# include # include # include # include # include # include # include using namespace std; # include "freefem_msh_io.hpp" //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 int ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is TRUE (1) if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, int CH_EQI, is TRUE (1) if the two characters are equal, // disregarding case and FALSE (0) otherwise. // { int value; if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } if ( ch1 == ch2 ) { value = 1; } else { value = 0; } return value; } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the // character was 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 void ffmsh_2d_data_example ( int v_num, int e_num, int t_num, double v_xy[], int v_l[], int e_v[], int e_l[], int t_v[], int t_l[] ) //****************************************************************************80 // // Purpose: // // FFMSH_2D_DATA_EXAMPLE returns example FFMSH data. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 December 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int V_NUM, the number of vertices. // // Input, int E_NUM, the number of boundary edges. // // Input, int T_NUM, the number of triangles. // // Output, double V_XY[2*V_NUM], vertex coordinates. // // Output, int V_L[V_NUM], vertex labels. // // Output, int E_V[2*E_NUM], edge vertices. // // Output, int E_L[E_NUM], vertex labels. // // Output, int T_V[3*T_NUM], triangle vertices. // // Output, int T_L[T_NUM], triangle labels. // { int e_l_save[10] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int e_v_save[2*10] = { 11, 6, 6, 4, 4, 1, 1, 2, 2, 5, 5, 9, 9, 13, 13, 15, 15, 14, 14, 11 }; int t_l_save[18] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int t_v_save[3*18] = { 1, 3, 4, 7, 2, 5, 9, 7, 5, 8, 6, 4, 12, 8, 7, 12, 11, 8, 3, 1, 2, 7, 3, 2, 7, 8, 3, 4, 3, 8, 6, 8, 11, 12, 7, 10, 11, 12, 14, 10, 9, 13, 12, 10, 13, 7, 9, 10, 12, 13, 15, 14, 12, 15 }; int v_l_save[15] = { 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1 }; double v_xy_save[2*15] = { -0.309016994375, 0.951056516295, -0.809016994375, 0.587785252292, -0.321175165867, 0.475528256720, 0.309016994375, 0.951056516295, -1.000000000000, 0.000000000000, 0.809016994375, 0.587785252292, -0.333333334358, 0.000000000000, 0.237841829972, 0.293892623813, -0.809016994375, -0.587785252292, -0.321175165867, -0.475528259963, 1.000000000000, 0.000000000000, 0.206011327827, -0.391856835534, -0.309016994375, -0.951056516295, 0.809016994375, -0.587785252292, 0.309016994375, -0.951056516295 }; i4vec_copy ( v_num, v_l_save, v_l ); r8mat_copy ( 2, v_num, v_xy_save, v_xy ); i4vec_copy ( e_num, e_l_save, e_l ); i4mat_copy ( 2, e_num, e_v_save, e_v ); i4vec_copy ( t_num, t_l_save, t_l ); i4mat_copy ( 3, t_num, t_v_save, t_v ); return; } //****************************************************************************80 void ffmsh_2d_data_print ( string title, int v_num, int e_num, int t_num, double v_xy[], int v_l[], int e_v[], int e_l[], int t_v[], int t_l[] ) //****************************************************************************80 // // Purpose: // // FFMSH_2D_DATA_PRINT prints FFMSH data. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 December 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string TITLE, a title. // // Input, int V_NUM, the number of vertices. // // Input, int E_NUM, the number of boundary edges. // // Input, int T_NUM, the number of triangles. // // Input, double V_XY[2*V_NUM], vertex coordinates. // // Input, int V_L[V_NUM], vertex labels. // // Input, int E_V[2*E_NUM], edge vertices. // // Input, int E_L[E_NUM], vertex labels. // // Input, int T_V[3*T_NUM], triangle vertices. // // Input, int T_L[T_NUM], triangle labels. // { cout << "\n"; cout << title << "\n"; i4vec_print ( v_num, v_l, " Vertex labels:" ); r8mat_transpose_print ( 2, v_num, v_xy, " Vertex coordinates:" ); i4vec_print ( e_num, e_l, " Edge labels:" ); i4mat_transpose_print ( 2, e_num, e_v, " Edge vertices:" ); i4vec_print ( t_num, t_l, " Triangle labels:" ); i4mat_transpose_print ( 3, t_num, t_v, " Triangle vertices:" ); return; } //****************************************************************************80 void ffmsh_2d_data_read ( string ffmsh_filename, int v_num, int e_num, int t_num, double v_xy[], int v_l[], int e_v[], int e_l[], int t_v[], int t_l[] ) //****************************************************************************80 // // Purpose: // // FFMSH_2D_DATA_READ reads data from an FFMSH file. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 December 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string FFMSH_FILENAME, the FFMSH filename. // // Input, int V_NUM, the number of vertices. // // Input, int E_NUM, the number of boundary edges. // // Input, int T_NUM, the number of triangles. // // Output, double V_XY[2*V_NUM], vertex coordinates. // // Output, int V_L[V_NUM], vertex labels. // // Output, int E_V[2*E_NUM], edge vertices. // // Output, int E_L[E_NUM], vertex labels.! // // Output, int T_V[3*T_NUM], triangle vertices. // // Output, int T_L[T_NUM], triangle labels. // { bool error; ifstream ffmsh_unit; int i1; int i2; int i3; int i4; int j; int length; double r1; double r2; string text; ffmsh_unit.open ( ffmsh_filename.c_str ( ) ); if ( ! ffmsh_unit ) { cerr << "\n"; cerr << "FFMSH_2D_DATA_READ - Fatal error!\n"; cerr << " Could not open input file '" << ffmsh_filename << "\n"; exit ( 1 ); } // // Read the sizes (again). // getline ( ffmsh_unit, text ); s_to_i4 ( text, length, error ); text.erase ( 0, length ); s_to_i4 ( text, length, error ); text.erase ( 0, length ); s_to_i4 ( text, length, error ); text.erase ( 0, length ); // // Read Vertex X, Y, Label // for ( j = 0; j < v_num; j++ ) { getline ( ffmsh_unit, text ); r1 = s_to_r8 ( text, length, error ); text.erase ( 0, length ); r2 = s_to_r8 ( text, length, error ); text.erase ( 0, length ); i1 = s_to_i4 ( text, length, error ); text.erase ( 0, length ); v_xy[0+j*2] = r1; v_xy[1+j*2] = r2; v_l[j] = i1; } // // Read Triangle V1, V2, V3, Label // for ( j = 0; j < t_num; j++ ) { getline ( ffmsh_unit, text ); i1 = s_to_i4 ( text, length, error ); text.erase ( 0, length ); i2 = s_to_i4 ( text, length, error ); text.erase ( 0, length ); i3 = s_to_i4 ( text, length, error ); text.erase ( 0, length ); i4 = s_to_i4 ( text, length, error ); text.erase ( 0, length ); t_v[0+j*3] = i1; t_v[1+j*3] = i2; t_v[2+j*3] = i3; t_l[j] = i4; } // // Read Edge V1, V2, Label // for ( j = 0; j < e_num; j++ ) { getline ( ffmsh_unit, text ); i1 = s_to_i4 ( text, length, error ); text.erase ( 0, length ); i2 = s_to_i4 ( text, length, error ); text.erase ( 0, length ); i3 = s_to_i4 ( text, length, error ); text.erase ( 0, length ); e_v[0+j*2] = i1; e_v[1+j*2] = i2; e_l[j] = i3; } ffmsh_unit.close ( ); return; } //****************************************************************************80 void ffmsh_2d_size_example ( int &v_num, int &e_num, int &t_num ) //****************************************************************************80 // // Purpose: // // FFMSH_2D_SIZE_EXAMPLE returns sizes for the 2D example. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 December 2014 // // Author: // // John Burkardt // // Parameters: // // Output, int &V_NUM, the number of vertices. // // Output, int &E_NUM, the number of boundary edges. // // Output, int &T_NUM, the number of triangles. // { e_num = 10; t_num = 18; v_num = 15; return; } //****************************************************************************80 void ffmsh_2d_size_print ( string title, int v_num, int e_num, int t_num ) //****************************************************************************80 // // Purpose: // // FFMSH_2D_SIZE_PRINT prints the sizes of an FFMSH. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 December 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string TITLE, a title. // // Input, int V_NUM, the number of vertices. // // Input, int E_NUM, the number of boundary edges. // // Input, int T_NUM, the number of triangles. // { cout << "\n"; cout << title << "\n"; cout << "\n"; cout << " Number of vertices = " << v_num << "\n"; cout << " Number of boundary edges = " << e_num << "\n"; cout << " Number of triangles = " << t_num << "\n"; return; } //****************************************************************************80 void ffmsh_2d_size_read ( string ffmsh_filename, int &v_num, int &e_num, int &t_num ) //****************************************************************************80 // // Purpose: // // FFMSH_2D_SIZE_READ reads sizes from a FFMSH file. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 December 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string FFMSH_FILENAME, the FFMSH filename. // // Output, int &V_NUM, the number of vertices. // // Output, int &E_NUM, the number of boundary edges. // // Output, int &T_NUM, the number of triangles. // { bool error; ifstream ffmsh_unit; int length; string text; ffmsh_unit.open ( ffmsh_filename.c_str ( ) ); if ( ! ffmsh_unit ) { cerr << "\n"; cerr << "FFMSH_SIZE_READ - Fatal error!\n"; cerr << " Could not open the input file '" << ffmsh_filename << "'.\n"; exit ( 1 ); } getline ( ffmsh_unit, text ); v_num = s_to_i4 ( text, length, error ); text.erase ( 0, length ); t_num = s_to_i4 ( text, length, error ); text.erase ( 0, length ); e_num = s_to_i4 ( text, length, error ); text.erase ( 0, length ); ffmsh_unit.close ( ); return; } //****************************************************************************80 void ffmsh_2d_write ( string ffmsh_filename, int v_num, int e_num, int t_num, double v_xy[], int v_l[], int e_v[], int e_l[], int t_v[], int t_l[] ) //****************************************************************************80 // // Purpose: // // FFMSH_2D_WRITE writes FFMSH data to a file. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 December 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string FFMSH_FILENAME, the name of the file. // // Input, int V_NUM, the number of vertices. // // Input, int E_NUM, the number of boundary edges. // // Input, int T_NUM, the number of triangles. // // Input, double V_XY[2*V_NUM], vertex coordinates. // // Input, int V_L[V_NUM], vertex labels. // // Input, int E_V[2*E_NUM], edge vertices. // // Input, int E_L[E_NUM], vertex labels. // // Input, int T_V[3*T_NUM], triangle vertices. // // Input, int T_L[T_NUM], triangle labels. // { ofstream ffmsh_unit; int j; // // Open the file. // ffmsh_unit.open ( ffmsh_filename.c_str ( ) ); // // Write the data. // ffmsh_unit << v_num << " " << t_num << " " << e_num << "\n"; for ( j = 0; j < v_num; j++ ) { ffmsh_unit << v_xy[0+j*2] << " " << v_xy[1+j*2] << " " << v_l[j] << "\n"; } for ( j = 0; j < t_num; j++ ) { ffmsh_unit << t_v[0+j*3] << " " << t_v[1+j*3] << " " << t_v[2+j*3] << " " << t_l[j] << "\n"; } for ( j = 0; j < e_num; j++ ) { ffmsh_unit << e_v[0+j*2] << " " << e_v[1+j*2] << " " << e_l[j] << "\n"; } ffmsh_unit.close ( ); return; } //****************************************************************************80 void i4mat_copy ( int m, int n, int a1[], int a2[] ) //****************************************************************************80 // // Purpose: // // I4MAT_COPY copies one I4MAT to another. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A1[M*N], the matrix to be copied. // // Output, int A2[M*N], the copy of A1. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a2[i+j*m] = a1[i+j*m]; } } return; } //****************************************************************************80 void i4mat_transpose_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; if ( m < i2hi ) { i2hi = m; } if ( ihi < i2hi ) { i2hi = ihi; } cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i - 1 << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = jlo; if ( j2lo < 1 ) { j2lo = 1; } j2hi = jhi; if ( n < j2hi ) { j2hi = n; } for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j - 1 << ":"; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void i4vec_copy ( int n, int a1[], int a2[] ) //****************************************************************************80 // // Purpose: // // I4VEC_COPY copies an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 April 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, int A1[N], the vector to be copied. // // Input, int A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 void mesh_base_one ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // MESH_BASE_ONE ensures that the element definition is one-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // // If this function detects 0-based indexing, it converts to 1-based. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; const int i4_huge = 2147483647; int node; int node_max; int node_min; int order; node_min = + i4_huge; node_max = - i4_huge; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; if ( node < node_min ) { node_min = node; } if ( node_max < node ) { node_max = node; } } } if ( node_min == 0 && node_max == node_num - 1 ) { printf ( "\n" ); printf ( "MESH_BASE_ONE:\n" ); printf ( " The element indexing appears to be 0-based!\n" ); printf ( " This will be converted to 1-based.\n" ); for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] + 1; } } } else if ( node_min == 1 && node_max == node_num ) { printf ( "\n" ); printf ( "MESH_BASE_ONE:\n" ); printf ( " The element indexing appears to be 1-based!\n" ); printf ( " No conversion is necessary.\n" ); } else { printf ( "\n" ); printf ( "MESH_BASE_ONE - Warning!\n" ); printf ( " The element indexing is not of a recognized type.\n" ); printf ( " NODE_MIN = %d\n", node_min ); printf ( " NODE_MAX = %d\n", node_max ); printf ( " NODE_NUM = %d\n", node_num ); } return; } //****************************************************************************80 void r8mat_copy ( int m, int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8MAT_COPY copies one R8MAT to another. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A1[M*N], the matrix to be copied. // // Output, double A2[M*N], the copy of A1. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a2[i+j*m] = a1[i+j*m]; } } return; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 April 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int i2lo_hi; int i2lo_lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } if ( ilo < 1 ) { i2lo_lo = 1; } else { i2lo_lo = ilo; } if ( ihi < m ) { i2lo_hi = m; } else { i2lo_hi = ihi; } for ( i2lo = i2lo_lo; i2lo <= i2lo_hi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; if ( m < i2hi ) { i2hi = m; } if ( ihi < i2hi ) { i2hi = ihi; } inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i - 1 << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; if ( jlo < 1 ) { j2lo = 1; } else { j2lo = jlo; } if ( n < jhi ) { j2hi = n; } else { j2hi = jhi; } for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j - 1 << ":"; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' && s[n-1] != '\n' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int &last, bool &error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int &LAST, the last character of S used to make IVAL. // // Output, bool &ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; last = 0; error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; last = s_len_trim ( s ); } else { error = true; last = 0; } return ival; } //****************************************************************************80 double s_to_r8 ( string s, int &lchar, bool &error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0^(-9.23) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 May 2011 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int &LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool &ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; static double ten = 10.0; lchar = -1; error = false; nchar = s_len_trim ( s ); r = 0.0; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[lchar+1]; lchar = lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; lchar = lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && lchar + 1 == nchar ) { lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( ten, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( ten, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }