# include # include # include # include # include using namespace std; # include "r8sr.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8sr_dif2 ( int n, int &nz, int row[], int col[], double diag[], double off[] ) //****************************************************************************80 // // Purpose: // // R8SR_DIF2 sets up an R8SR second difference matrix. // // Discussion: // // The R8SR storage format stores the diagonal of a sparse matrix in DIAG. // The off-diagonal entries of row I are stored in entries ROW(I) // through ROW(I+1)-1 of OFF. COL(J) records the column index // of the entry in A(J). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 June 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, int &NZ, the number of offdiagonal nonzero elements // in the matrix. NZ = 2 * N - 2. // // Output, int ROW[N+1]. The nonzero offdiagonal elements // of row I of A are contained in A(ROW(I)) through A(ROW(I+1)-1). // // Output, int COL[NZ], contains the column index of the // element in the corresponding position in A. // // Output, double DIAG[N], the diagonal elements of A. // // Output, double OFF[NZ], the off-diagonal elements of A. // { int i; int nz2; for ( i = 0; i < n; i++ ) { diag[i] = - 2.0; } row[0] = 0; nz2 = 0; for ( i = 0; i < n; i++ ) { if ( i == 0 ) { col[nz2] = i + 1; off[nz2] = 1.0; nz2 = nz2 + 1; row[i+1] = row[i] + 1; } else if ( i < n - 1 ) { col[nz2] = i - 1; off[nz2] = 1.0; nz2 = nz2 + 1; col[nz2] = i + 1; off[nz2] = 1.0; nz2 = nz2 + 1; row[i+1] = row[i] + 2; } else { col[nz2] = i - 1; off[nz2] = 1.0; nz2 = nz2 + 1; row[i+1] = row[i] + 1; } } return; } //****************************************************************************80 void r8sr_indicator ( int n, int nz, int row[], int col[], double diag[], double off[] ) //****************************************************************************80 // // Purpose: // // R8SR_INDICATOR sets up an R8SR indicator matrix. // // Discussion: // // The R8SR storage format stores the diagonal of a sparse matrix in DIAG. // The off-diagonal entries of row I are stored in entries ROW(I) // through ROW(I+1)-1 of OFF. COL(J) records the column index of the // the entry stored in OFF(J). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NZ, the number of offdiagonal nonzero elements in A. // // Input, int ROW[N+1]. The nonzero offdiagonal elements of row I of A // are contained in A(ROW(I)) through A(ROW(I+1)-1). // // Input, int COL[NZ], contains the column index of the element // in the corresponding position in A. // // Output, double DIAG[N], the diagonal elements of A. // // Output, double OFF[NZ], the off-diagonal elements of A. // { int fac; int i; int j; int k; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); for ( i = 0; i < n; i++ ) { j = i; diag[i] = ( double ) ( fac * ( i + 1 ) + ( j + 1 ) ); for ( k = row[i]; k <= row[i+1] - 1; k++ ) { j = col[k]; off[k] = ( double ) ( fac * ( i + 1 ) + ( j + 1 ) ); } } return; } //****************************************************************************80 double *r8sr_mtv ( int n, int nz, int row[], int col[], double diag[], double off[], double x[] ) //****************************************************************************80 // // Purpose: // // R8SR_MTV multiplies a vector times an R8SR matrix. // // Discussion: // // The R8SR storage format stores the diagonal of a sparse matrix in DIAG. // The off-diagonal entries of row I are stored in entries ROW(I) // through ROW(I+1)-1 of OFF. COL(J) records the column index of the // the entry stored in OFF(J). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NZ, the number of offdiagonal nonzero elements in A. // // Input, int ROW[N+1]. The nonzero offdiagonal elements of row I of A // are contained in A(ROW(I)) through A(ROW(I+1)-1). // // Input, int COL[NZ], contains the column index of the element // in the corresponding position in A. // // Input, double DIAG[N], the diagonal elements of A. // // Input, double OFF[NZ], the off-diagonal elements of A. // // Input, double X[N], the vector to be multiplies by A. // // Output, double R8SR_MTV[N], the product A' * X. // { double *b; int i; int j; int k; b = new double[n]; for ( i = 0; i < n; i++ ) { b[i] = diag[i] * x[i]; } for ( i = 0; i < n; i++ ) { for ( k = row[i]; k <= row[i+1] - 1; k++ ) { j = col[k]; b[j] = b[j] + off[k] * x[i]; } } return b; } //****************************************************************************80 double *r8sr_mv ( int n, int nz, int row[], int col[], double diag[], double off[], double x[] ) //****************************************************************************80 // // Purpose: // // R8SR_MV multiplies an R8SR matrix times a vector. // // Discussion: // // The R8SR storage format stores the diagonal of a sparse matrix in DIAG. // The off-diagonal entries of row I are stored in entries ROW(I) // through ROW(I+1)-1 of OFF. COL(J) records the column index of the // the entry stored in OFF(J). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NZ, the number of offdiagonal nonzero elements in A. // // Input, int ROW[N+1]. The nonzero offdiagonal elements of row I of A // are contained in A(ROW(I)) through A(ROW(I+1)-1). // // Input, int COL[NZ], contains the column index of the element // in the corresponding position in A. // // Input, double DIAG[N], the diagonal elements of A. // // Input, double OFF[NZ], the off-diagonal elements of A. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8SR_MV[N], the product A * X. // { double *b; int i; int j; int k; b = new double[n]; for ( i = 0; i < n; i++ ) { b[i] = diag[i] * x[i]; } for ( i = 0; i < n; i++ ) { for ( k = row[i]; k <= row[i+1] - 1; k++ ) { j = col[k]; b[i] = b[i] + off[k] * x[j]; } } return b; } //****************************************************************************80 void r8sr_print ( int n, int nz, int row[], int col[], double diag[], double off[], string title ) //****************************************************************************80 // // Purpose: // // R8SR_PRINT prints an R8SR matrix. // // Discussion: // // The R8SR storage format stores the diagonal of a sparse matrix in DIAG. // The off-diagonal entries of row I are stored in entries ROW(I) // through ROW(I+1)-1 of OFF. COL(J) records the column index // of the entry in A(J). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NZ, the number of offdiagonal nonzero elements in A. // // Input, int ROW[N+1]. The nonzero offdiagonal elements of row I of A // are contained in A(ROW(I)) through A(ROW(I+1)-1). // // Input, int COL[NZ], contains the column index of the element // in the corresponding position in A. // // Input, double DIAG[N], the diagonal elements of A. // // Input, double OFF[NZ], the off-diagonal elements of A. // // Input, string TITLE, a title. // { r8sr_print_some ( n, nz, row, col, diag, off, 0, 0, n - 1, n - 1, title ); return; } //****************************************************************************80 void r8sr_print_some ( int n, int nz, int row[], int col[], double diag[], double off[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8SR_PRINT_SOME prints some of an R8SR matrix. // // Discussion: // // The R8SR storage format stores the diagonal of a sparse matrix in DIAG. // The off-diagonal entries of row I are stored in entries ROW(I) // through ROW(I+1)-1 of OFF. COL(J) records the column index // of the entry in A(J). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NZ, the number of offdiagonal nonzero elements in A. // // Input, int ROW[N+1]. The nonzero offdiagonal elements of row I of A // are contained in A(ROW(I)) through A(ROW(I+1)-1). // // Input, int COL[NZ], contains the column index of the element // in the corresponding position in A. // // Input, double DIAG[N], the diagonal elements of A. // // Input, double OFF[NZ], the off-diagonal elements of A. // // Input, int ILO, JLO, IHI, JHI, the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 double aij; int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; int k; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n - 1 ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 0 ); i2hi = i4_min ( ihi, n - 1 ); for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; // // Print out (up to) 5 entries in row I, that lie in the current strip. // for ( j = j2lo; j <= j2hi; j++ ) { aij = 0.0; if ( j == i ) { aij = diag[i]; } else { for ( k = row[i]; k <= row[i+1] - 1; k++ ) { if ( j == col[k] ) { aij = off[k]; } } } cout << setw(12) << aij << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8sr_random ( int n, int nz, int row[], int col[], double diag[], double off[], int &seed ) //****************************************************************************80 // // Purpose: // // R8SR_RANDOM randomizes an R8SR matrix. // // Discussion: // // The R8SR storage format stores the diagonal of a sparse matrix in DIAG. // The off-diagonal entries of row I are stored in entries ROW(I) // through ROW(I+1)-1 of OFF. COL(J) records the column index of the // the entry stored in OFF(J). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NZ, the number of offdiagonal nonzero elements in A. // // Input, int ROW[N+1]. The nonzero offdiagonal elements of row I of A // are contained in A(ROW(I)) through A(ROW(I+1)-1). // // Input, int COL[NZ], contains the column index of the element // in the corresponding position in A. // // Output, double DIAG[N], the diagonal elements of A. // // Output, double OFF[NZ], the off-diagonal elements of A. // // Input/output, int &SEED, a seed for the random number generator. // { int i; int j; for ( i = 0; i < n; i++ ) { diag[i] = r8_uniform_01 ( seed ); for ( j = row[i]; j <= row[i+1] - 1; j++ ) { off[j] = r8_uniform_01 ( seed ); } } return; } //****************************************************************************80 double *r8sr_to_r8ge ( int n, int nz, int row[], int col[], double diag[], double off[] ) //****************************************************************************80 // // Purpose: // // R8SR_TO_R8GE converts an R8SR matrix to an R8GE matrix. // // Discussion: // // The R8SR storage format stores the diagonal of a sparse matrix in DIAG. // The off-diagonal entries of row I are stored in entries ROW(I) // through ROW(I+1)-1 of OFF. COL(J) records the column index of the // the entry stored in OFF(J). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NZ, the number of offdiagonal nonzero elements in A. // // Input, int ROW[N+1]. The nonzero offdiagonal elements of row I of A // are contained in A(ROW(I)) through A(ROW(I+1)-1). // // Input, int COL[NZ], contains the column index of the element // in the corresponding position in A. // // Input, double DIAG[N], the diagonal elements of A. // // Input, double OFF[NZ], the off-diagonal elements of A. // // Output, double R8SR_TO_R8GE[N*N], the R8GE matrix. // { double *b; int i; int j; b = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { b[i+j*n] = 0.0; } } for ( i = 0; i < n; i++ ) { b[i+i*n] = diag[i]; } for ( i = 0; i < n; i++ ) { for ( j = row[i]; j <= row[i+1] - 1; j++ ) { b[i+col[j]*n] = off[j]; } } return b; } //****************************************************************************80 void r8sr_zeros ( int n, int nz, int row[], int col[], double diag[], double off[] ) //****************************************************************************80 // // Purpose: // // R8SR_ZEROS zeros an R8SR matrix. // // Discussion: // // The R8SR storage format stores the diagonal of a sparse matrix in DIAG. // The off-diagonal entries of row I are stored in entries ROW(I) // through ROW(I+1)-1 of OFF. COL(J) records the column index of the // the entry stored in OFF(J). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NZ, the number of offdiagonal nonzero elements in A. // // Input, int ROW[N+1]. The nonzero offdiagonal elements of row I of A // are contained in A(ROW(I)) through A(ROW(I+1)-1). // // Input, int COL[NZ], contains the column index of the element // in the corresponding position in A. // // Output, double DIAG[N], the diagonal elements of A. // // Output, double OFF[NZ], the off-diagonal elements of A. // { int i; int j; for ( i = 0; i < n; i++ ) { diag[i] = 0.0; for ( j = row[i]; j <= row[i+1] - 1; j++ ) { off[j] = 0.0; } } return; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; }