# include # include # include # include # include using namespace std; # include "gegenbauer_polynomial.hpp" //****************************************************************************80 bool gegenbauer_alpha_check ( double alpha ) //****************************************************************************80 // // Purpose: // // gegenbauer_alpha_check() checks the value of ALPHA. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 November 2015 // // Author: // // John Burkardt // // Input: // // double ALPHA, a parameter which is part of the definition of // the Gegenbauer polynomials. It must be greater than -0.5. // // Output: // // bool GEGENBAUER_ALPHA_CHECK. // TRUE, ALPHA is acceptable. // FALSE, ALPHA is not acceptable. // { bool check; bool squawk; squawk = false; if ( -0.5 < alpha ) { check = true; } else { check = false; if ( squawk ) { cerr << "\n"; cerr << "gegenbauer_alpha_check(): Fatal error!\n"; cerr << " Illegal value of ALPHA.\n"; cerr << " ALPHA = " << alpha << "\n"; cerr << " but ALPHA must be greater than -0.5.\n"; } } return check; } //****************************************************************************80 void gegenbauer_ek_compute ( int n, double alpha, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // gegenbauer_ek_compute() computes a Gauss-Gegenbauer quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) (1-X^2)^ALPHA * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) WEIGHT(I) * F ( XTAB(I) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 November 2015 // // Author: // // John Burkardt // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Input: // // int N, the order of the quadrature rule. // // double ALPHA, the exponent of (1-X^2) in the weight. // -1.0 < ALPHA is required. // // double A, B, the left and right endpoints // of the interval. // // Output: // // double X[N], the abscissas. // // double W[N], the weights. // { double abi; double *bj; bool check; int i; double zemu; // // Check N. // if ( n < 1 ) { cerr << "\n"; cerr << "GEGENBAUER_EK_COMPUTE - Fatal error!\n"; cerr << " 1 <= N is required.\n"; exit ( 1 ); } // // Check ALPHA. // check = gegenbauer_alpha_check ( alpha ); if ( ! check ) { cerr << "\n"; cerr << "GEGENBAUER_EK_COMPUTE - Fatal error!\n"; cerr << " Illegal value of ALPHA.\n"; exit ( 1 ); } // // Define the zero-th moment. // zemu = pow ( 2.0, 2.0 * alpha + 1.0 ) * tgamma ( alpha + 1.0 ) * tgamma ( alpha + 1.0 ) / tgamma ( 2.0 * alpha + 2.0 ); // // Define the Jacobi matrix. // for ( i = 0; i < n; i++ ) { x[i] = 0.0; } bj = new double[n]; bj[0] = 4.0 * pow ( alpha + 1.0, 2 ) / ( ( 2.0 * alpha + 3.0 ) * pow ( 2.0 * alpha + 2.0, 2 ) ); for ( i = 2; i <= n; i++ ) { abi = 2.0 * ( alpha + ( double ) i ); bj[i-1] = 4.0 * ( double ) ( i ) * pow ( alpha + i, 2 ) * ( 2.0 * alpha + i ) / ( ( abi - 1.0 ) * ( abi + 1.0 ) * abi * abi ); } for ( i = 0; i < n; i++ ) { bj[i] = sqrt ( bj[i] ); } w[0] = sqrt ( zemu ); for ( i = 1; i < n; i++ ) { w[i] = 0.0; } // // Diagonalize the Jacobi matrix. // imtqlx ( n, x, bj, w ); for ( i = 0; i < n; i++ ) { w[i] = pow ( w[i], 2 ); } delete [] bj; return; } //****************************************************************************80 double gegenbauer_integral ( int expon, double alpha ) //****************************************************************************80 // // Purpose: // // gegenbauer_integral() evaluates the integral of a monomial with Gegenbauer weight. // // Discussion: // // The integral: // // integral ( -1 <= x <= +1 ) x^expon (1-x^2)^alpha dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // // Input, double ALPHA, the exponent of (1-X^2) in the weight factor. // // Output, double GEGENBAUER_INTEGRAL, the value of the integral. // { double arg1; double arg2; double arg3; double arg4; double c; double value; double value1; if ( ( expon % 2 ) == 1 ) { value = 0.0; return value; } c = ( double ) ( expon ); arg1 = - alpha; arg2 = 1.0 + c; arg3 = 2.0 + alpha + c; arg4 = - 1.0; value1 = r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); value = tgamma ( 1.0 + c ) * 2.0 * tgamma ( 1.0 + alpha ) * value1 / tgamma ( 2.0 + alpha + c ); return value; } //****************************************************************************80 double *gegenbauer_polynomial_value ( int m, int n, double alpha, double x[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_POLYNOMIAL_VALUE computes the Gegenbauer polynomials C(I,ALPHA)(X). // // Differential equation: // // (1-X*X) Y'' - (2 ALPHA + 1) X Y' + M (M + 2 ALPHA) Y = 0 // // Recursion: // // C(0,ALPHA,X) = 1, // C(1,ALPHA,X) = 2*ALPHA*X // C(M,ALPHA,X) = ( ( 2*M-2+2*ALPHA) * X * C(M-1,ALPHA,X) // + ( -M+2-2*ALPHA) * C(M-2,ALPHA,X) ) / M // // Restrictions: // // ALPHA must be greater than -0.5. // // Special values: // // If ALPHA = 1, the Gegenbauer polynomials reduce to the Chebyshev // polynomials of the second kind. // // Norm: // // Integral ( -1 <= X <= 1 ) ( 1 - X^2 )^( ALPHA - 0.5 ) * C(M,ALPHA,X)^2 dX // // = PI * 2^( 1 - 2 * ALPHA ) * Gamma ( M + 2 * ALPHA ) // / ( M! * ( M + ALPHA ) * ( Gamma ( ALPHA ) )^2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 December 2015 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input, int M, the highest order polynomial to compute. // Note that polynomials 0 through N will be computed. // // Input, int N, the number of evaluation points. // // Input, double ALPHA, a parameter which is part of the definition of // the Gegenbauer polynomials. It must be greater than -0.5. // // Input, double X[N], the evaluation points. // // Output, double GEGENBAUER_POLYNOMIAL_VALUE(1:M+1,N), the values of // Gegenbauer polynomials 0 through M // at the N points X. // { double *c; bool check; int i; double i_r8; int j; check = gegenbauer_alpha_check ( alpha ); if ( ! check ) { cerr << "\n"; cerr << "GEGENBAUER_POLYNOMIAL_VALUE - Fatal error!\n"; cerr << " Illegal value of ALPHA.\n"; exit ( 1 ); } c = new double[(m+1)*n]; if ( m < 0 ) { return c; } if ( n == 0 ) { return c; } for ( j = 0; j < n; j++ ) { c[0+j*(m+1)] = 1.0; } if ( m < 1 ) { return c; } for ( j = 0; j < n; j++ ) { c[1+j*(m+1)] = 2.0 * alpha * x[j]; } for ( i = 2; i <= m; i++ ) { i_r8 = ( double ) i; for ( j = 0; j < n; j++ ) { c[i+j*(m+1)] = ( ( 2.0 * i_r8 - 2.0 + 2.0 * alpha ) * x[j] * c[i-1+j*(m+1)] + ( - i_r8 + 2.0 - 2.0 * alpha ) * c[i-2+j*(m+1)] ) / i_r8 ; } } return c; } //****************************************************************************80 void gegenbauer_polynomial_values ( int &n_data, int &n, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_POLYNOMIAL_VALUES returns some values of the Gegenbauer polynomials. // // Discussion: // // The Gegenbauer polynomials are also known as the "spherical // polynomials" or "ultraspherical polynomials". // // In Mathematica, the function can be evaluated by: // // GegenbauerC[n,m,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order parameter of the function. // // Output, double &A, the real parameter of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 38 static double a_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.0E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 7.0E+00, 8.0E+00, 9.0E+00, 10.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00 }; static double fx_vec[N_MAX] = { 1.0000000000E+00, 0.2000000000E+00, -0.4400000000E+00, -0.2800000000E+00, 0.2320000000E+00, 0.3075200000E+00, -0.0805760000E+00, -0.2935168000E+00, -0.0395648000E+00, 0.2459712000E+00, 0.1290720256E+00, 0.0000000000E+00, -0.3600000000E+00, -0.0800000000E+00, 0.8400000000E+00, 2.4000000000E+00, 4.6000000000E+00, 7.4400000000E+00, 10.9200000000E+00, 15.0400000000E+00, 19.8000000000E+00, 25.2000000000E+00, -9.0000000000E+00, -0.1612800000E+00, -6.6729600000E+00, -8.3750400000E+00, -5.5267200000E+00, 0.0000000000E+00, 5.5267200000E+00, 8.3750400000E+00, 6.6729600000E+00, 0.1612800000E+00, -9.0000000000E+00, -15.4252800000E+00, -9.6969600000E+00, 22.4409600000E+00, 100.8892800000E+00, 252.0000000000E+00 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, -0.50E+00, -0.40E+00, -0.30E+00, -0.20E+00, -0.10E+00, 0.00E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 1.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; a = 0.0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; a = a_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gegenbauer_ss_compute ( int order, double alpha, double xtab[], double weight[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_SS_COMPUTE computes a Gauss-Gegenbauer quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) (1-X^2)^ALPHA * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) WEIGHT(I) * F ( XTAB(I) ) // // Thanks to Janiki Raman for pointing out a problem in an earlier // version of the code that occurred when ALPHA was -0.5. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order of the quadrature rule. // // Input, double ALPHA, the exponent of (1-X^2) in the weight. // -1.0 < ALPHA is required. // // Output, double XTAB[ORDER], the abscissas. // // Output, double WEIGHT[ORDER], the weights. // { double an; double *c; double cc; double delta; double dp2; int i; double p1; double prod; double r1; double r2; double r3; double temp; double x; // // Check ORDER. // if ( order < 1 ) { cerr << "\n"; cerr << "GEGENBAUER_SS_COMPUTE - Fatal error!\n"; cerr << " 1 <= ORDER is required.\n"; exit ( 1 ); } c = new double[order]; // // Check ALPHA. // if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "GEGENBAUER_SS_COMPUTE - Fatal error!\n"; cerr << " -1.0 < ALPHA is required.\n"; exit ( 1 ); } // // Set the recursion coefficients. // c[0] = 0.0; if ( 2 <= order ) { c[1] = 1.0 / ( 2.0 * alpha + 3.0 ); } for ( i = 3; i <= order; i++ ) { c[i-1] = ( double ) ( i - 1 ) * ( alpha + alpha + ( double ) ( i - 1 ) ) / ( ( alpha + alpha + ( double ) ( 2 * i - 1 ) ) * ( alpha + alpha + ( double ) ( 2 * i - 3 ) ) ); } delta = tgamma ( alpha + 1.0 ) * tgamma ( alpha + 1.0 ) / tgamma ( alpha + alpha + 2.0 ); prod = 1.0; for ( i = 2; i <= order; i++ ) { prod = prod * c[i-1]; } cc = delta * pow ( 2.0, alpha + alpha + 1.0 ) * prod; for ( i = 1; i <= order; i++ ) { if ( i == 1 ) { an = alpha / ( double ) ( order ); r1 = ( 1.0 + alpha ) * ( 2.78 / ( 4.0 + ( double ) ( order * order ) ) + 0.768 * an / ( double ) ( order ) ); r2 = 1.0 + 2.44 * an + 1.282 * an * an; x = ( r2 - r1 ) / r2; } else if ( i == 2 ) { r1 = ( 4.1 + alpha ) / ( ( 1.0 + alpha ) * ( 1.0 + 0.156 * alpha ) ); r2 = 1.0 + 0.06 * ( ( double ) ( order ) - 8.0 ) * ( 1.0 + 0.12 * alpha ) / ( double ) ( order ); r3 = 1.0 + 0.012 * alpha * ( 1.0 + 0.25 * fabs ( alpha ) ) / ( double ) ( order ); x = x - r1 * r2 * r3 * ( 1.0 - x ); } else if ( i == 3 ) { r1 = ( 1.67 + 0.28 * alpha ) / ( 1.0 + 0.37 * alpha ); r2 = 1.0 + 0.22 * ( ( double ) ( order ) - 8.0 ) / ( double ) ( order ); r3 = 1.0 + 8.0 * alpha / ( ( 6.28 + alpha ) * ( double ) ( order * order ) ); x = x - r1 * r2 * r3 * ( xtab[0] - x ); } else if ( i < order - 1 ) { x = 3.0 * xtab[i-2] - 3.0 * xtab[i-3] + xtab[i-4]; } else if ( i == order - 1 ) { r1 = ( 1.0 + 0.235 * alpha ) / ( 0.766 + 0.119 * alpha ); r2 = 1.0 / ( 1.0 + 0.639 * ( ( double ) ( order ) - 4.0 ) / ( 1.0 + 0.71 * ( ( double ) ( order ) - 4.0 ) ) ); r3 = 1.0 / ( 1.0 + 20.0 * alpha / ( ( 7.5 + alpha ) * ( double ) ( order * order ) ) ); x = x + r1 * r2 * r3 * ( x - xtab[i-3] ); } else if ( i == order ) { r1 = ( 1.0 + 0.37 * alpha ) / ( 1.67 + 0.28 * alpha ); r2 = 1.0 / ( 1.0 + 0.22 * ( ( double ) ( order ) - 8.0 ) / ( double ) ( order ) ); r3 = 1.0 / ( 1.0 + 8.0 * alpha / ( ( 6.28 + alpha ) * ( double ) ( order * order ) ) ); x = x + r1 * r2 * r3 * ( x - xtab[i-3] ); } gegenbauer_ss_root ( x, order, alpha, dp2, p1, c ); xtab[i-1] = x; weight[i-1] = cc / ( dp2 * p1 ); } // // Reverse the order of the values. // for ( i = 1; i <= order/2; i++ ) { temp = xtab[i-1]; xtab[i-1] = xtab[order-i]; xtab[order-i] = temp; } for ( i = 1; i <=order/2; i++ ) { temp = weight[i-1]; weight[i-1] = weight[order-i]; weight[order-i] = temp; } delete [] c; return; } //****************************************************************************80 void gegenbauer_ss_recur ( double &p2, double &dp2, double &p1, double x, int order, double alpha, double c[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_SS_RECUR: value and derivative of a Gegenbauer polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 February 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Output, double &P2, the value of J(ORDER)(X). // // Output, double &DP2, the value of J'(ORDER)(X). // // Output, double &P1, the value of J(ORDER-1)(X). // // Input, double X, the point at which polynomials are evaluated. // // Input, int ORDER, the order of the polynomial to be computed. // // Input, double ALPHA, the exponents of (1-X^2). // // Input, double C[ORDER], the recursion coefficients. // { double dp0; double dp1; int i; double p0; p1 = 1.0; dp1 = 0.0; p2 = x; dp2 = 1.0; for ( i = 2; i <= order; i++ ) { p0 = p1; dp0 = dp1; p1 = p2; dp1 = dp2; p2 = x * p1 - c[i-1] * p0; dp2 = x * dp1 + p1 - c[i-1] * dp0; } return; } //****************************************************************************80 void gegenbauer_ss_root ( double &x, int order, double alpha, double &dp2, double &p1, double c[] ) //****************************************************************************80 // // Purpose: // // GEGENBAUER_SS_ROOT improves a root of a Gegenbauer polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 February 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input/output, double &X, the approximate root, which // should be improved on output. // // Input, int ORDER, the order of the polynomial to be computed. // // Input, double ALPHA, the exponents of (1-X^2). // // Output, double &DP2, the value of J'(ORDER)(X). // // Output, double &P1, the value of J(ORDER-1)(X). // // Input, double C[ORDER], the recursion coefficients. // { double d; double eps; double p2; int step; int step_max = 10; eps = DBL_EPSILON; for ( step = 1; step <= step_max; step++ ) { gegenbauer_ss_recur ( p2, dp2, p1, x, order, alpha, c ); d = p2 / dp2; x = x - d; if ( fabs ( d ) <= eps * ( fabs ( x ) + 1.0 ) ) { return; } } return; } //****************************************************************************80 double *gegenbauer_to_monomial_matrix ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // gegenbauer_to_monomial_matrix(): Gegenbauer to monomial conversion matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2024 // // Author: // // John Burkardt // // Input: // // int n: the order of A. // // double alpha: the parameter. // // Output: // // double A[N,N]: the matrix. // { double *A; double c1; double c2; int i; int j; int nn; A = ( double * ) malloc ( n * n * sizeof ( double ) ); if ( n <= 0 ) { return A; } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { A[i+j*n] = 0.0; } } A[0+0*n] = 1.0; if ( n == 1 ) { return A; } A[1+1*n] = 2.0 * alpha; // // Perform convex sum. // Translating "(n+1) C(n+1) = 2 (n+alpha) x C(n) - ( n + 2 alpha - 1 ) C(n-1)" // drove me nuts, between indexing at 1 rather than 0, and dealing with // the interpretation of "n+1", because I now face the rare "off by 2" error! // for ( j = 2; j < n; j++ ) { nn = j - 1; c1 = ( 2.0 * nn + 2.0 * alpha ) / ( nn + 1 ); c2 = ( - nn - 2.0 * alpha + 1.0 ) / ( nn + 1 ); for ( i = 1; i <= j; i++ ) { A[i+j*n] = c1 * A[i-1+(j-1)*n]; } for ( i = 0; i <= j - 2; i++ ) { A[i+j*n] = A[i+j*n] + c2 * A[i+(j-2)*n]; } } return A; } //****************************************************************************80 void hyper_2f1_values ( int &n_data, double &a, double &b, double &c, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // hyper_2f1_values() returns some values of the hypergeometric function 2F1. // // Discussion: // // In Mathematica, the function can be evaluated by: // // fx = Hypergeometric2F1 [ a, b, c, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 September 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Shanjie Zhang, Jianming Jin, // Computation of Special Functions, // Wiley, 1996, // ISBN: 0-471-11963-6, // LC: QA351.C45 // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, &B, &C, &X, the parameters of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 24 static double a_vec[N_MAX] = { -2.5, -0.5, 0.5, 2.5, -2.5, -0.5, 0.5, 2.5, -2.5, -0.5, 0.5, 2.5, 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3 }; static double b_vec[N_MAX] = { 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7 }; static double c_vec[N_MAX] = { 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, -5.5, -0.5, 0.5, 4.5, -5.5, -0.5, 0.5, 4.5, -5.5, -0.5, 0.5, 4.5 }; static double fx_vec[N_MAX] = { 0.72356129348997784913, 0.97911109345277961340, 1.0216578140088564160, 1.4051563200112126405, 0.46961431639821611095, 0.95296194977446325454, 1.0512814213947987916, 2.3999062904777858999, 0.29106095928414718320, 0.92536967910373175753, 1.0865504094806997287, 5.7381565526189046578, 15090.669748704606754, -104.31170067364349677, 21.175050707768812938, 4.1946915819031922850, 1.0170777974048815592E+10, -24708.635322489155868, 1372.2304548384989560, 58.092728706394652211, 5.8682087615124176162E+18, -4.4635010147295996680E+08, 5.3835057561295731310E+06, 20396.913776019659426 }; static double x_vec[N_MAX] = { 0.25, 0.25, 0.25, 0.25, 0.55, 0.55, 0.55, 0.55, 0.85, 0.85, 0.85, 0.85, 0.25, 0.25, 0.25, 0.25, 0.55, 0.55, 0.55, 0.55, 0.85, 0.85, 0.85, 0.85 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; c = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; c = c_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void imtqlx ( int n, double d[], double e[], double z[] ) //****************************************************************************80 // // Purpose: // // IMTQLX diagonalizes a symmetric tridiagonal matrix. // // Discussion: // // This routine is a slightly modified version of the EISPACK routine to // perform the implicit QL algorithm on a symmetric tridiagonal matrix. // // The authors thank the authors of EISPACK for permission to use this // routine. // // It has been modified to produce the product Q' * Z, where Z is an input // vector and Q is the orthogonal matrix diagonalizing the input matrix. // The changes consist (essentially) of applying the orthogonal transformations // directly to Z as they are generated. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // This version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Roger Martin, James Wilkinson, // The Implicit QL Algorithm, // Numerische Mathematik, // Volume 12, Number 5, December 1968, pages 377-383. // // Parameters: // // Input, int N, the order of the matrix. // // Input/output, double D(N), the diagonal entries of the matrix. // On output, the information in D has been overwritten. // // Input/output, double E(N), the subdiagonal entries of the // matrix, in entries E(1) through E(N-1). On output, the information in // E has been overwritten. // // Input/output, double Z(N). On input, a vector. On output, // the value of Q' * Z, where Q is the matrix that diagonalizes the // input symmetric tridiagonal matrix. // { double b; double c; double f; double g; int i; int ii; int itn = 30; int j; int k; int l; int m; int mml; double p; double prec; double r; double s; prec = DBL_EPSILON; if ( n == 1 ) { return; } e[n-1] = 0.0; for ( l = 1; l <= n; l++ ) { j = 0; for ( ; ; ) { for ( m = l; m <= n; m++ ) { if ( m == n ) { break; } if ( fabs ( e[m-1] ) <= prec * ( fabs ( d[m-1] ) + fabs ( d[m] ) ) ) { break; } } p = d[l-1]; if ( m == l ) { break; } if ( itn <= j ) { cerr << "\n"; cerr << "IMTQLX - Fatal error!\n"; cerr << " Iteration limit exceeded\n"; exit ( 1 ); } j = j + 1; g = ( d[l] - p ) / ( 2.0 * e[l-1] ); r = sqrt ( g * g + 1.0 ); g = d[m-1] - p + e[l-1] / ( g + fabs ( r ) * r8_sign ( g ) ); s = 1.0; c = 1.0; p = 0.0; mml = m - l; for ( ii = 1; ii <= mml; ii++ ) { i = m - ii; f = s * e[i-1]; b = c * e[i-1]; if ( fabs ( g ) <= fabs ( f ) ) { c = g / f; r = sqrt ( c * c + 1.0 ); e[i] = f * r; s = 1.0 / r; c = c * s; } else { s = f / g; r = sqrt ( s * s + 1.0 ); e[i] = g * r; c = 1.0 / r; s = s * c; } g = d[i] - p; r = ( d[i-1] - g ) * s + 2.0 * c * b; p = s * r; d[i] = g + p; g = c * r - b; f = z[i]; z[i] = s * z[i-1] + c * f; z[i-1] = c * z[i-1] - s * f; } d[l-1] = d[l-1] - p; e[l-1] = g; e[m-1] = 0.0; } } // // Sorting. // for ( ii = 2; ii <= m; ii++ ) { i = ii - 1; k = i; p = d[i-1]; for ( j = ii; j <= n; j++ ) { if ( d[j-1] < p ) { k = j; p = d[j-1]; } } if ( k != i ) { d[k-1] = d[i-1]; d[i-1] = p; p = z[i-1]; z[i-1] = z[k-1]; z[k-1] = p; } } return; } //****************************************************************************80 double r8_hyper_2f1 ( double a, double b, double c, double x ) //****************************************************************************80 // // Purpose: // // R8_HYPER_2F1 evaluates the hypergeometric function 2F1(A,B,C,X). // // Discussion: // // A minor bug was corrected. The HW variable, used in several places as // the "old" value of a quantity being iteratively improved, was not // being initialized. JVB, 11 February 2008. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // Original FORTRAN77 version by Shanjie Zhang, Jianming Jin. // This version by John Burkardt. // // The original FORTRAN77 version of this routine is copyrighted by // Shanjie Zhang and Jianming Jin. However, they give permission to // incorporate this routine into a user program provided that the copyright // is acknowledged. // // Reference: // // Shanjie Zhang, Jianming Jin, // Computation of Special Functions, // Wiley, 1996, // ISBN: 0-471-11963-6, // LC: QA351.C45 // // Parameters: // // Input, double A, B, C, X, the arguments of the function. // C must not be equal to a nonpositive integer. // X < 1. // // Output, double R8_HYPER_2F1, the value of the function. // { double a0; double aa; double bb; double c0; double c1; double el = 0.5772156649015329; double eps; double f0; double f1; double g0; double g1; double g2; double g3; double ga; double gabc; double gam; double gb; double gbm; double gc; double gca; double gcab; double gcb; double gm; double hf; double hw; int j; int k; bool l0; bool l1; bool l2; bool l3; bool l4; bool l5; int m; int nm; double pa; double pb; const double r8_pi = 3.141592653589793; double r; double r0; double r1; double rm; double rp; double sm; double sp; double sp0; double x1; l0 = ( c == ( int ) ( c ) ) && ( c < 0.0 ); l1 = ( 1.0 - x < 1.0E-15 ) && ( c - a - b <= 0.0 ); l2 = ( a == ( int ) ( a ) ) && ( a < 0.0 ); l3 = ( b == ( int ) ( b ) ) && ( b < 0.0 ); l4 = ( c - a == ( int ) ( c - a ) ) && ( c - a <= 0.0 ); l5 = ( c - b == ( int ) ( c - b ) ) && ( c - b <= 0.0 ); if ( l0 ) { cerr << "\n"; cerr << "R8_HYPER_2F1 - Fatal error!\n"; cerr << " The hypergeometric series is divergent.\n"; cerr << " C is integral and negative.\n"; cerr << " C = " << c << "\n"; exit ( 1 ); } if ( l1 ) { cerr << "\n"; cerr << "R8_HYPER_2F1 - Fatal error!\n"; cerr << " The hypergeometric series is divergent.\n"; cerr << " 1 - X < 0, C - A - B <= 0\n"; cerr << " A = " << a << "\n"; cerr << " B = " << b << "\n"; cerr << " C = " << c << "\n"; cerr << " X = " << x << "\n"; exit ( 1 ); } if ( 0.95 < x ) { eps = 1.0E-08; } else { eps = 1.0E-15; } if ( x == 0.0 || a == 0.0 || b == 0.0 ) { hf = 1.0; return hf; } else if ( 1.0 - x == eps && 0.0 < c - a - b ) { gc = tgamma ( c ); gcab = tgamma ( c - a - b ); gca = tgamma ( c - a ); gcb = tgamma ( c - b ); hf = gc * gcab / ( gca * gcb ); return hf; } else if ( 1.0 + x <= eps && fabs ( c - a + b - 1.0 ) <= eps ) { g0 = sqrt ( r8_pi ) * pow ( 2.0, - a ); g1 = tgamma ( c ); g2 = tgamma ( 1.0 + a / 2.0 - b ); g3 = tgamma ( 0.5 + 0.5 * a ); hf = g0 * g1 / ( g2 * g3 ); return hf; } else if ( l2 || l3 ) { if ( l2 ) { nm = ( int ) ( fabs ( a ) ); } if ( l3 ) { nm = ( int ) ( fabs ( b ) ); } hf = 1.0; r = 1.0; for ( k = 1; k <= nm; k++ ) { r = r * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; } return hf; } else if ( l4 || l5 ) { if ( l4 ) { nm = ( int ) ( fabs ( c - a ) ); } if ( l5 ) { nm = ( int ) ( fabs ( c - b ) ); } hf = 1.0; r = 1.0; for ( k = 1; k <= nm; k++ ) { r = r * ( c - a + k - 1.0 ) * ( c - b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; } hf = pow ( 1.0 - x, c - a - b ) * hf; return hf; } aa = a; bb = b; x1 = x; if ( x < 0.0 ) { x = x / ( x - 1.0 ); if ( a < c && b < a && 0.0 < b ) { a = bb; b = aa; } b = c - b; } if ( 0.75 <= x ) { gm = 0.0; if ( fabs ( c - a - b - ( int ) ( c - a - b ) ) < 1.0E-15 ) { m = ( int ) ( c - a - b ); ga = tgamma ( a ); gb = tgamma ( b ); gc = tgamma ( c ); gam = tgamma ( a + m ); gbm = tgamma ( b + m ); pa = r8_psi ( a ); pb = r8_psi ( b ); if ( m != 0 ) { gm = 1.0; } for ( j = 1; j <= abs ( m ) - 1; j++ ) { gm = gm * j; } rm = 1.0; for ( j = 1; j <= abs ( m ); j++ ) { rm = rm * j; } f0 = 1.0; r0 = 1.0;; r1 = 1.0; sp0 = 0.0;; sp = 0.0; if ( 0 <= m ) { c0 = gm * gc / ( gam * gbm ); c1 = - gc * pow ( x - 1.0, m ) / ( ga * gb * rm ); for ( k = 1; k <= m - 1; k++ ) { r0 = r0 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( k - m ) ) * ( 1.0 - x ); f0 = f0 + r0; } for ( k = 1; k <= m; k++ ) { sp0 = sp0 + 1.0 / ( a + k - 1.0 ) + 1.0 / ( b + k - 1.0 ) - 1.0 / ( double ) ( k ); } f1 = pa + pb + sp0 + 2.0 * el + log ( 1.0 - x ); hw = f1; for ( k = 1; k <= 250; k++ ) { sp = sp + ( 1.0 - a ) / ( k * ( a + k - 1.0 ) ) + ( 1.0 - b ) / ( k * ( b + k - 1.0 ) ); sm = 0.0; for ( j = 1; j <= m; j++ ) { sm = sm + ( 1.0 - a ) / ( ( j + k ) * ( a + j + k - 1.0 ) ) + 1.0 / ( b + j + k - 1.0 ); } rp = pa + pb + 2.0 * el + sp + sm + log ( 1.0 - x ); r1 = r1 * ( a + m + k - 1.0 ) * ( b + m + k - 1.0 ) / ( k * ( m + k ) ) * ( 1.0 - x ); f1 = f1 + r1 * rp; if ( fabs ( f1 - hw ) < fabs ( f1 ) * eps ) { break; } hw = f1; } hf = f0 * c0 + f1 * c1; } else if ( m < 0 ) { m = - m; c0 = gm * gc / ( ga * gb * pow ( 1.0 - x, m ) ); c1 = - pow ( - 1.0, m ) * gc / ( gam * gbm * rm ); for ( k = 1; k <= m - 1; k++ ) { r0 = r0 * ( a - m + k - 1.0 ) * ( b - m + k - 1.0 ) / ( k * ( k - m ) ) * ( 1.0 - x ); f0 = f0 + r0; } for ( k = 1; k <= m; k++ ) { sp0 = sp0 + 1.0 / ( double ) ( k ); } f1 = pa + pb - sp0 + 2.0 * el + log ( 1.0 - x ); hw = f1; for ( k = 1; k <= 250; k++ ) { sp = sp + ( 1.0 - a ) / ( k * ( a + k - 1.0 ) ) + ( 1.0 - b ) / ( k * ( b + k - 1.0 ) ); sm = 0.0; for ( j = 1; j <= m; j++ ) { sm = sm + 1.0 / ( double ) ( j + k ); } rp = pa + pb + 2.0 * el + sp - sm + log ( 1.0 - x ); r1 = r1 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( m + k ) ) * ( 1.0 - x ); f1 = f1 + r1 * rp; if ( fabs ( f1 - hw ) < fabs ( f1 ) * eps ) { break; } hw = f1; } hf = f0 * c0 + f1 * c1; } } else { ga = tgamma ( a ); gb = tgamma ( b ); gc = tgamma ( c ); gca = tgamma ( c - a ); gcb = tgamma ( c - b ); gcab = tgamma ( c - a - b ); gabc = tgamma ( a + b - c ); c0 = gc * gcab / ( gca * gcb ); c1 = gc * gabc / ( ga * gb ) * pow ( 1.0 - x, c - a - b ); hf = 0.0; hw = hf; r0 = c0; r1 = c1; for ( k = 1; k <= 250; k++ ) { r0 = r0 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( a + b - c + k ) ) * ( 1.0 - x ); r1 = r1 * ( c - a + k - 1.0 ) * ( c - b + k - 1.0 ) / ( k * ( c - a - b + k ) ) * ( 1.0 - x ); hf = hf + r0 + r1; if ( fabs ( hf - hw ) < fabs ( hf ) * eps ) { break; } hw = hf; } hf = hf + c0 + c1; } } else { a0 = 1.0; if ( a < c && c < 2.0 * a && b < c && c < 2.0 * b ) { a0 = pow ( 1.0 - x, c - a - b ); a = c - a; b = c - b; } hf = 1.0; hw = hf; r = 1.0; for ( k = 1; k <= 250; k++ ) { r = r * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; if ( fabs ( hf - hw ) <= fabs ( hf ) * eps ) { break; } hw = hf; } hf = a0 * hf; } if ( x1 < 0.0 ) { x = x1; c0 = 1.0 / pow ( 1.0 - x, aa ); hf = c0 * hf; } a = aa; b = bb; if ( 120 < k ) { cout << "\n"; cout << "R8_HYPER_2F1 - Warning!\n"; cout << " A large number of iterations were needed.\n"; cout << " The accuracy of the results should be checked.\n"; } return hf; } //****************************************************************************80 double r8_psi ( double xx ) //****************************************************************************80 // // Purpose: // // R8_PSI evaluates the function Psi(X). // // Discussion: // // This routine evaluates the logarithmic derivative of the // Gamma function, // // PSI(X) = d/dX ( GAMMA(X) ) / GAMMA(X) // = d/dX LN ( GAMMA(X) ) // // for real X, where either // // - XMAX1 < X < - XMIN, and X is not a negative integer, // // or // // XMIN < X. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2008 // // Author: // // Original FORTRAN77 version by William Cody. // This version by John Burkardt. // // Reference: // // William Cody, Anthony Strecok, Henry Thacher, // Chebyshev Approximations for the Psi Function, // Mathematics of Computation, // Volume 27, Number 121, January 1973, pages 123-127. // // Parameters: // // Input, double XX, the argument of the function. // // Output, double R8_PSI, the value of the function. // { double aug; double den; double four = 4.0; double fourth = 0.25; double half = 0.5; int i; int n; int nq; double one = 1.0; double p1[9] = { 4.5104681245762934160E-03, 5.4932855833000385356, 3.7646693175929276856E+02, 7.9525490849151998065E+03, 7.1451595818951933210E+04, 3.0655976301987365674E+05, 6.3606997788964458797E+05, 5.8041312783537569993E+05, 1.6585695029761022321E+05 }; double p2[7] = { -2.7103228277757834192, -1.5166271776896121383E+01, -1.9784554148719218667E+01, -8.8100958828312219821, -1.4479614616899842986, -7.3689600332394549911E-02, -6.5135387732718171306E-21 }; double piov4 = 0.78539816339744830962; double q1[8] = { 9.6141654774222358525E+01, 2.6287715790581193330E+03, 2.9862497022250277920E+04, 1.6206566091533671639E+05, 4.3487880712768329037E+05, 5.4256384537269993733E+05, 2.4242185002017985252E+05, 6.4155223783576225996E-08 }; double q2[6] = { 4.4992760373789365846E+01, 2.0240955312679931159E+02, 2.4736979003315290057E+02, 1.0742543875702278326E+02, 1.7463965060678569906E+01, 8.8427520398873480342E-01 }; double sgn; double three = 3.0; double upper; double value; double w; double x; double x01 = 187.0; double x01d = 128.0; double x02 = 6.9464496836234126266E-04; double xinf = 1.70E+38; double xlarge = 2.04E+15; double xmax1 = 3.60E+16; double xmin1 = 5.89E-39; double xsmall = 2.05E-09; double z; double zero = 0.0; x = xx; w = fabs ( x ); aug = zero; // // Check for valid arguments, then branch to appropriate algorithm. // if ( xmax1 <= - x || w < xmin1 ) { if ( zero < x ) { value = - xinf; } else { value = xinf; } return value; } if ( x < half ) { // // X < 0.5, use reflection formula: psi(1-x) = psi(x) + pi * cot(pi*x) // Use 1/X for PI*COTAN(PI*X) when XMIN1 < |X| <= XSMALL. // if ( w <= xsmall ) { aug = - one / x; } // // Argument reduction for cotangent. // else { if ( x < zero ) { sgn = piov4; } else { sgn = - piov4; } w = w - ( double ) ( ( int ) ( w ) ); nq = int ( w * four ); w = four * ( w - ( double ) ( nq ) * fourth ); // // W is now related to the fractional part of 4.0 * X. // Adjust argument to correspond to values in the first // quadrant and determine the sign. // n = nq / 2; if ( n + n != nq ) { w = one - w; } z = piov4 * w; if ( ( n % 2 ) != 0 ) { sgn = - sgn; } // // Determine the final value for -pi * cotan(pi*x). // n = ( nq + 1 ) / 2; if ( ( n % 2 ) == 0 ) { // // Check for singularity. // if ( z == zero ) { if ( zero < x ) { value = -xinf; } else { value = xinf; } return value; } aug = sgn * ( four / tan ( z ) ); } else { aug = sgn * ( four * tan ( z ) ); } } x = one - x; } // // 0.5 <= X <= 3.0. // if ( x <= three ) { den = x; upper = p1[0] * x; for ( i = 1; i <= 7; i++ ) { den = ( den + q1[i-1] ) * x; upper = ( upper + p1[i]) * x; } den = ( upper + p1[8] ) / ( den + q1[7] ); x = ( x - x01 / x01d ) - x02; value = den * x + aug; return value; } // // 3.0 < X. // if ( x < xlarge ) { w = one / ( x * x ); den = w; upper = p2[0] * w; for ( i = 1; i <= 5; i++ ) { den = ( den + q2[i-1] ) * w; upper = ( upper + p2[i] ) * w; } aug = ( upper + p2[6] ) / ( den + q2[5] ) - half / x + aug; } value = aug + log ( x ); return value; } //****************************************************************************80 double r8_sign ( double x ) //****************************************************************************80 // // Purpose: // // R8_SIGN returns the sign of an R8. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose sign is desired. // // Output, double R8_SIGN, the sign of X. // { double value; if ( x < 0.0 ) { value = -1.0; } else { value = 1.0; } return value; } //****************************************************************************80 double r8_uniform_ab ( double a, double b, int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_AB returns a scaled pseudorandom R8. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, double R8_UNIFORM_AB, a number strictly between A and B. // { const int i4_huge = 2147483647; int k; double value; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } value = ( double ) ( seed ) * 4.656612875E-10; value = a + ( b - a ) * value; return value; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Input: // // int N, the number of components of the vector. // // double A[N], the vector to be printed. // // string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; }