# include # include # include # include # include using namespace std; int main ( ); int *prime_table ( int prime_num ); double *sine_table ( int sine_num ); void timestamp ( ); //****************************************************************************80 int main ( void ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for MULTITASK_OPENMP. // // Discussion: // // This program demonstrates how OpenMP can be used for multitasking, that // is, a simple kind of parallel processing in which a certain number of // perhaps quite unrelated tasks must be done. // // The OpenMP SECTIONS directive identifies the portion of the program where // the code for these tasks is given. // // The OpenMP SECTION directive is used repeatedly to divide this area of // the program into independent tasks. // // The code will get the benefit of parallel processing up to the point where // there are as many threads as there are tasks. // // The code will get a substantial speedup if the tasks take roughly the // same amount of time. However, if one task takes substantially more time // than the others, this results in a limit to the parallel speedup that is // possible. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 October 2011 // // Author: // // John Burkardt // // { int prime_num; int *primes; int sine_num; double *sines; double wtime; double wtime1; double wtime2; timestamp ( ); cout << "\n"; cout << "MULTITASK_OPENMP:\n"; cout << " C++/OpenMP version\n"; cout << " Demonstrate how OpenMP can \"multitask\" by using the\n"; cout << " SECTIONS directive to carry out several tasks in parallel.\n"; prime_num = 20000; sine_num = 20000; wtime = omp_get_wtime ( ); # pragma omp parallel shared ( prime_num, primes, sine_num, sines ) { # pragma omp sections { # pragma omp section { wtime1 = omp_get_wtime ( ); primes = prime_table ( prime_num ); wtime1 = omp_get_wtime ( ) - wtime1; } # pragma omp section { wtime2 = omp_get_wtime ( ); sines = sine_table ( sine_num ); wtime2 = omp_get_wtime ( ) - wtime2; } } } wtime = omp_get_wtime ( ) - wtime; cout << "\n"; cout << " Number of primes computed was " << prime_num << "\n"; cout << " Last prime was " << primes[prime_num-1] << "\n"; cout << " Number of sines computed was " << sine_num << "\n"; cout << " Last sine computed was " << sines[sine_num-1] << "\n"; cout << "\n"; cout << " Elapsed time = " << wtime << "\n"; cout << " Task 1 time = " << wtime1 << "\n"; cout << " Task 2 time = " << wtime2 << "\n"; free ( primes ); free ( sines ); // // Terminate. // cout << "\n"; cout << "MULTITASK_OPENMP:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 int *prime_table ( int prime_num ) //****************************************************************************80 // // Purpose: // // PRIME_TABLE computes a table of the first PRIME_NUM prime numbers. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 October 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int PRIME_NUM, the number of primes to compute. // // Output, int PRIME_TABLE[PRIME_NUM], the computed primes. // { int i; int j; int p; int prime; int *primes; primes = ( int * ) malloc ( prime_num * sizeof ( int ) ); i = 2; p = 0; while ( p < prime_num ) { prime = 1; for ( j = 2; j < i; j++ ) { if ( ( i % j ) == 0 ) { prime = 0; break; } } if ( prime ) { primes[p] = i; p = p + 1; } i = i + 1; } return primes; } //****************************************************************************80 double *sine_table ( int sine_num ) //****************************************************************************80 // // Purpose: // // SINE_TABLE computes a table of sines. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 October 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int SINE_NUM, the number of sines to compute. // // Output, double SINE_TABLE[SINE_NUM], the sines. // { double a; int i; int j; double pi = 3.141592653589793; double *sines; sines = ( double * ) malloc ( sine_num * sizeof ( double ) ); for ( i = 0; i < sine_num; i++ ) { sines[i] = 0.0; for ( j = 0; j <= i; j++ ) { a = ( double ) ( j ) * pi / ( double ) ( sine_num - 1 ); sines[i] = sines[i] + sin ( a ); } } return sines; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }