# include # include # include # include # include using namespace std; int main ( ); void alpbet ( double a[], double alpha[], double beta[], int np, int problem, int quad_num, double quad_w[], double quad_x[] ); void exact ( double alpha[], double beta[], double f[], int np, int nprint, int problem, int quad_num, double quad_w[], double quad_x[] ); double ff ( double x, int problem ); void ortho ( double a[], double alpha[], double beta[], int np, int problem, int quad_num, double quad_w[], double quad_x[] ); void out ( double alpha[], double beta[], double f[], int np, int nprint ); void phi ( double alpha[], double beta[], int i, int np, double *phii, double *phiix, double x ); double pp ( double x, int problem ); void quad ( int quad_num, double quad_w[], double quad_x[] ); double qq ( double x, int problem ); void sol ( double a[], double alpha[], double beta[], double f[], int np, int problem, int quad_num, double quad_w[], double quad_x[] ); void timestamp ( void ); double uex ( double x, int problem ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for FEM1D_PMETHOD. // // Discussion: // // FEM1D_PMETHOD implements the P-version of the finite element method. // // Program to solve the one dimensional problem: // // - d/dX (P dU/dX) + Q U = F // // by the finite-element method using a sequence of polynomials // which satisfy the boundary conditions and are orthogonal // with respect to the inner product: // // (U,V) = Integral (-1 to 1) P U' V' + Q U V dx // // Here U is an unknown scalar function of X defined on the // interval [-1,1], and P, Q and F are given functions of X. // // The boundary values are U(-1) = U(1)=0. // // Sample problem #1: // // U=1-x^4, P=1, Q=1, F=1.0+12.0*x^2-x^4 // // Sample problem #2: // // U=cos(0.5*pi*x), P=1, Q=0, F=0.25*pi*pi*cos(0.5*pi*x) // // The program should be able to get the exact solution for // the first problem, using NP = 2. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Local Parameters: // // Local, double A[NP+1], the squares of the norms of the // basis functions. // // Local, double ALPHA[NP], BETA[NP], the basis function // recurrence coefficients. // // Local, double F[NP+1]. // F contains the basis function coefficients that form the // representation of the solution U. That is, // U(X) = SUM (I=0 to NP) F(I) * BASIS(I)(X) // where "BASIS(I)(X)" means the I-th basis function // evaluated at the point X. // // Local, int NP. // The highest degree polynomial to use. // // Local, int NPRINT. // The number of points at which the computed solution // should be printed out at the end of the computation. // // Local, int PROBLEM, indicates the problem being solved. // 1, U=1-x^4, P=1, Q=1, F=1.0+12.0*x^2-x^4. // 2, U=cos(0.5*pi*x), P=1, Q=0, F=0.25*pi*pi*cos(0.5*pi*x). // // Local, int QUAD_NUM, the order of the quadrature rule. // // Local, double QUAD_W[QUAD_NUM], the quadrature weights. // // Local, double QUAD_X[QUAD_NUM], the quadrature abscissas. // { # define NP 2 # define QUAD_NUM 10 double a[NP+1]; double alpha[NP]; double beta[NP]; double f[NP+1]; int nprint = 10; int problem = 2; double quad_w[QUAD_NUM]; double quad_x[QUAD_NUM]; timestamp ( ); cout << "\n"; cout << "FEM1D_PMETHOD\n"; cout << " C++ version\n"; cout << "\n"; cout << " Solve the two-point boundary value problem\n"; cout << "\n"; cout << " - d/dX (P dU/dX) + Q U = F\n"; cout << "\n"; cout << " on the interval [-1,1], with\n"; cout << " U(-1) = U(1) = 0.\n"; cout << "\n"; cout << " The P method is used, which represents U as\n"; cout << " a weighted sum of orthogonal polynomials.\n"; cout << "\n"; cout << "\n"; cout << " Highest degree polynomial to use is " << NP << "\n"; cout << " Number of points to be used for output = " << nprint << "\n"; if ( problem == 1 ) { cout << "\n"; cout << " Problem #1:\n"; cout << " U=1-x^4,\n"; cout << " P=1,\n"; cout << " Q=1,\n"; cout << " F=1 + 12 * x^2 - x^4\n"; } else if ( problem == 2 ) { cout << "\n"; cout << " Problem #2:\n"; cout << " U=cos(0.5*pi*x),\n"; cout << " P=1,\n"; cout << " Q=0,\n"; cout << " F=0.25*pi*pi*cos(0.5*pi*x)\n"; } // // Get quadrature abscissas and weights for interval [-1,1]. // quad ( QUAD_NUM, quad_w, quad_x ); // // Compute the constants for the recurrence relationship // that defines the basis functions. // alpbet ( a, alpha, beta, NP, problem, QUAD_NUM, quad_w, quad_x ); // // Test the orthogonality of the basis functions. // ortho ( a, alpha, beta, NP, problem, QUAD_NUM, quad_w, quad_x ); // // Solve for the solution of the problem, in terms of coefficients // of the basis functions. // sol ( a, alpha, beta, f, NP, problem, QUAD_NUM, quad_w, quad_x ); // // Print out the solution, evaluated at each of the NPRINT points. // out ( alpha, beta, f, NP, nprint ); // // Compare the computed and exact solutions. // exact ( alpha, beta, f, NP, nprint, problem, QUAD_NUM, quad_w, quad_x ); // // Terminate. // cout << "\n"; cout << "FEM1D_PMETHOD\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; # undef NP # undef QUAD_NUM } //****************************************************************************80 void alpbet ( double a[], double alpha[], double beta[], int np, int problem, int quad_num, double quad_w[], double quad_x[] ) //****************************************************************************80 // // Purpose: // // ALPBET calculates the coefficients in the recurrence relationship. // // Discussion: // // ALPHA and BETA are the coefficients in the three // term recurrence relation for the orthogonal basis functions // on [-1,1]. // // The routine also calculates A, the square of the norm of each basis // function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Output, double A(0:NP), the squares of the norms of the // basis functions. // // Output, double ALPHA(NP), BETA(NP), the basis function // recurrence coefficients. // // Input, int NP. // The highest degree polynomial to use. // // Input, int PROBLEM, indicates the problem being solved. // 1, U=1-x^4, P=1, Q=1, F=1.0+12.0*x^2-x^4. // 2, U=cos(0.5*pi*x), P=1, Q=0, F=0.25*pi*pi*cos(0.5*pi*x). // // Input, int QUAD_NUM, the order of the quadrature rule. // // Input, double QUAD_W(QUAD_NUM), the quadrature weights. // // Input, double QUAD_X(QUAD_NUM), the quadrature abscissas. // { int i; int iq; int k; double q; double qm1; double qm1x; double qm2; double qm2x; double qx; double s; double ss; double su; double sv; double t; double u; double v; double x; ss = 0.0; su = 0.0; for ( iq = 0; iq < quad_num; iq++ ) { x = quad_x[iq]; s = 4.0 * pp ( x, problem ) * x * x + qq ( x, problem ) * ( 1.0 - x * x ) * ( 1.0 - x * x ); u = 2.0 * pp ( x, problem ) * x * ( 3.0 * x * x - 1.0 ) + x * qq ( x, problem ) * ( 1.0 - x * x ) * ( 1.0 - x * x ); ss = ss + s * quad_w[iq]; su = su + u * quad_w[iq]; } a[0] = ss; alpha[0] = su / ss; beta[0] = 0.0; for ( i = 1; i <= np; i++ ) { ss = 0.0; su = 0.0; sv = 0.0; for ( iq = 0; iq < quad_num; iq++ ) { x = quad_x[iq]; // // Three term recurrence for Q. // qm1 = 0.0; q = 1.0; for ( k = 0; k <= i-1; k++ ) { qm2 = qm1; qm1 = q; q = ( x - alpha[k] ) * qm1 - beta[k] * qm2; } // // Three term recurrence for Q'. // qm1x = 0.0; qx = 0.0; for ( k = 0; k <= i-1; k++ ) { qm2x = qm1x; qm1x = qx; qx = qm1 + ( x - alpha[k] ) * qm1x - beta[k] * qm2x; } t = 1.0 - x * x; // // The basis function PHI = ( 1 - x^2 ) * q. // // s = pp * ( phi(i) )' * ( phi(i) )' + qq * phi(i) * phi(i) // s = pp ( x, problem ) * pow ( t * qx - 2.0 * x * q, 2 ) + qq ( x, problem ) * t * t * q * q; // // u = pp * ( x * phi(i) )' * phi(i)' + qq * x * phi(i) * phi(i) // u = pp ( x, problem ) * ( x * t * qx + ( 1.0 - 3.0 * x * x ) * q ) * ( t * qx - 2.0 * x * q ) + x * qq ( x, problem ) * t * t * q * q; // // v = pp * ( x * phi(i) )' * phi(i-1) + qq * x * phi(i) * phi(i-1) // v = pp ( x, problem ) * ( x * t * qx + ( 1.0 - 3.0 * x * x ) * q ) * ( t * qm1x - 2.0 * x * qm1 ) + x * qq ( x, problem ) * t * t * q * qm1; // // SS(i) = < phi(i), phi(i) > = integral ( S ) // SU(i) = < x phi(i), phi(i) > = integral ( U ) // SV(i) = < x phi(i), phi(i-1) > = integral ( V ) // ss = ss + s * quad_w[iq]; su = su + u * quad_w[iq]; sv = sv + v * quad_w[iq]; } a[i] = ss; // // ALPHA(i) = SU(i) / SS(i) // BETA(i) = SV(i) / SS(i-1) // if ( i < np ) { alpha[i] = su / ss; beta[i] = sv / a[i-1]; } } return; } //****************************************************************************80 void exact ( double alpha[], double beta[], double f[], int np, int nprint, int problem, int quad_num, double quad_w[], double quad_x[] ) //****************************************************************************80 // // Purpose: // // EXACT compares the computed and exact solutions. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Input, double ALPHA(NP), BETA(NP), the basis function // recurrence coefficients. // // Input, double F(0:NP). // F contains the basis function coefficients that form the // representation of the solution U. That is, // U(X) = SUM (I=0 to NP) F(I) * BASIS(I)(X) // where "BASIS(I)(X)" means the I-th basis function // evaluated at the point X. // // Input, int NP. // The highest degree polynomial to use. // // Input, int NPRINT. // The number of points at which the computed solution // should be printed out at the end of the computation. // // Input, int PROBLEM, indicates the problem being solved. // 1, U=1-x^4, P=1, Q=1, F=1.0+12.0*x^2-x^4. // 2, U=cos(0.5*pi*x), P=1, Q=0, F=0.25*pi*pi*cos(0.5*pi*x). // // Input, int QUAD_NUM, the order of the quadrature rule. // // Input, double QUAD_W(QUAD_NUM), the quadrature weights. // // Input, double QUAD_X(QUAD_NUM), the quadrature abscissas. // { double big_l2; int i; int j; int k; int nsub = 10; double phii; double phiix; double ue; double up; double x; double xl; double xr; cout << "\n"; cout << " Comparison of computed and exact solutions:\n"; cout << "\n"; cout << " X U computed U exact Difference\n"; cout << "\n"; for ( i = 0; i <= nprint; i++ ) { x = ( double ) ( 2 * i - nprint ) / ( double ) ( nprint ); ue = uex ( x, problem ); up = 0.0; for ( j = 0; j <= np; j++ ) { phi ( alpha, beta, j, np, &phii, &phiix, x ); up = up + phii * f[j]; } cout << " " << setw(8) << x << " " << setw(12) << up << " " << setw(12) << ue << " " << setw(12) << ue - up << "\n"; } // // Compute the big L2 error. // big_l2 = 0.0; for ( i = 1; i <= nsub; i++ ) { xl = ( double ) ( 2 * i - nsub - 1 ) / ( double ) ( nsub ); xr = ( double ) ( 2 * i - nsub ) / ( double ) ( nsub ); for ( j = 0; j < quad_num; j++ ) { x = ( xl * ( 1.0 - quad_x[j] ) + xr * ( 1.0 + quad_x[j] ) ) / 2.0; up = 0.0; for ( k = 0; k <= np; k++ ) { phi ( alpha, beta, k, np, &phii, &phiix, x ); up = up + phii * f[k]; } big_l2 = big_l2 + pow ( up - uex ( x, problem ), 2 ) * quad_w[j] * ( xr - xl ) / 2.0; } } big_l2 = sqrt ( big_l2 ); cout << "\n"; cout << " Big L2 error = " << big_l2 << "\n"; return; } //****************************************************************************80 double ff ( double x, int problem ) //****************************************************************************80 // // Purpose: // // FF evaluates the right hand side function F(X) at any point X. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Input, double X, the evaluation point. // // Input, int PROBLEM, indicates the problem being solved. // 1, U=1-x^4, P=1, Q=1, F=1.0+12.0*x^2-x^4. // 2, U=cos(0.5*pi*x), P=1, Q=0, F=0.25*pi*pi*cos(0.5*pi*x). // // Output, double FF, the value of F(X). // { double pi = 3.141592653589793; double value; // // Test problem 1 // if ( problem == 1 ) { value = 1.0 + 12.0 * x * x - x * x * x * x; } // // Test problem 2 // else if ( problem == 2 ) { value = 0.25 * pi * pi * cos ( 0.5 * pi * x ); } return value; } //****************************************************************************80 void ortho ( double a[], double alpha[], double beta[], int np, int problem, int quad_num, double quad_w[], double quad_x[] ) //****************************************************************************80 // // Purpose: // // ORTHO tests the basis functions for orthogonality. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Input, double A(0:NP), the squares of the norms of the // basis functions. // // Input, double ALPHA(NP), BETA(NP), the basis function // recurrence coefficients. // // Input, int NP. // The highest degree polynomial to use. // // Input, int PROBLEM, indicates the problem being solved. // 1, U=1-x^4, P=1, Q=1, F=1.0+12.0*x^2-x^4. // 2, U=cos(0.5*pi*x), P=1, Q=0, F=0.25*pi*pi*cos(0.5*pi*x). // // Input, int QUAD_NUM, the order of the quadrature rule. // // Input, double QUAD_W(QUAD_NUM), the quadrature weights. // // Input, double QUAD_X(QUAD_NUM), the quadrature abscissas. // { double *b; double bij; int i; int iq; int j; double phii; double phiix; double phij; double phijx; double x; // // Zero out the B array, so we can start summing up the dot products. // b = new double[(np+1)*(np+1)]; for ( j = 0; j <= np; j++ ) { for ( i = 0; i <= np; i++ ) { b[i+j*(np+1)] = 0.0; } } // // Approximate the integral of the product of basis function // I and basis function J over the interval [-1,1]. // // We expect to get zero, except when I and J are equal, // when we should get A(I). // for ( iq = 0; iq < quad_num; iq++ ) { x = quad_x[iq]; for ( i = 0; i <= np; i++ ) { phi ( alpha, beta, i, np, &phii, &phiix, x ); for ( j = 0; j <= np; j++ ) { phi ( alpha, beta, j, np, &phij, &phijx, x ); bij = pp ( x, problem ) * phiix * phijx + qq ( x, problem ) * phii * phij; b[i+j*(np+1)] = b[i+j*(np+1)] + bij * quad_w[iq]; } } } // // Print out the results of the test. // cout << "\n"; cout << " Basis function orthogonality test:\n"; cout << "\n"; cout << " i j b(i,j)/a(i)\n"; cout << "\n"; for ( i = 0; i <= np; i++ ) { cout << "\n"; for ( j = 0; j <= np; j++ ) { cout << " " << setw(6) << i << " " << setw(6) << j << " " << setw(12) << b[i+j*(np+1)] / a[i] << "\n"; } } delete [] b; return; } //****************************************************************************80 void out ( double alpha[], double beta[], double f[], int np, int nprint ) //****************************************************************************80 // // Purpose: // // OUT prints the computed solution. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Input, double ALPHA(NP), BETA(NP), the basis function // recurrence coefficients. // // Input, double F(0:NP). // F contains the basis function coefficients that form the // representation of the solution U. That is, // U(X) = SUM (I=0 to NP) F(I) * BASIS(I)(X) // where "BASIS(I)(X)" means the I-th basis function // evaluated at the point X. // // Input, int NP. // The highest degree polynomial to use. // // Input, int NPRINT. // The number of points at which the computed solution // should be printed out at the end of the computation. // { int i; int ip; double phii; double phiix; double up; double x; cout << "\n"; cout << " Representation of solution:\n"; cout << "\n"; cout << " Basis function coefficients:\n"; cout << "\n"; for ( i = 0; i <= np; i++ ) { cout << " " << setw(8) << i << " " << setw(12) << f[i] << "\n"; } cout << "\n"; cout << "\n"; cout << " X Approximate Solution\n"; cout << "\n"; for ( ip = 0; ip <= nprint; ip++ ) { x = ( double ) ( 2 * ip - nprint ) / ( double ) ( nprint ); up = 0.0; for ( i = 0; i <= np; i++ ) { phi ( alpha, beta, i, np, &phii, &phiix, x ); up = up + phii * f[i]; } cout << " " << setw(12) << x << " " << setw(12) << up << "\n"; } cout << "\n"; return; } //****************************************************************************80 void phi ( double alpha[], double beta[], int i, int np, double *phii, double *phiix, double x ) //****************************************************************************80 // // Purpose: // // PHI evaluates the I-th basis function at the point X. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Input, double ALPHA(NP), BETA(NP), the basis function // recurrence coefficients. // // Input, int I, the index of the basis function. // // Input, int NP. // The highest degree polynomial to use. // // Output, double PHII, PHIIX, the value of the basis // function and its derivative. // // Input, double X, the evaluation point. // { int j; double q; double qm1; double qm1x; double qm2; double qm2x; double qx; double t; qm1 = 0.0; q = 1.0; qm1x = 0.0; qx = 0.0; for ( j = 1; j <= i; j++ ) { qm2 = qm1; qm1 = q; qm2x = qm1x; qm1x = qx; t = x - alpha[j-1]; q = t * qm1 - beta[j-1] * qm2; qx = qm1 + t * qm1x - beta[j-1] * qm2x; } t = 1.0 - x * x; *phii = t * q; *phiix = t * qx - 2.0 * x * q; return; } //****************************************************************************80 double pp ( double x, int problem ) //****************************************************************************80 // // Purpose: // // PP returns the value of the coefficient function P(X). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Input, double X, the evaluation point. // // Input, int PROBLEM, indicates the problem being solved. // 1, U=1-x^4, P=1, Q=1, F=1.0+12.0*x^2-x^4. // 2, U=cos(0.5*pi*x), P=1, Q=0, F=0.25*pi*pi*cos(0.5*pi*x). // // Output, double PP, the value of P(X). // { double value; // // Test problem 1 // if ( problem == 1 ) { value = 1.0; } // // Test problem 2 // else if ( problem == 2 ) { value = 1.0; } return value; } //****************************************************************************80 void quad ( int quad_num, double quad_w[], double quad_x[] ) //****************************************************************************80 // // Purpose: // // QUAD returns the abscissas and weights for gaussian quadrature on [-1,1]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Input, int QUAD_NUM, the order of the quadrature rule. // // Output, double QUAD_W(QUAD_NUM), the quadrature weights. // // Output, double QUAD_X(QUAD_NUM), the quadrature abscissas. // { // // Quadrature points on [-1,1] // quad_x[0] = -0.973906528517172; quad_x[1] = -0.865063366688985; quad_x[2] = -0.679409568299024; quad_x[3] = -0.433395394129247; quad_x[4] = -0.148874338981631; quad_x[5] = 0.148874338981631; quad_x[6] = 0.433395394129247; quad_x[7] = 0.679409568299024; quad_x[8] = 0.865063366688985; quad_x[9] = 0.973906528517172; // // Weight factors // quad_w[0] = 0.066671344308688; quad_w[1] = 0.149451349150581; quad_w[2] = 0.219086362515982; quad_w[3] = 0.269266719309996; quad_w[4] = 0.295524224714753; quad_w[5] = 0.295524224714753; quad_w[6] = 0.269266719309996; quad_w[7] = 0.219086362515982; quad_w[8] = 0.149451349150581; quad_w[9] = 0.066671344308688; return; } //****************************************************************************80 double qq ( double x, int problem ) //****************************************************************************80 // // Purpose: // // QQ returns the value of the coefficient function Q(X). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Input, double X, the evaluation point. // // Input, int PROBLEM, indicates the problem being solved. // 1, U=1-x^4, P=1, Q=1, F=1.0+12.0*x^2-x^4. // 2, U=cos(0.5*pi*x), P=1, Q=0, F=0.25*pi*pi*cos(0.5*pi*x). // // Output, double QQ, the value of Q(X). // { double value; // // Test problem 1 // if ( problem == 1 ) { value = 1.0; } // // Test problem 2 // else if ( problem == 2 ) { value = 0.0; } return value; } //****************************************************************************80 void sol ( double a[], double alpha[], double beta[], double f[], int np, int problem, int quad_num, double quad_w[], double quad_x[] ) //****************************************************************************80 // // Purpose: // // SOL solves a linear system for the finite element coefficients. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Input, double A(0:NP), the squares of the norms of the // basis functions. // // Input, double ALPHA(NP), BETA(NP), the basis function // recurrence coefficients. // // Output, double F(0:NP). // F contains the basis function coefficients that form the // representation of the solution U. That is, // U(X) = SUM (I=0 to NP) F(I) * BASIS(I)(X) // where "BASIS(I)(X)" means the I-th basis function // evaluated at the point X. // // Input, int NP. // The highest degree polynomial to use. // // Input, int PROBLEM, indicates the problem being solved. // 1, U=1-x^4, P=1, Q=1, F=1.0+12.0*x^2-x^4. // 2, U=cos(0.5*pi*x), P=1, Q=0, F=0.25*pi*pi*cos(0.5*pi*x). // // Input, int QUAD_NUM, the order of the quadrature rule. // // Input, double QUAD_W(QUAD_NUM), the quadrature weights. // // Input, double QUAD_X(QUAD_NUM), the quadrature abscissas. // { int i; int iq; double phii; double phiix; double t; double x; for ( i = 0; i <= np; i++ ) { f[i] = 0.0; } for ( iq = 0; iq < quad_num; iq++ ) { x = quad_x[iq]; t = ff ( x, problem ) * quad_w[iq]; for ( i = 0; i <= np; i++ ) { phi ( alpha, beta, i, np, &phii, &phiix, x ); f[i] = f[i] + phii * t; } } for ( i = 0; i <= np; i++ ) { f[i] = f[i] / a[i]; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double uex ( double x, int problem ) //****************************************************************************80 // // Purpose: // // UEX returns the value of the exact solution at a point X. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2006 // // Author: // // Original FORTRAN77 version by Max Gunzburger, Teresa Hodge. // C++ version by John Burkardt. // // Parameters: // // Input, double X, the evaluation point. // // Input, int PROBLEM, indicates the problem being solved. // 1, U=1-x^4, P=1, Q=1, F=1.0+12.0*x^2-x^4. // 2, U=cos(0.5*pi*x), P=1, Q=0, F=0.25*pi*pi*cos(0.5*pi*x). // // Output, double UEX, the exact value of U(X). // { double r8_pi = 3.141592653589793; double value; // // Test problem 1 // if ( problem == 1 ) { value = 1.0 - pow ( x, 4 ); } // // Test problem 2 // else if ( problem == 2 ) { value = cos ( 0.5 * r8_pi * x ); } return value; }