# include # include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); char ch_cap ( char ch ); bool ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); double *fem1d_approximate ( int sample_node_num, int sample_value_dim, double sample_node_x[], double sample_value[], int fem_node_num, double fem_node_x[], int fem_element_order, int fem_element_num, int fem_value_dim, int fem_value_num ); int file_column_count ( string input_filename ); int file_row_count ( string input_filename ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int *m, int *n ); double piecewise_linear_product_quad ( double a, double b, int f_num, double f_x[], double f_v[], int g_num, double g_x[], double g_v[] ); double r8_min ( double x, double y ); int r83_np_fa ( int n, double a[] ); double *r83_np_sl ( int n, double a_lu[], double b[], int job ); double *r8mat_data_read ( string input_filename, int m, int n ); void r8mat_header_read ( string input_filename, int *m, int *n ); void r8mat_write ( string output_filename, int m, int n, double table[] ); double *r8mat_zero_new ( int m, int n ); void r8vec_bracket3 ( int n, double t[], double tval, int *left ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void timestamp ( ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for FEM1D_PROJECT. // // Discussion: // // FEM1D_PROJECT reads files defining a sampling of a (scalar or vector) // function of 1 argument, and a list of nodes and elements to use for // a finite element representation of the data. // // It computes a set of finite element coefficients to be associated with // the given finite element mesh, and writes that information to a file // so that an FEM representation is formed by the node, element and value // files. // // Usage: // // fem1d_project sample_prefix fem_prefix // // where 'sample_prefix' is the common prefix for the SAMPLE files: // // * sample_prefix_nodes.txt, the node coordinates where samples were taken, // * sample_prefix_values.txt, the sample values. // // and 'fem_prefix' is the common prefix for the FEM files: // // * fem_prefix_nodes.txt, the node coordinates. // * fem_prefix_elements.txt, the nodes that make up each element; // * fem_prefix_values.txt, the values defined at each node. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2009 // // Author: // // John Burkardt // { string fem_element_filename; int *fem_element_node; int fem_element_num; int fem_element_order; int fem_node_dim; string fem_node_filename; int fem_node_num; double *fem_node_x; string fem_prefix; double *fem_value; int fem_value_dim; string fem_value_filename; int fem_value_num; string sample_prefix; int sample_node_dim; string sample_node_filename; int sample_node_num; double *sample_node_x; int sample_value_dim; int sample_value_num; double *sample_value; string sample_value_filename; timestamp ( ); cout << "\n"; cout << "FEM1D_PROJECT\n"; cout << " C++ version.\n"; cout << "\n"; cout << " Read files defining a sampling of a function of 1 argument.\n"; cout << " Read files defining a finite element mesh.\n"; cout << " Project the sample data onto the mesh, and\n"; cout << " write a file of FEM coefficient values.\n"; // // Get the number of command line arguments. // if ( 1 < argc ) { sample_prefix = argv[1]; } else { cout << "\n"; cout << "Enter the sample file prefix:\n"; cin >> sample_prefix; } if ( 2 < argc ) { fem_prefix = argv[2]; } else { cout << "\n"; cout << "Enter the FEM file prefix:\n"; cin >> fem_prefix; } // // Create the filenames. // sample_node_filename = sample_prefix + "_nodes.txt"; sample_value_filename = sample_prefix + "_values.txt"; fem_node_filename = fem_prefix + "_nodes.txt"; fem_element_filename = fem_prefix + "_elements.txt"; fem_value_filename = fem_prefix + "_values.txt"; // // Read the SAMPLE data. // r8mat_header_read ( sample_node_filename, &sample_node_dim, &sample_node_num ); sample_node_x = r8mat_data_read ( sample_node_filename, sample_node_dim, sample_node_num ); cout << "\n"; cout << " Sample node spatial dimension is " << sample_node_dim << "\n"; cout << " Sample node number is " << sample_node_num << "\n"; if ( sample_node_dim != 1 ) { cout << "\n"; cout << "FEM1D_PROJECT - Fatal error!\n"; cout << " Spatial dimension of the sample nodes is not 1.\n"; exit ( 1 ); } r8mat_header_read ( sample_value_filename, &sample_value_dim, &sample_value_num ); cout << " The SAMPLE value dimension is " << sample_value_dim << "\n"; cout << " the SAMPLE value number is " << sample_value_num << "\n"; if ( sample_value_num != sample_node_num ) { cout << "\n"; cout << "FEM1D_PROJECT - Fatal error!\n"; cout << " Number of sample values and nodes differ.\n"; exit ( 1 ); } sample_value = r8mat_data_read ( sample_value_filename, sample_value_dim, sample_value_num ); // // Read the FEM data. // r8mat_header_read ( fem_node_filename, &fem_node_dim, &fem_node_num ); cout << "\n"; cout << " The FEM node dimension is " << fem_node_dim << "\n"; cout << " The FEM node number is " << fem_node_num << "\n"; if ( fem_node_dim != 1 ) { cout << "\n"; cout << "FEM1D_PROJECT - Fatal error!\n"; cout << " Spatial dimension of the nodes is not 1.\n"; exit ( 1 ); } fem_node_x = r8mat_data_read ( fem_node_filename, fem_node_dim, fem_node_num ); i4mat_header_read ( fem_element_filename, &fem_element_order, &fem_element_num ); cout << " The FEM element order is " << fem_element_order << "\n"; cout << " The FEM element number is " << fem_element_num << "\n"; fem_element_node = i4mat_data_read ( fem_element_filename, fem_element_order, fem_element_num ); // // Compute the FEM values. // fem_value_dim = sample_value_dim; fem_value_num = fem_node_num; fem_value = fem1d_approximate ( sample_node_num, sample_value_dim, sample_node_x, sample_value, fem_node_num, fem_node_x, fem_element_order, fem_element_num, fem_value_dim, fem_value_num ); // // Write the FEM values. // r8mat_write ( fem_value_filename, fem_value_dim, fem_value_num, fem_value ); cout << "\n"; cout << " Projected FEM values written to \"" << fem_value_filename << "\"\n"; // // Free memory. // delete [] fem_element_node; delete [] fem_node_x; delete [] fem_value; delete [] sample_node_x; delete [] sample_value; // // Terminate. // cout << "\n"; cout << "FEM1D_PROJECT\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } return ( ch1 == ch2 ); } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the // character was 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 double *fem1d_approximate ( int sample_node_num, int sample_value_dim, double sample_node_x[], double sample_value[], int fem_node_num, double fem_node_x[], int fem_element_order, int fem_element_num, int fem_value_dim, int fem_value_num ) //****************************************************************************80 // // Purpose: // // FEM1D_APPROXIMATE approximates data at sample points with an FEM function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int SAMPLE_NODE_NUM, the number of sample points. // // Input, int SAMPLE_VALUE_DIM, the value dimension. // // Input, double SAMPLE_NODE_X[SAMPLE_NODE_NUM], the sample nodes. // // Input, double SAMPLE_VALUE[VALUE_DIM*SAMPLE_NODE_NUM], // the values at sample nodes. // // Input, int FEM_NODE_NUM, the number of FEM nodes. // // Input, double FEM_NODE_X[FEM_NODE_NUM], the FEM nodes. // // Input, int FEM_ELEMENT_ORDER, the element order. // // Input, int FEM_ELEMENT_NUM, the number of elements. // // Input, int FEM_VALUE_DIM, the FEM value dimension. // // Input, int FEM_VALUE_NUM, the number of FEM values. // // Output, double FEM1D_APPROXIMATE[FEM_VALUE_DIM*FEM_VALUE_NUM], // the FEM values. // { # define QUAD_NUM 2 double *a; double a1; double *b; double b1; int dim; double *fem_value; int i; double integral; int j; int job; int l; int phi_num; double phi_v[3]; double phi_x[3]; double phil; double phir; int quad; int quad_num = QUAD_NUM; double quad_x[QUAD_NUM] = { -0.577350269189625764509148780502, 0.577350269189625764509148780502 }; double quad_w[QUAD_NUM] = { 1.0, 1.0 }; int r; double *v; double wq; double *x; double xl; double xq; double xr; // // Set up the matrix A. // a = r8mat_zero_new ( 3, fem_node_num ); for ( l = 0; l < fem_node_num - 1; l++ ) { r = l + 1; xl = fem_node_x[l]; xr = fem_node_x[r]; for ( quad = 0; quad < quad_num; quad++ ) { xq = ( ( 1.0 - quad_x[quad] ) * xl + ( 1.0 + quad_x[quad] ) * xr ) / 2.0; wq = quad_w[quad] * ( xr - xl ) / 2.0; phil = ( xq - xr ) / ( xl - xr ); phir = ( xl - xq ) / ( xl - xr ); a[1+l*3] = a[1+l*3] + wq * phil * phil; a[2+l*3] = a[2+l*3] + wq * phil * phir; a[0+r*3] = a[0+r*3] + wq * phir * phil; a[1+r*3] = a[1+r*3] + wq * phir * phir; } } r83_np_fa ( fem_node_num, a ); // // Set up the right hand side b. // b = new double[fem_node_num]; v = new double[sample_node_num]; fem_value = new double[fem_value_dim*fem_value_num]; for ( dim = 0; dim < fem_value_dim; dim++ ) { for ( i = 0; i < fem_node_num; i++ ) { if ( i == 0 ) { phi_num = 2; phi_x[0] = fem_node_x[0]; phi_x[1] = fem_node_x[1]; phi_v[0] = 1.0; phi_v[1] = 0.0; } else if ( i < fem_node_num - 1 ) { phi_num = 3; phi_x[0] = fem_node_x[i-1]; phi_x[1] = fem_node_x[i]; phi_x[2] = fem_node_x[i+1]; phi_v[0] = 0.0; phi_v[1] = 1.0; phi_v[2] = 0.0; } else if ( i == fem_node_num - 1 ) { phi_num = 2; phi_x[0] = fem_node_x[fem_node_num-2]; phi_x[1] = fem_node_x[fem_node_num-1]; phi_v[0] = 0.0; phi_v[1] = 1.0; } a1 = phi_x[0]; b1 = phi_x[phi_num-1]; for ( j = 0; j < sample_node_num; j++ ) { v[j] = sample_value[dim+j*sample_value_dim]; } integral = piecewise_linear_product_quad ( a1, b1, phi_num, phi_x, phi_v, sample_node_num, sample_node_x, v ); b[i] = integral; } job = 0; x = r83_np_sl ( fem_node_num, a, b, job ); for ( i = 0; i < fem_node_num; i++ ) { fem_value[dim+i*fem_value_dim] = x[i]; } delete [] x; } delete [] a; delete [] b; delete [] v; return fem_value; # undef QUAD_NUM } //****************************************************************************80 int file_column_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the number of columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file is presumed to consist of COLUMN_NUM words, separated // by spaces. There may also be some blank lines, and some comment lines, // which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; char line[255]; // // Open the file. // input.open ( input_filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << input_filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } if ( line[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( input_filename.c_str ( ) ); for ( ; ; ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( line ); return column_num; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int comment_num; ifstream input; char line[255]; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return (-1); } for ( ; ; ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // An I4MAT is an array of I4's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Discussion: // // An I4MAT is an array of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 double piecewise_linear_product_quad ( double a, double b, int f_num, double f_x[], double f_v[], int g_num, double g_x[], double g_v[] ) //****************************************************************************80 // // Purpose: // // PIECEWISE_LINEAR_PRODUCT_QUAD: piecewise linear product integral. // // Discussion: // // We are given two piecewise linear functions F(X) and G(X) and we wish // to compute the exact value of the integral // // INTEGRAL = Integral ( A <= X <= B ) F(X) * G(X) dx // // The functions F(X) and G(X) are defined as tables of coordinates X and // values V. A piecewise linear function is evaluated at a point X by // evaluating the interpolant to the data at the endpoints of the interval // containing X. // // It must be the case that A <= B. // // It must be the case that the node coordinates F_X(*) and G_X(*) are // given in ascending order. // // It must be the case that: // // F_X(1) <= A and B <= F_X(F_NUM) // G_X(1) <= A and B <= G_X(G_NUM) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the limits of integration. // // Input, int F_NUM, the number of nodes for F. // // Input, double F_X[F_NUM], the node coordinates for F. // // Input, double F_V[F_NUM], the nodal values for F. // // Input, int G_NUM, the number of nodes for G. // // Input, double G_X[G_NUM], the node coordinates for G. // // Input, double G_V[G_NUM], the nodal values for G. // // Output, double INTEGRAL, the integral of F(X) * G(X) // from A to B. // { double bit; int f_left; double f0; double f1; double fl; double fr; int g_left; double g0; double g1; double gl; double gr; double h0; double h1; double h2; int i; double integral; double xl; double xr; double xr_max; integral = 0.0; if ( f_x[f_num-1] <= a || g_x[g_num-1] <= a ) { return integral; } if ( f_num < 2 || g_num < 2 ) { return integral; } xr = a; f_left = 0; r8vec_bracket3 ( f_num, f_x, xr, &f_left ); fr = f_v[f_left] + ( xr - f_x[f_left] ) * ( f_v[f_left+1] - f_v[f_left] ) / ( f_x[f_left+1] - f_x[f_left] ); g_left = 0; r8vec_bracket3 ( g_num, g_x, xr, &g_left ); gr = g_v[g_left] + ( xr - g_x[g_left] ) * ( g_v[g_left+1] - g_v[g_left] ) / ( g_x[g_left+1] - g_x[g_left] ); xr_max = b; xr_max = r8_min ( xr_max, f_x[f_num-1] ); xr_max = r8_min ( xr_max, g_x[g_num-1] ); while ( xr < xr_max ) { // // Shift right values to left. // xl = xr; fl = fr; gl = gr; // // Determine the new right values. // The hard part is figuring out how to advance XR some, but not too much. // xr = xr_max; for ( i = 1; i <= 2; i++ ) { if ( f_left + i <= f_num - 1 ) { if ( xl < f_x[f_left+i] && f_x[f_left+i] < xr ) { xr = f_x[f_left+i]; break; } } } for ( i = 1; i <= 2; i++ ) { if ( g_left + i <= g_num - 1 ) { if ( xl < g_x[g_left+i] && g_x[g_left+i] < xr ) { xr = g_x[g_left+i]; break; } } } r8vec_bracket3 ( f_num, f_x, xr, &f_left ); fr = f_v[f_left] + ( xr - f_x[f_left] ) * ( f_v[f_left+1] - f_v[f_left] ) / ( f_x[f_left+1] - f_x[f_left] ); r8vec_bracket3 ( g_num, g_x, xr, &g_left ); gr = g_v[g_left] + ( xr - g_x[g_left] ) * ( g_v[g_left+1] - g_v[g_left] ) / ( g_x[g_left+1] - g_x[g_left] ); // // Form the linear polynomials for F(X) and G(X) over [XL,XR], // then the product H(X), integrate H(X) and add to the running total. // if ( DBL_EPSILON <= fabs ( xr - xl ) ) { f1 = fl - fr; f0 = fr * xl - fl * xr; g1 = gl - gr; g0 = gr * xl - gl * xr; h2 = f1 * g1; h1 = f1 * g0 + f0 * g1; h0 = f0 * g0; h2 = h2 / 3.0; h1 = h1 / 2.0; bit = ( ( h2 * xr + h1 ) * xr + h0 ) * xr - ( ( h2 * xl + h1 ) * xl + h0 ) * xl; integral = integral + bit / ( xr - xl ) / ( xr - xl ); } } return integral; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 int r83_np_fa ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R83_NP_FA factors a R83 system without pivoting. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:N), the diagonal in // entries (2,1:N), and the subdiagonal in (3,1:N-1). Thus, the // original matrix is "collapsed" vertically into the array. // // Because this routine does not use pivoting, it can fail even when // the matrix is not singular, and it is liable to make larger // errors. // // R83_NP_FA and R83_NP_SL may be preferable to the corresponding // LINPACK routine SGTSL for tridiagonal systems, which factors and solves // in one step, and does not save the factorization. // // Example: // // Here is how a R83 matrix of order 5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be at least 2. // // Input/output, double A[3*N]. // On input, the tridiagonal matrix. On output, factorization information. // // Output, int R83_NP_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int i; for ( i = 1; i <= n-1; i++ ) { if ( a[1+(i-1)*3] == 0.0 ) { cout << "\n"; cout << "R83_NP_FA - Fatal error!\n"; cout << " Zero pivot on step " << i << "\n"; return i; } // // Store the multiplier in L. // a[2+(i-1)*3] = a[2+(i-1)*3] / a[1+(i-1)*3]; // // Modify the diagonal entry in the next column. // a[1+i*3] = a[1+i*3] - a[2+(i-1)*3] * a[0+i*3]; } if ( a[1+(n-1)*3] == 0.0 ) { cout << "\n"; cout << "R83_NP_FA - Fatal error!\n"; cout << " Zero pivot on step " << n << "\n"; return n; } return 0; } //****************************************************************************80 double *r83_np_sl ( int n, double a_lu[], double b[], int job ) //****************************************************************************80 // // Purpose: // // R83_NP_SL solves a R83 system factored by R83_NP_FA. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:N), the diagonal in // entries (2,1:N), and the subdiagonal in (3,1:N-1). Thus, the // original matrix is "collapsed" vertically into the array. // // Example: // // Here is how a R83 matrix of order 5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be at least 2. // // Input, double A_LU[3*N], the LU factors from R83_NP_FA. // // Input, double B[N], the right hand side of the linear system. // On output, B contains the solution of the linear system. // // Input, int JOB, specifies the system to solve. // 0, solve A * x = b. // nonzero, solve A' * x = b. // // Output, double R83_NP_SL[N], the solution of the linear system. // { int i; double *x; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = b[i]; } if ( job == 0 ) { // // Solve L * Y = B. // for ( i = 1; i < n; i++ ) { x[i] = x[i] - a_lu[2+(i-1)*3] * x[i-1]; } // // Solve U * X = Y. // for ( i = n; 1 <= i; i-- ) { x[i-1] = x[i-1] / a_lu[1+(i-1)*3]; if ( 1 < i ) { x[i-2] = x[i-2] - a_lu[0+(i-1)*3] * x[i-1]; } } } else { // // Solve U' * Y = B // for ( i = 1; i <= n; i++ ) { x[i-1] = x[i-1] / a_lu[1+(i-1)*3]; if ( i < n ) { x[i] = x[i] - a_lu[0+i*3] * x[i-1]; } } // // Solve L' * X = Y. // for ( i = n-1; 1 <= i; i-- ) { x[i-1] = x[i-1] - a_lu[2+(i-1)*3] * x[i]; } } return x; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 double *r8mat_zero_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_ZERO_NEW returns a new zeroed R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Output, double R8MAT_ZERO[M*N], the new zeroed matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } //****************************************************************************80 void r8vec_bracket3 ( int n, double t[], double tval, int *left ) //****************************************************************************80 // // Purpose: // // R8VEC_BRACKET3 finds the interval containing or nearest a given value. // // Discussion: // // An R8VEC is a vector of R8's. // // The routine always returns the index LEFT of the sorted array // T with the property that either // * T is contained in the interval [ T[LEFT], T[LEFT+1] ], or // * T < T[LEFT] = T[0], or // * T > T[LEFT+1] = T[N-1]. // // The routine is useful for interpolation problems, where // the abscissa must be located within an interval of data // abscissas for interpolation, or the "nearest" interval // to the (extreme) abscissa must be found so that extrapolation // can be carried out. // // This version of the function has been revised so that the value of // LEFT that is returned uses the 0-based indexing natural to C++. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, length of the input array. // // Input, double T[N], an array that has been sorted into ascending order. // // Input, double TVAL, a value to be bracketed by entries of T. // // Input/output, int *LEFT. // On input, if 0 <= LEFT <= N-2, LEFT is taken as a suggestion for the // interval [ T[LEFT-1] T[LEFT] ] in which TVAL lies. This interval // is searched first, followed by the appropriate interval to the left // or right. After that, a binary search is used. // On output, LEFT is set so that the interval [ T[LEFT], T[LEFT+1] ] // is the closest to TVAL; it either contains TVAL, or else TVAL // lies outside the interval [ T[0], T[N-1] ]. // { int high; int low; int mid; // // Check the input data. // if ( n < 2 ) { cout << "\n"; cout << "R8VEC_BRACKET3 - Fatal error//\n"; cout << " N must be at least 2.\n"; exit ( 1 ); } // // If *LEFT is not between 0 and N-2, set it to the middle value. // if ( *left < 0 || n - 2 < *left ) { *left = ( n - 1 ) / 2; } // // CASE 1: TVAL < T[*LEFT]: // Search for TVAL in (T[I],T[I+1]), for I = 0 to *LEFT-1. // if ( tval < t[*left] ) { if ( *left == 0 ) { return; } else if ( *left == 1 ) { *left = 0; return; } else if ( t[*left-1] <= tval ) { *left = *left - 1; return; } else if ( tval <= t[1] ) { *left = 0; return; } // // ...Binary search for TVAL in (T[I],T[I+1]), for I = 1 to *LEFT-2. // low = 1; high = *left - 2; for ( ; ; ) { if ( low == high ) { *left = low; return; } mid = ( low + high + 1 ) / 2; if ( t[mid] <= tval ) { low = mid; } else { high = mid - 1; } } } // // CASE 2: T[*LEFT+1] < TVAL: // Search for TVAL in (T[I],T[I+1]) for intervals I = *LEFT+1 to N-2. // else if ( t[*left+1] < tval ) { if ( *left == n - 2 ) { return; } else if ( *left == n - 3 ) { *left = *left + 1; return; } else if ( tval <= t[*left+2] ) { *left = *left + 1; return; } else if ( t[n-2] <= tval ) { *left = n - 2; return; } // // ...Binary search for TVAL in (T[I],T[I+1]) for intervals I = *LEFT+2 to N-3. // low = *left + 2; high = n - 3; for ( ; ; ) { if ( low == high ) { *left = low; return; } mid = ( low + high + 1 ) / 2; if ( t[mid] <= tval ) { low = mid; } else { high = mid - 1; } } } // // CASE 3: T[*LEFT] <= TVAL <= T[*LEFT+1]: // T is just where the user said it might be. // else { } return; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0^(-9.23) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }