17 October 2008 10:49:19 AM NINT_EXACTNESS_MIXED C++ version Compiled on Oct 17 2008 at 10:48:48. Investigate the polynomial exactness of a multidimensional quadrature rule for a region R = R1 x R2 x ... x RM. Individual rules may be for: Legendre: region: [-1,+1] weight: w(x)=1 rules: Gauss-Legendre, Clenshaw-Curtis, Fejer2, Gauss-Patterson Jacobi: region: [-1,+1] weight: w(x)=(1-x)^alpha (1+x)^beta rules: Gauss-Jacobi Laguerre: region: [0,+oo) weight: w(x)=exp(-x) rules: Gauss-Laguerre Generalized Laguerre: region: [0,+oo) weight: w(x)=x^alpha exp(-x) rules: Generalized Gauss-Laguerre Hermite: region: (-oo,+o) weight: w(x)=exp(-x*x) rules: Gauss-Hermite Generalized Hermite: region: (-oo,+oo) weight: w(x)=|x|^alpha exp(-x*x) rules: generalized Gauss-Hermite NINT_EXACTNESS: User input: Quadrature rule A file = "sparse_grid_mixed_d2_l2_ccxglg_a.txt". Quadrature rule B file = "sparse_grid_mixed_d2_l2_ccxglg_b.txt". Quadrature rule R file = "sparse_grid_mixed_d2_l2_ccxglg_r.txt". Quadrature rule W file = "sparse_grid_mixed_d2_l2_ccxglg_w.txt". Quadrature rule X file = "sparse_grid_mixed_d2_l2_ccxglg_x.txt". Maximum total degree to check = 7 Spatial dimension = 2 Number of points = 21 Analysis of integration region: 0 Gauss Legendre. 1 Generalized Gauss Laguerre, ALPHA = 1.5 Error Degree Exponents 1.67034e-16 0 0 0 0 1 1 0 6.68135e-16 1 0 1 2.50551e-16 2 2 0 2.22045e-16 2 1 1 6.10866e-16 2 0 2 5.55112e-17 3 3 0 0 3 2 1 4.44089e-16 3 1 2 4.07244e-16 3 0 3 8.35168e-16 4 4 0 1.11022e-16 4 3 1 1.14537e-16 4 2 2 1.77636e-15 4 1 3 3.94903e-16 4 0 4 0 5 5 0 5.01101e-16 5 4 1 0 5 3 2 0 5 2 3 0 5 1 4 2.43017e-16 5 0 5 0.0666667 6 6 0 0 6 5 1 0.190476 6 4 2 0 6 3 3 1.48089e-16 6 2 4 5.68434e-14 6 1 5 2.59219e-16 6 0 6 2.77556e-17 7 7 0 0.0666667 7 6 1 0 7 5 2 0.402116 7 4 3 0 7 3 4 0 7 2 5 0 7 1 6 2.4397e-16 7 0 7 NINT_EXACTNESS_MIXED: Normal end of execution. 17 October 2008 10:49:19 AM