R8SS second difference matrix. // // Discussion: // // The R8SS storage format is used for real symmetric skyline matrices. // This storage is appropriate when the nonzero entries of the // matrix are generally close to the diagonal, but the number // of nonzeroes above each diagonal varies in an irregular fashion. // // In this case, the strategy is essentially to assign column J // its own bandwidth, and store the strips of nonzeros one after // another. Note that what's important is the location of the // furthest nonzero from the diagonal. A slot will be set up for // every entry between that and the diagonal, whether or not // those entries are zero. // // A skyline matrix can be Gauss-eliminated without disrupting // the storage scheme, as long as no pivoting is required. // // The user must set aside ( N * ( N + 1 ) ) / 2 entries for the array, // although the actual storage needed will generally be about half of // that. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, int &NA, the dimension of the array A, which for // this special case will 2*N-1. // // Output, int DIAG[N], the indices in A of the N diagonal // elements. // // Output, double A[2*N-1], the R8SS matrix. // { int j; na = 0; for ( j = 0; j < n; j++ ) { if ( 0 < j ) { a[na] = -1.0; na = na + 1; } a[na] = 2.0; diag[j] = na; na = na + 1; } return; } //****************************************************************************80 bool r8ss_error ( int diag[], int n, int na ) //****************************************************************************80 // // Purpose: // // R8SS_ERROR checks dimensions for an R8SS matrix. // // Discussion: // // The R8SS storage format is used for real symmetric skyline matrices. // This storage is appropriate when the nonzero entries of the // matrix are generally close to the diagonal, but the number // of nonzeroes above each diagonal varies in an irregular fashion. // // In this case, the strategy is essentially to assign column J // its own bandwidth, and store the strips of nonzeros one after // another. Note that what's important is the location of the // furthest nonzero from the diagonal. A slot will be set up for // every entry between that and the diagonal, whether or not // those entries are zero. // // A skyline matrix can be Gauss-eliminated without disrupting // the storage format, as long as no pivoting is required. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int DIAG[N], the indices in A of the N diagonal elements. // // Input, int N, the order of the matrix. // N must be positive. // // Input, int NA, the dimension of the array A. // NA must be at least N. // // Output, bool R8SS_ERROR, is TRUE if an error was detected. // { int i; if ( n < 1 ) { cout << "\n"; cout << "R8SS_ERROR - Illegal N = " << n << "\n"; return true; } if ( na < n ) { cout << "\n"; cout << "R8SS_ERROR - Illegal NA < N = " << n << "\n"; return true; } if ( diag[0] != 1 ) { cout << "\n"; cout << "R8SS_ERROR - DIAG[0] != 1.\n"; return true; } for ( i = 0; i < n - 1; i++ ) { if ( diag[i+1] <= diag[i] ) { cout << "\n"; cout << "R8SS_ERROR - DIAG[I+1] <= DIAG[I].\n"; return true; } } if ( na < diag[n-1] ) { cout << "\n"; cout << "R8SS_ERROR - NA < DIAG[N-1].\n"; return true; } return false; } //****************************************************************************80 double *r8ss_indicator ( int n, int &na, int diag[] ) //****************************************************************************80 // // Purpose: // // R8SS_INDICATOR sets up an R8SS indicator matrix. // // Discussion: // // The R8SS storage format is used for real symmetric skyline matrices. // This storage is appropriate when the nonzero entries of the // matrix are generally close to the diagonal, but the number // of nonzeroes above each diagonal varies in an irregular fashion. // // In this case, the strategy is essentially to assign column J // its own bandwidth, and store the strips of nonzeros one after // another. Note that what's important is the location of the // furthest nonzero from the diagonal. A slot will be set up for // every entry between that and the diagonal, whether or not // those entries are zero. // // A skyline matrix can be Gauss-eliminated without disrupting // the storage format, as long as no pivoting is required. // // The user must set aside ( N * ( N + 1 ) ) / 2 entries for the array, // although the actual storage needed will generally be about half of // that. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Output, int &NA, the dimension of the array A, which for this // special case will be the maximum, ( N * ( N + 1 ) ) / 2. // // Output, int DIAG[N], the indices in A of the N diagonal elements. // // Output, double R8SS_INDICATOR[(N*(N+1))/2], the R8SS matrix. // { double *a; int fac; int i; int j; a = r8vec_zeros_new ( ( n * ( n + 1 ) ) / 2 ); fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); na = 0; for ( j = 0; j < n; j++ ) { for ( i = 0; i <= j; i++ ) { a[na] = ( double ) ( fac * ( i + 1 ) + ( j + 1 ) ); if ( i == j ) { diag[j] = na; } na = na + 1; } } return a; } //****************************************************************************80 double *r8ss_mv ( int n, int na, int diag[], double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8SS_MV multiplies an R8SS matrix times a vector. // // Discussion: // // The R8SS storage format is used for real symmetric skyline matrices. // This storage is appropriate when the nonzero entries of the // matrix are generally close to the diagonal, but the number // of nonzeroes above each diagonal varies in an irregular fashion. // // In this case, the strategy is essentially to assign column J // its own bandwidth, and store the strips of nonzeros one after // another. Note that what's important is the location of the // furthest nonzero from the diagonal. A slot will be set up for // every entry between that and the diagonal, whether or not // those entries are zero. // // A skyline matrix can be Gauss-eliminated without disrupting // the storage format, as long as no pivoting is required. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int NA, the dimension of the array A. // NA must be at least N. // // Input, int DIAG[N], the indices in A of the N diagonal elements. // // Input, double A[NA], the R8SS matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8SS_MV[N], the product vector A*x. // { double *b; int diagold; int i; int ilo; int j; int k; b = r8vec_zeros_new ( n ); diagold = -1; k = 0; for ( j = 0; j < n; j++ ) { ilo = j + 1 - ( diag[j] - diagold ); for ( i = ilo; i < j; i++ ) { b[i] = b[i] + a[k] * x[j]; b[j] = b[j] + a[k] * x[i]; k = k + 1; } b[j] = b[j] + a[k] * x[j]; k = k + 1; diagold = diag[j]; } return b; } //****************************************************************************80 void r8ss_print ( int n, int na, int diag[], double a[], string title ) //****************************************************************************80 // // Purpose: // // R8SS_PRINT prints an R8SS matrix. // // Discussion: // // The R8SS storage format is used for real symmetric skyline matrices. // This storage is appropriate when the nonzero entries of the // matrix are generally close to the diagonal, but the number // of nonzeroes above each diagonal varies in an irregular fashion. // // In this case, the strategy is essentially to assign column J // its own bandwidth, and store the strips of nonzeros one after // another. Note that what's important is the location of the // furthest nonzero from the diagonal. A slot will be set up for // every entry between that and the diagonal, whether or not // those entries are zero. // // A skyline matrix can be Gauss-eliminated without disrupting // the storage format, as long as no pivoting is required. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NA, the dimension of the array A. // // Input, int DIAG[N], the indices in A of the N diagonal elements. // // Input, double A[NA], the R8SS matrix. // // Input, string TITLE, a title. // { r8ss_print_some ( n, na, diag, a, 0, 0, n - 1, n - 1, title ); return; } //****************************************************************************80 void r8ss_print_some ( int n, int na, int diag[], double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8SS_PRINT_SOME prints some of an R8SS matrix. // // Discussion: // // The R8SS storage format is used for real symmetric skyline matrices. // This storage is appropriate when the nonzero entries of the // matrix are generally close to the diagonal, but the number // of nonzeroes above each diagonal varies in an irregular fashion. // // In this case, the strategy is essentially to assign column J // its own bandwidth, and store the strips of nonzeros one after // another. Note that what's important is the location of the // furthest nonzero from the diagonal. A slot will be set up for // every entry between that and the diagonal, whether or not // those entries are zero. // // A skyline matrix can be Gauss-eliminated without disrupting // the storage format, as long as no pivoting is required. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int NA, the dimension of the array A. // // Input, int DIAG[N], the indices in A of the N diagonal elements. // // Input, double A[NA], the R8SS matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 double aij; int i; int i2hi; int i2lo; int ij; int ijm1; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n - 1 ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 0 ); i2hi = i4_min ( ihi, n - 1 ); for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(4) << i << " "; // // Print out (up to) 5 entries in row I, that lie in the current strip. // for ( j = j2lo; j <= j2hi; j++ ) { aij = 0.0; if ( j < i ) { if ( i == 0 ) { ijm1 = 0; } else { ijm1 = diag[i-1]; } ij = diag[i]; if ( ijm1 < ij + j - i ) { aij = a[ij+j-i]; } } else if ( j == i ) { ij = diag[j]; aij = a[ij]; } else if ( i < j ) { if ( j == 0 ) { ijm1 = 0; } else { ijm1 = diag[j-1]; } ij = diag[j]; if ( ijm1 < ij + i - j ) { aij = a[ij+i-j]; } } cout << setw(12) << aij << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8ss_random ( int n, int &na, int diag[], double a[], int &seed ) //****************************************************************************80 // // Purpose: // // R8SS_RANDOM randomizes an R8SS matrix. // // Discussion: // // The R8SS storage format is used for real symmetric skyline matrices. // This storage is appropriate when the nonzero entries of the // matrix are generally close to the diagonal, but the number // of nonzeroes above each diagonal varies in an irregular fashion. // // In this case, the strategy is essentially to assign column J // its own bandwidth, and store the strips of nonzeros one after // another. Note that what's important is the location of the // furthest nonzero from the diagonal. A slot will be set up for // every entry between that and the diagonal, whether or not // those entries are zero. // // A skyline matrix can be Gauss-eliminated without disrupting // the storage format, as long as no pivoting is required. // // The user must set aside ( N * ( N + 1 ) ) / 2 entries for the array, // although the actual storage needed will generally be about half of // that. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Output, int *NA, the dimension of the array A. // NA will be at least N and no greater than ( N * ( N + 1 ) ) / 2. // // Output, int DIAG[N], the indices in A of the N diagonal elements. // // Output, double A[(N*(N+1))/2], the R8SS matrix. // // Input/output, int &SEED, a seed for the random number generator. // { int diagold; int i; int ilo; int j; int k; na = 0; // // Set the values of DIAG. // diag[0] = 0; na = 1; for ( j = 1; j < n; j++ ) { k = i4_uniform_ab ( 1, j + 1, seed ); diag[j] = diag[j-1] + k; na = na + k; } // // Now set the values of A. // diagold = -1; k = 0; for ( j = 0; j < n; j++ ) { ilo = j + 1 - ( diag[j] - diagold ); for ( i = ilo; i <= j; i++ ) { a[k] = r8_uniform_01 ( seed ); k = k + 1; } diagold = diag[j]; } return; } //****************************************************************************80 double *r8ss_to_r8ge ( int n, int na, int diag[], double a[] ) //****************************************************************************80 // // Purpose: // // R8SS_TO_R8GE copies an R8SS matrix to an R8GE matrix. // // Discussion: // // The R8SS storage format is used for real symmetric skyline matrices. // This storage is appropriate when the nonzero entries of the // matrix are generally close to the diagonal, but the number // of nonzeroes above each diagonal varies in an irregular fashion. // // In this case, the strategy is essentially to assign column J // its own bandwidth, and store the strips of nonzeros one after // another. Note that what's important is the location of the // furthest nonzero from the diagonal. A slot will be set up for // every entry between that and the diagonal, whether or not // those entries are zero. // // A skyline matrix can be Gauss-eliminated without disrupting // the storage format, as long as no pivoting is required. // // Example: // // 11 0 13 0 15 // 0 22 23 0 0 // 31 32 33 34 0 // 0 0 43 44 0 // 51 0 0 0 55 // // A = ( 11 | 22 | 13, 23, 33 | 34, 44 | 15, 0, 0, 0, 55 ) // NA = 12 // DIAG = ( 0, 1, 4, 6, 11 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int NA, the dimension of the array A. // NA must be at least N. // // Input, int DIAG[N], the indices in A of the N diagonal elements. // // Input, double A[NA], the R8SS matrix. // // Output, double R8SS_TO_R8GE[N*N], the R8GE matrix. // { double *b; int diagold; int i; int ilo; int j; int k; b = r8vec_zeros_new ( n * n ); diagold = -1; k = 0; for ( j = 0; j < n; j++ ) { ilo = j + 1 - ( diag[j] - diagold ); for ( i = ilo; i < j; i++ ) { b[i+j*n] = a[k]; b[j+i*n] = a[k]; k = k + 1; } b[j+j*n] = a[k]; k = k + 1; diagold = diag[j]; } return b; } //****************************************************************************80 double *r8ss_zeros ( int n, int na, int diag[] ) //****************************************************************************80 // // Purpose: // // R8SS_ZEROS zeros an R8SS matrix. // // Discussion: // // The R8SS storage format is used for real symmetric skyline matrices. // This storage is appropriate when the nonzero entries of the // matrix are generally close to the diagonal, but the number // of nonzeroes above each diagonal varies in an irregular fashion. // // In this case, the strategy is essentially to assign column J // its own bandwidth, and store the strips of nonzeros one after // another. Note that what's important is the location of the // furthest nonzero from the diagonal. A slot will be set up for // every entry between that and the diagonal, whether or not // those entries are zero. // // A skyline matrix can be Gauss-eliminated without disrupting // the storage format, as long as no pivoting is required. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NA, the dimension of the array A. // // Output, int DIAG[N], the indices in A of the N diagonal elements. // // Output, double R8SS_ZERO[NA], the R8SS matrix. // { double *a; int i; int k; a = r8vec_zeros_new ( na ); k = -1; for ( i = 0; i < n; i++ ) { k = k + i + 1; diag[i] = k; } return a; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n - 1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void r8vec2_print ( int n, double a1[], double a2[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC2_PRINT prints an R8VEC2. // // Discussion: // // An R8VEC2 is a dataset consisting of N pairs of real values, stored // as two separate vectors A1 and A2. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 November 2002 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A1[N], double A2[N], the vectors to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i <= n - 1; i++ ) { cout << setw(6) << i << ": " << setw(14) << a1[i] << " " << setw(14) << a2[i] << "\n"; } return; }