# include # include # include # include # include # include using namespace std; # include "lebesgue.hpp" int main ( ); void lebesgue_chebyshev1_test ( ); void lebesgue_chebyshev2_test ( ); void lebesgue_chebyshev3_test ( ); void lebesgue_chebyshev4_test ( ); void lebesgue_constant_test ( ); void test05 ( ); void test06 ( ); void test07 ( ); void test08 ( ); void test09 ( ); void timestamp ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // lebesgue_test() tests lebesgue(). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 December 2025 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "lebesgue_test():\n"; cout << " C++ version\n"; cout << " Test lebesgue().\n"; lebesgue_chebyshev1_test ( ); lebesgue_chebyshev2_test ( ); lebesgue_chebyshev3_test ( ); lebesgue_chebyshev4_test ( ); lebesgue_constant_test ( ); test05 ( ); test06 ( ); test07 ( ); test08 ( ); test09 ( ); // // Terminate. // cout << "\n"; cout << "lebesgue_test():\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void lebesgue_chebyshev1_test ( ) //****************************************************************************80 // // Purpose: // // lebesgue_chebyshev1_test() looks at Chebyshev1 points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 March 2015 // // Author: // // John Burkardt // { string filename = "chebyshev1"; double *l; string label = "Chebyshev1 points for N = 11"; int n; int n_max = 11; int nfun = 501; double *x; double *xfun; cout << "\n"; cout << "lebesgue_chebyshev1_test():\n"; cout << " Analyze Chebyshev1 points.\n"; xfun = r8vec_linspace_new ( nfun, -1.0, +1.0 ); l = new double[nfun]; for ( n = 1; n <= n_max; n++ ) { x = chebyshev1 ( n ); l[n-1] = lebesgue_constant ( n, x, nfun, xfun ); delete [] x; } r8vec_print ( n_max, l, " Chebyshev1 Lebesgue constants for N = 1 to 11:" ); // // Examine one case more closely. // n = 11; x = chebyshev1 ( n ); r8vec_print ( n, x, " Chebyshev1 points for N = 11" ); lebesgue_plot ( n, x, nfun, xfun, label, filename ); delete [] l; delete [] x; delete [] xfun; return; } //****************************************************************************80 void lebesgue_chebyshev2_test ( ) //****************************************************************************80 // // Purpose: // // lebesgue_chebyshev2_test() looks at Chebyshev2 points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 March 2015 // // Author: // // John Burkardt // { string filename = "chebyshev2"; double *l; string label = "Chebyshev2 points for N = 11"; int n; int n_max = 11; int nfun = 501; double *x; double *xfun; cout << "\n"; cout << "lebesgue_chebyshev2_test():\n"; cout << " Analyze Chebyshev2 points.\n"; xfun = r8vec_linspace_new ( nfun, -1.0, +1.0 ); l = new double[nfun]; for ( n = 1; n <= n_max; n++ ) { x = chebyshev2 ( n ); l[n-1] = lebesgue_constant ( n, x, nfun, xfun ); delete [] x; } r8vec_print ( n_max, l, " Chebyshev2 Lebesgue constants for N = 1 to 11:" ); // // Examine one case more closely. // n = 11; x = chebyshev2 ( n ); r8vec_print ( n, x, " Chebyshev2 points for N = 11" ); lebesgue_plot ( n, x, nfun, xfun, label, filename ); delete [] l; delete [] x; delete [] xfun; return; } //****************************************************************************80 void lebesgue_chebyshev3_test ( ) //****************************************************************************80 // // Purpose: // // lebesgue_chebyshev3_test() looks at Chebyshev3 points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 March 2014 // // Author: // // John Burkardt // { string filename = "chebyshev3"; double *l; string label = "Chebyshev3 points for N = 11"; int n; int n_max = 11; int nfun = 501; double *x; double *xfun; cout << "\n"; cout << "lebesgue_chebyshev3_test():\n"; cout << " Analyze Chebyshev3 points.\n"; xfun = r8vec_linspace_new ( nfun, -1.0, +1.0 ); l = new double[nfun]; for ( n = 1; n <= n_max; n++ ) { x = chebyshev3 ( n ); l[n-1] = lebesgue_constant ( n, x, nfun, xfun ); delete [] x; } r8vec_print ( n_max, l, " Chebyshev3 Lebesgue constants for N = 1 to 11:" ); // // Examine one case more closely. // n = 11; x = chebyshev3 ( n ); r8vec_print ( n, x, " Chebyshev3 points for N = 11" ); lebesgue_plot ( n, x, nfun, xfun, label, filename ); delete [] l; delete [] x; delete [] xfun; return; } //****************************************************************************80 void lebesgue_chebyshev4_test ( ) //****************************************************************************80 // // Purpose: // // lebesgue_chebyshev4_test() looks at Chebyshev4 points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 March 2015 // // Author: // // John Burkardt // { string filename = "chebyshev4"; double *l; string label = "Chebyshev4 points for N = 11"; int n; int n_max = 11; int nfun = 501; double *x; double *xfun; cout << "\n"; cout << "lebesgue_chebyshev4_test():\n"; cout << " Analyze Chebyshev4 points.\n"; xfun = r8vec_linspace_new ( nfun, -1.0, +1.0 ); l = new double[nfun]; for ( n = 1; n <= n_max; n++ ) { x = chebyshev4 ( n ); l[n-1] = lebesgue_constant ( n, x, nfun, xfun ); delete [] x; } r8vec_print ( n_max, l, " Chebyshev4 Lebesgue constants for N = 1 to 11:" ); // // Examine one case more closely. // n = 11; x = chebyshev4 ( n ); r8vec_print ( n, x, " Chebyshev4 points for N = 11" ); lebesgue_plot ( n, x, nfun, xfun, label, filename ); delete [] l; delete [] x; delete [] xfun; return; } //****************************************************************************80 void lebesgue_constant_test ( ) //****************************************************************************80 // // Purpose: // // lebesgue_constant_test() tests lebesgue_constant() for a simple case. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 December 2025 // // Author: // // John Burkardt // { double a; double b; int i; double lmax; int nf; int ni; double *xf; double *xi; a = -1.0; b = +1.0; cout << "\n"; cout << "lebesgue_constant_test()\n"; cout << " Test lebesgue_constant() for a simple case of\n"; cout << " equally spaced points in [ " << a << "," << b << "]\n"; cout << "\n"; cout << " NI = number of interpolating points.\n"; cout << " NF = number of sample points\n"; cout << "\n"; cout << " Case 1: fix NI, try sequence of NF values\n"; cout << "\n"; ni = 11; xi = r8vec_linspace_new ( ni, a, b ); nf = 2; for ( i = 1; i <= 10; i++ ) { xf = r8vec_linspace_new ( nf, a, b ); lmax = lebesgue_constant ( ni, xi, nf, xf ); cout << " " << setw(3) << ni << " " << setw(4) << nf << " " << setw(14) << lmax << "\n"; nf = 2 * nf - 1; delete [] xf; } delete [] xi; cout << "\n"; cout << " Case 2: fix NF, try sequence of NI values\n"; cout << "\n"; nf = 1001; xf = r8vec_linspace_new ( nf, a, b ); for ( ni = 1; ni <= 11; ni++ ) { xi = r8vec_linspace_new ( ni, a, b ); lmax = lebesgue_constant ( ni, xi, nf, xf ); cout << " " << setw(3) << ni << " " << setw(4) << nf << " " << setw(14) << lmax << "\n"; delete [] xi; } delete [] xf; return; } //****************************************************************************80 void test05 ( ) //****************************************************************************80 // // Purpose: // // LEBESGUE_TEST05 looks at Equidistant1 points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 March 2015 // // Author: // // John Burkardt // { string filename = "equidistant1"; double *l; string label = "Equidistant1 points for N = 11"; int n; int n_max = 11; int nfun = 501; double *x; double *xfun; cout << "\n"; cout << "LEBESGUE_TEST05:\n"; cout << " Analyze Equidistant1 points.\n"; xfun = r8vec_linspace_new ( nfun, -1.0, +1.0 ); l = new double[nfun]; for ( n = 1; n <= n_max; n++ ) { x = equidistant1 ( n ); l[n-1] = lebesgue_constant ( n, x, nfun, xfun ); delete [] x; } r8vec_print ( n_max, l, " Equidistant1 Lebesgue constants for N = 1 to 11:" ); // // Examine one case more closely. // n = 11; x = equidistant1 ( n ); r8vec_print ( n, x, " Equidistant1 points for N = 11" ); lebesgue_plot ( n, x, nfun, xfun, label, filename ); delete [] l; delete [] x; delete [] xfun; return; } //****************************************************************************80 void test06 ( ) //****************************************************************************80 // // Purpose: // // LEBESGUE_TEST06 looks at Equidistant2 points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 March 2015 // // Author: // // John Burkardt // { string filename = "equidistant2"; double *l; string label = "Equidistant2 points for N = 11"; int n; int n_max = 11; int nfun = 501; double *x; double *xfun; cout << "\n"; cout << "LEBESGUE_TEST06:\n"; cout << " Analyze Equidistant2 points.\n"; xfun = r8vec_linspace_new ( nfun, -1.0, +1.0 ); l = new double[nfun]; for ( n = 1; n <= n_max; n++ ) { x = equidistant2 ( n ); l[n-1] = lebesgue_constant ( n, x, nfun, xfun ); delete [] x; } r8vec_print ( n_max, l, " Equidistant2 Lebesgue constants for N = 1 to 11:" ); // // Examine one case more closely. // n = 11; x = equidistant2 ( n ); r8vec_print ( n, x, " Equidistant2 points for N = 11" ); lebesgue_plot ( n, x, nfun, xfun, label, filename ); delete [] l; delete [] x; delete [] xfun; return; } //****************************************************************************80 void test07 ( ) //****************************************************************************80 // // Purpose: // // LEBESGUE_TEST07 looks at Equidistant3 points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 March 2015 // // Author: // // John Burkardt // { string filename = "equidistant3"; double *l; string label = "Equidistant3 points for N = 11"; int n; int n_max = 11; int nfun = 501; double *x; double *xfun; cout << "\n"; cout << "LEBESGUE_TEST07:\n"; cout << " Analyze Equidistant3 points.\n"; xfun = r8vec_linspace_new ( nfun, -1.0, +1.0 ); l = new double[nfun]; for ( n = 1; n <= n_max; n++ ) { x = equidistant3 ( n ); l[n-1] = lebesgue_constant ( n, x, nfun, xfun ); delete [] x; } r8vec_print ( n_max, l, " Equidistant3 Lebesgue constants for N = 1 to 11:" ); // // Examine one case more closely. // n = 11; x = equidistant3 ( n ); r8vec_print ( n, x, " Equidistant3 points for N = 11" ); lebesgue_plot ( n, x, nfun, xfun, label, filename ); delete [] l; delete [] x; delete [] xfun; return; } //****************************************************************************80 void test08 ( ) //****************************************************************************80 // // Purpose: // // LEBESGUE_TEST08 looks at Fejer 1 points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 March 2015 // // Author: // // John Burkardt // { string filename = "fejer1"; double *l; string label = "Fejer1 points for N = 11"; int n; int n_max = 11; int nfun = 501; double *x; double *xfun; cout << "\n"; cout << "LEBESGUE_TEST08:\n"; cout << " Analyze Fejer1 points.\n"; xfun = r8vec_linspace_new ( nfun, -1.0, +1.0 ); l = new double[nfun]; for ( n = 1; n <= n_max; n++ ) { x = fejer1 ( n ); l[n-1] = lebesgue_constant ( n, x, nfun, xfun ); delete [] x; } r8vec_print ( n_max, l, " Fejer1 Lebesgue constants for N = 1 to 11:" ); // // Examine one case more closely. // n = 11; x = fejer1 ( n ); r8vec_print ( n, x, " Fejer1 points for N = 11" ); lebesgue_plot ( n, x, nfun, xfun, label, filename ); delete [] l; delete [] x; delete [] xfun; return; } //****************************************************************************80 void test09 ( ) //****************************************************************************80 // // Purpose: // // LEBESGUE_TEST09 looks at Fejer2 points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 March 2015 // // Author: // // John Burkardt // { string filename = "fejer2"; double *l; string label = "Fejer2 points for N = 11"; int n; int n_max = 11; int nfun = 501; double *x; double *xfun; cout << "\n"; cout << "LEBESGUE_TEST09:\n"; cout << " Analyze Fejer2 points.\n"; xfun = r8vec_linspace_new ( nfun, -1.0, +1.0 ); l = new double[nfun]; for ( n = 1; n <= n_max; n++ ) { x = fejer2 ( n ); l[n-1] = lebesgue_constant ( n, x, nfun, xfun ); delete [] x; } r8vec_print ( n_max, l, " Fejer2 Lebesgue constants for N = 1 to 11:" ); // // Examine one case more closely. // n = 11; x = fejer2 ( n ); r8vec_print ( n, x, " Fejer2 points for N = 11" ); lebesgue_plot ( n, x, nfun, xfun, label, filename ); delete [] l; delete [] x; delete [] xfun; return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // timestamp() prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 March 2018 // // Author: // // John Burkardt // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }