# include # include # include # include using namespace std; # include "r83t.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // i4_log_10() returns the integer part of the logarithm base 10 of an I4. // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r83t_cg ( int n, double a[], double b[], double x[] ) //****************************************************************************80 // // Purpose: // // R83T_CG uses the conjugate gradient method on an R83T system. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // The matrix A must be a positive definite symmetric band matrix. // // The method is designed to reach the solution after N computational // steps. However, roundoff may introduce unacceptably large errors for // some problems. In such a case, calling the routine again, using // the computed solution as the new starting estimate, should improve // the results. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*3], the matrix. // // Input, double B[N], the right hand side vector. // // Input/output, double X[N]. // On input, an estimate for the solution, which may be 0. // On output, the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r83t_mv ( n, n, a, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it <= n; it++ ) { // // Compute the matrix*vector product AP=A*P. // delete [] ap; ap = r83t_mv ( n, n, a, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = r8vec_dot_product ( n, p, ap ); pr = r8vec_dot_product ( n, p, r ); if ( pap == 0.0 ) { delete [] ap; break; } alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = r8vec_dot_product ( n, r, ap ); beta = - rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } // // Free memory. // delete [] p; delete [] r; return; } //****************************************************************************80 double *r83t_dif2 ( int m, int n ) //****************************************************************************80 // // Purpose: // // R83T_DIF2 returns the DIF2 matrix in R83T format. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double A[M*3], the matrix. // { double *a; int i; int j; int mn; a = new double[m*3]; for ( j = 0; j < 3; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } mn = i4_min ( m, n ); j = 0; for ( i = 1; i < mn; i++ ) { a[i+j*m] = -1.0; } j = 1; for ( i = 0; i < mn; i++ ) { a[i+j*m] = 2.0; } j = 2; for ( i = 0; i < mn -1; i++ ) { a[i+j*m] = -1.0; } if ( m < n ) { i = mn - 1; j = 2; a[i+j*m] = -1.0; } else if ( n < m ) { i = mn; j = 0; a[i+j*m] = -1.0; } return a; } //****************************************************************************80 void r83t_gs_sl ( int n, double a[], double b[], double x[], int it_max ) //****************************************************************************80 // // Purpose: // // R83T_GS_SL solves an R83T system using Gauss-Seidel iteration. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*3], the R83T matrix. // // Input, double B[N], the right hand side of the linear system. // // Input/output, double X[N], an approximate solution to // the system. // // Input, int IT_MAX, the maximum number of iterations. // { int i; int it_num; // // No diagonal matrix entry can be zero. // for ( i = 0; i < n; i++ ) { if ( a[i+1*n] == 0.0 ) { cerr << "\n"; cerr << "R83_GS_SL - Fatal error!\n"; cerr << " Zero diagonal entry, index = " << i << "\n"; exit ( 1 ); } } for ( it_num = 1; it_num <= it_max; it_num++ ) { x[0] = ( b[0] - a[0+2*n] * x[1] ) / a[0+1*n]; for ( i = 1; i < n - 1; i++ ) { x[i] = ( b[i] - a[i+0*n] * x[i-1] - a[i+2*n] * x[i+1] ) / a[i+1*n]; } x[n-1] = ( b[n-1] - a[n-1+0*n] * x[n-2] ) / a[n-1+1*n]; } return; } //****************************************************************************80 double *r83t_indicator ( int m, int n ) //****************************************************************************80 // // Purpose: // // R83T_INDICATOR sets the indicator matrix in R83T format. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // // Input, int N, the number of columns of the matrix. // // Output, double R83T_INDICATOR[M*3], the matrix. // { double *a; int fac; int i; int j; int k; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); a = new double[m*3]; for ( i = 0; i < m; i++ ) { for ( k = 0; k < 3; k++ ) { j = i + k - 1; if ( 0 <= j && j <= n - 1 ) { a[i+k*m] = ( double ) ( fac * ( i + 1 ) + ( j + 1 ) ); } else { a[i+k*m] = 0.0; } } } return a; } //****************************************************************************80 void r83t_jac_sl ( int n, double a[], double b[], double x[], int it_max ) //****************************************************************************80 // // Purpose: // // R83T_JAC_SL solves an R83T system using Jacobi iteration. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*3], the R83T matrix. // // Input, double B[N], the right hand side of the linear system. // // Input/output, double X[N], an approximate solution // to the system. // // Input, int IT_MAX, the maximum number of iterations. // { int i; int it_num; double *x_new; // // No diagonal matrix entry can be zero. // for ( i = 0; i < n; i++ ) { if ( a[i+1*n] == 0.0 ) { cerr << "\n"; cerr << "R83_JAC_SL - Fatal error!\n"; cerr << " Zero diagonal entry, index = " << i << "\n"; exit ( 1 ); } } x_new = new double[n]; for ( it_num = 1; it_num <= it_max; it_num++ ) { x_new[0] = b[0] - a[0+2*n] * x[1]; for ( i = 1; i < n - 1; i++ ) { x_new[i] = b[i] - a[i+0*n] * x[i-1] - a[i+2*n] * x[i+1]; } x_new[n-1] = b[n-1] - a[n-1+0*n] * x[n-2]; // // Divide by diagonal terms. // for ( i = 0; i < n; i++ ) { x_new[i] = x_new[i] / a[i+1*n]; } // // Update. // for ( i = 0; i < n; i++ ) { x[i] = x_new[i]; } } delete [] x_new; return; } //****************************************************************************80 double *r83t_mtv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R83T_MTV multiplies an R83T matrix transposed times an R8VEC. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*3], the matrix. // // Input, double X[M], the vector to be multiplied by A. // // Output, double R83T_MTV[N], the product A' * x. // { double *b; int i; int j; int k; b = new double[n]; for ( j = 0; j < n; j++ ) { b[j] = 0.0; } for ( i = 0; i < m; i++ ) { for ( k = 0; k < 3; k++ ) { j = i + k - 1; if ( 0 <= j && j <= n - 1 ) { b[j] = b[j] + x[i] * a[i+k*m]; } } } return b; } //****************************************************************************80 double *r83t_mv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R83T_MV multiplies an R83T matrix times a vector. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*3], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R83T_MV[M], the product A * x. // { double *b; int i; int j; int mn; b = new double[m]; for ( i = 0; i < m; i++ ) { b[i] = 0.0; } if ( n == 1 ) { i = 0; j = 1; b[0] = a[i+j*m] * x[0]; if ( 1 < m ) { i = 1; j = 0; b[1] = a[i+j*m] * x[0]; } return b; } mn = i4_min ( m, n ); b[0] = a[0+1*m] * x[0] + a[0+2*m] * x[1]; for ( i = 1; i < mn - 1; i++ ) { b[i] = a[i+0*m] * x[i-1] + a[i+1*m] * x[i] + a[i+2*m] * x[i+1]; } b[mn-1] = a[mn-1+0*m] * x[mn-2] + a[mn-1+1*m] * x[mn-1]; if ( n < m ) { b[mn] = b[mn] + a[mn+0*m] * x[mn-1]; } else if ( m < n ) { b[mn-1] = b[mn-1] + a[mn-1+2*m] * x[mn]; } return b; } //****************************************************************************80 void r83t_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R83T_PRINT prints an R83T matrix. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[3*N], the R83T matrix. // // Input, string TITLE, a title. // { r83t_print_some ( m, n, a, 0, 0, m - 1, n - 1, title ); return; } //****************************************************************************80 void r83t_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R83T_PRINT_SOME prints some of an R83T matrix. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[3*N], the R83T matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column, to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int inc; int j; int j2; int j2hi; int j2lo; int k; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n - 1 ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { j2 = j + 1 - j2lo; cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 0 ); i2lo = i4_max ( i2lo, j2lo - 1 ); i2hi = i4_min ( ihi, m - 1 ); i2hi = i4_min ( i2hi, j2hi + 1 ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(6) << i; for ( j2 = 1; j2 <= inc; j2++ ) { j = j2lo - 1 + j2; k = j - i + 1; if ( k < 0 || 2 < k ) { cout << " "; } else { cout << " " << setw(12) << a[i+k*m]; } } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r83t_random ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R83T_RANDOM returns a random R83T matrix. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // // Input, int N, the number of columns of the matrix. // // Input/output, int *SEED, a seed for the random number // generator. // // Output, double R83T_RANDOM[M*3], the matrix. // { double *a; int i; int j; int k; a = new double[m*3]; for ( i = 0; i < m; i++ ) { for ( k = 0; k < 3; k++ ) { j = i + k - 1; if ( 0 <= j && j <= n - 1 ) { a[i+k*m] = r8_uniform_01 ( seed ); } else { a[i+k*m] = 0.0; } } } return a; } //****************************************************************************80 double *r83t_res ( int m, int n, double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // R83T_RES computes the residual R = B-A*X for R83T matrices. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // // Input, int N, the number of columns of the matrix. // // Input, double A[M*3], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the desired result A * x. // // Output, double R83T_RES[M], the residual R = B - A * X. // { int i; double *r; r = r83t_mv ( m, n, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 double *r83t_to_r8ge ( int m, int n, double a_r83t[] ) //****************************************************************************80 // // Purpose: // // R83T_TO_R8GE copies an R83T matrix to an R8GE matrix. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // The R8GE storage format is used for a general M by N matrix. A storage // space is made for each entry. The two dimensional logical // array can be thought of as a vector of M*N entries, starting with // the M entries in the column 1, then the M entries in column 2 // and so on. Considered as a vector, the entry A(I,J) is then stored // in vector location I+(J-1)*M. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A_R83T[M*3], the R83T matrix. // // Output, double R83T_TO_R8GE[M*N], the R8GE matrix. // { double *a_r8ge; int i; int j; int k; a_r8ge = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a_r8ge[i+j*m] = 0.0; } } for ( i = 0; i < m; i++ ) { for ( k = 0; k < 3; k++ ) { j = i + k - 1; if ( 0 <= j && j <= n - 1 ) { a_r8ge[i+j*m] = a_r83t[i+k*m]; } } } return a_r8ge; } //****************************************************************************80 double *r83t_zeros ( int m, int n ) //****************************************************************************80 // // Purpose: // // R83T_ZEROS zeros an R83T matrix. // // Discussion: // // The R83T storage format is used for an MxN tridiagonal matrix. // The superdiagonal is stored in entries (1:M-1,3), the diagonal in // entries (1:M,2), and the subdiagonal in (2:M,1). Thus, the // the rows of the original matrix slide horizontally to form an // Mx3 stack of data. // // An R83T matrix of order 3x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // // An R83T matrix of order 5x5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // An R83T matrix of order 5x3 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 * // A43 * * // * * * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Output, double R83T_ZEROS[M*3], the matrix. // { double *a; int i; int j; a = new double[m*3]; for ( j = 0; j < 3; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } //****************************************************************************80 double *r8ge_mtv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8GE_MTV multiplies a vector times an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, double X[M], the vector to be multiplied by A. // // Output, double R8GE_MTV[N], the product A' * x. // { double *b; int i; int j; b = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < m; j++ ) { b[i] = b[i] + a[j+i*m] * x[j]; } } return b; } //****************************************************************************80 double *r8ge_mv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8GE_MV multiplies an R8GE matrix times a vector. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8GE_MV[M], the product A * x. // { double *b; int i; int j; b = r8vec_zeros_new ( m ); for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { b[i] = b[i] + a[i+j*m] * x[j]; } } return b; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator vector {1,2,3,...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 September 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the indicator array. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 double r8vec_norm ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM returns the L2 norm of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L2 norm is defined as: // // R8VEC_NORM = sqrt ( sum ( 1 <= I <= N ) A(I)^2 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], the vector whose L2 norm is desired. // // Output, double R8VEC_NORM, the L2 norm of A. // { int i; double v; v = 0.0; for ( i = 0; i < n; i++ ) { v = v + a[i] * a[i]; } v = sqrt ( v ); return v; } //****************************************************************************80 double r8vec_norm_affine ( int n, double v0[], double v1[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM_AFFINE returns the affine L2 norm of an R8VEC. // // Discussion: // // The affine vector L2 norm is defined as: // // R8VEC_NORM_AFFINE(V0,V1) // = sqrt ( sum ( 1 <= I <= N ) ( V1(I) - V0(I) )^2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the vectors. // // Input, double V0[N], the base vector. // // Input, double V1[N], the vector. // // Output, double R8VEC_NORM_AFFINE, the affine L2 norm. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + ( v1[i] - v0[i] ) * ( v1[i] - v0[i] ); } value = sqrt ( value ); return value; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void r8vec2_print ( int n, double a1[], double a2[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC2_PRINT prints an R8VEC2. // // Discussion: // // An R8VEC2 is a dataset consisting of N pairs of real values, stored // as two separate vectors A1 and A2. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 November 2002 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A1[N], double A2[N], the vectors to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i <= n - 1; i++ ) { cout << setw(6) << i << ": " << setw(14) << a1[i] << " " << setw(14) << a2[i] << "\n"; } return; }