# include # include # include # include # include # include # include using namespace std; # include "circle_segment.hpp" //****************************************************************************80 double circle_segment_angle_from_chord ( double r, double c[2], double p1[2], double p2[2] ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_ANGLE_FROM_CHORD computes the angle of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double C[2], the center of the circle. // // Input, double P1[2], P2[2], the ends of the chord. // // Output, double CIRCLE_SEGMENT_ANGLE_FROM_CHORD, the value of THETA, // the angle of the circle segment. 0 <= THETA < 2 * PI. // { const double pi = 3.141592653589793; double theta; double v1[2]; double v2[2]; // // Compute the radial vectors V1 and V2. // v1[0] = p1[0] - c[0]; v1[1] = p1[1] - c[1]; v2[0] = p2[0] - c[0]; v2[1] = p2[1] - c[1]; // // The arc cosine will only give us an answer between 0 and PI. // theta = r8_atan ( v2[1], v2[0] ) - r8_atan ( v1[1], v1[0] ); // // Force 0 <= THETA < 2 * PI. // while ( theta < 0.0 ) { theta = theta + 2.0 * pi; } while ( 2.0 * pi <= theta ) { theta = theta - 2.0 * pi; } return theta; } //****************************************************************************80 double circle_segment_angle_from_chord_angles ( double omega1, double omega2 ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_ANGLE_FROM_CHORD_ANGLES computes angle of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double OMEGA1, OMEGA2, the angles of the points P1 // and P2. OMEGA1 <= OMEGA2. // // Output, double CIRCLE_SEGMENT_ANGLE_FROM_CHORD_ANGLES, the angle THETA // of the circle segment. Essentially, THETA = OMEGA2 - OMEGA1. // { const double pi = 3.141592653589793; double theta; while ( omega2 < omega1 ) { omega2 = omega2 + 2.0 * pi; } theta = omega2 - omega1; return theta; } //****************************************************************************80 double circle_segment_angle_from_height ( double r, double h ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_ANGLE_FROM_HEIGHT computes the angle of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double H, the "height" of the circle segment. // 0 <= H <= 2 * R. // // Output, double CIRCLE_SEGMENT_ANGLE_FROM_HEIGHT, the angle THETA // of the circle segment. // { const double pi = 3.141592653589793; double theta; if ( h <= 0.0 ) { theta = 0.0; } else if ( h <= r ) { theta = 2.0 * r8_acos ( ( r - h ) / r ); theta = 2.0 * r8_asin ( sqrt ( r * r - ( r - h ) * ( r - h ) ) / r ); } else if ( h <= 2.0 * r ) { theta = 2.0 * r8_acos ( ( r - h ) / r ); theta = 2.0 * r8_asin ( sqrt ( r * r - ( r - h ) * ( r - h ) ) / r ); theta = 2.0 * pi - theta; } else { theta = 2.0 * pi; } return theta; } //****************************************************************************80 double circle_segment_area_from_angle ( double r, double theta ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_AREA_FROM_ANGLE computes the area of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double THETA, the angle of the circle segment. // // Output, double CIRCLE_SEGMENT_AREA_FROM_ANGLE, the area of the // circle segment. // { double area; area = r * r * ( theta - sin ( theta ) ) / 2.0; return area; } //****************************************************************************80 double circle_segment_area_from_chord ( double r, double c[2], double p1[2], double p2[2] ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_AREA_FROM_CHORD computes the area of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double C[2], the center of the circle. // // Input, double P1[2], P2[2], the ends of the chord. // // Output, double CIRCLE_SEGMENT_AREA_FROM_CHORD, the area of the // circle segment. // { double area; double theta; theta = circle_segment_angle_from_chord ( r, c, p1, p2 ); area = r * r * ( theta - sin ( theta ) ) / 2.0; return area; } //****************************************************************************80 double circle_segment_area_from_height ( double r, double h ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_AREA_FROM_HEIGHT computes the area of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double H, the height of the circle segment. // 0 <= H <= 2 * R. // // Output, double CIRCLE_SEGMENT_AREA_FROM_HEIGHT, the area of the // circle segment. // { double area; const double pi = 3.141592653589793; double theta; if ( h <= 0.0 ) { area = 0.0; } else if ( h <= r ) { theta = 2.0 * r8_asin ( sqrt ( r * r - ( r - h ) * ( r - h ) ) / r ); area = r * r * ( theta - sin ( theta ) ) / 2.0; } else if ( h <= 2.0 * r ) { theta = 2.0 * r8_asin ( sqrt ( r * r - ( r - h ) * ( r - h ) ) / r ); theta = 2.0 * pi - theta; area = r * r * ( theta - sin ( theta ) ) / 2.0; } else { area = pi * r * r; } return area; } //****************************************************************************80 double circle_segment_area_from_sample ( double r, double c[2], double p1[2], double p2[2], int n, int &seed ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_AREA_FROM_SAMPLE computes the area of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double C[2], the center of the circle. // // Input, double P1[2], P2[2], the ends of the chord. // // Input, int N, the number of sample points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double CIRCLE_SEGMENT_AREA_FROM_SAMPLE, the area of the // circle segment. // { double *angle; double area; int i; int m; double omega1; double omega2; double p[2]; const double pi = 3.141592653589793; double *r2; double rmh; double *vdotp; double *x; double *y; // // Determine the angles of the chord endpoints. // omega1 = r8_atan ( p1[1] - c[1], p1[0] - c[0] ); while ( omega1 < 0.0 ) { omega1 = omega1 + 2.0 * pi; } omega2 = r8_atan ( p2[1] - c[1], p2[0] - c[0] ); while ( omega2 < omega1 ) { omega2 = omega2 + 2.0 * pi; } // // Get N random points in the circle. // To simplify angle measurement, take OMEGA1 as your smallest angle. // That way, the check OMEGA1 <= ANGLE <= OMEGA2 will be legitimate. // angle = r8vec_uniform_01_new ( n, seed ); for ( i = 0; i < n; i++ ) { angle[i] = omega1 + 2.0 * pi * angle[i]; } r2 = r8vec_uniform_01_new ( n, seed ); for ( i = 0; i < n; i++ ) { r2[i] = sqrt ( r2[i] ); } x = new double[n]; y = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = c[0] + r2[i] * cos ( angle[i] ); y[i] = c[0] + r2[i] * sin ( angle[i] ); } // // Determine the vector that touches the circle segment base. // p[0] = 0.5 * ( p1[0] + p2[0] ) - c[0]; p[1] = 0.5 * ( p1[1] + p2[1] ) - c[1]; rmh = sqrt ( p[0] * p[0] + p[1] * p[1] ); p[0] = p[0] / rmh; p[1] = p[1] / rmh; if ( pi < omega2 - omega1 ) { p[0] = - p[0]; p[1] = - p[1]; rmh = - rmh; } // // Compute the projection of each point onto P. // vdotp = new double[n]; for ( i = 0; i < n; i++ ) { vdotp[i] = ( x[i] - c[0] ) * p[0] + ( y[i] - c[1] ) * p[1]; } // // Points in the segment lie in the sector, and project at least RMH onto P. // m = 0; for ( i = 0; i < n; i++ ) { if ( omega1 < angle[i] && angle[i] < omega2 && rmh < vdotp[i] ) { m = m + 1; } } // // The area of the segment is its relative share of the circle area. // area = pi * r * r * ( double ) ( m ) / ( double ) ( n ); delete [] angle; delete [] r2; delete [] vdotp; delete [] x; delete [] y; return area; } //****************************************************************************80 double circle_segment_cdf ( double r, double h, double h2 ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_CDF computes a CDF related to a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Now, suppose we want to assign a cumulative density function or CDF // based on a variable H2 which measures the height of the circle segment // formed by an arbitrary point in the circle segment. CDF(H2) will // measure the probability that a point drawn uniformly at random from // the circle segment defines a (smaller) circle segment of height H2. // // If we can define this CDF, then we will be able to sample uniformly // from the circle segment, since our "Y" value can be determined from H2, // and our X value is chosen uniformly over the horizontal chord // through (0,Y). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double H, the "height" of the circle segment. // 0 <= H <= 2 * R. // // Input, double H2, the "height" of the new circle segment // defined by a given point in the circle segment. 0 <= H2 <= H. // // Output, double CDF, the cumulative density function for H2, // the probability that a point chosen at random in the circle segment // would define a smaller circle segment of height H2 or less. // { double a; double a2; double cdf; if ( h2 <= 0.0 ) { cdf = 0.0; } else if ( h <= h2 ) { cdf = 1.0; } else { a = circle_segment_area_from_height ( r, h ); a2 = circle_segment_area_from_height ( r, h2 ); cdf = a2 / a; } return cdf; } //****************************************************************************80 double *circle_segment_centroid_from_chord ( double r, double c[2], double p1[2], double p2[2] ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_CENTROID_FROM_CHORD computes the centroid of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // For this function, we assume that the center of the circle is at (0,0), // that the chord is horizontal, and that the circle segment is at the top. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double C[2], the center of the circle. // // Input, double P1[2], P2[2], the coordinates of the endpoints // of the chord. // // Output, double CIRCLE_SEGMENT_CENTROID_FROM_CHORD[2], the coordinates // of the centroid. // { double *d; double s; double theta; double thetah; double v1[2]; // // Get the angle subtended by P1:P2. // theta = circle_segment_angle_from_chord ( r, c, p1, p2 ); // // Construct V1, the vector from C to P1. // v1[0] = p1[0] - c[0]; v1[1] = p1[1] - c[1]; // // Rotate V1 through THETA / 2. // thetah = theta / 2.0; d = new double[2]; d[0] = cos ( thetah ) * v1[0] - sin ( thetah ) * v1[1]; d[1] = sin ( thetah ) * v1[0] + cos ( thetah ) * v1[1]; // // Scale this vector so it represents the distance to the centroid // relative to R. // s = 4.0 * pow ( sin ( theta / 2.0 ), 3 ) / 3.0 / ( theta - sin ( theta ) ); d[0] = s * d[0]; d[1] = s * d[1]; // // Add the center. // d[0] = d[0] + c[0]; d[1] = d[1] + c[1]; return d; } //****************************************************************************80 double *circle_segment_centroid_from_height ( double r, double h ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_CENTROID_FROM_HEIGHT computes centroid of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // For this function, we assume that the center of the circle is at (0,0). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double H, the "height" of the circle segment. // 0 <= H <= 2 * R. // // Output, double CIRCLE_SEGMENT_CENTROID_FROM_HEIGHT[2], the coordinates // of the centroid. // { double *d; double theta; theta = circle_segment_angle_from_height ( r, h ); d = new double[2]; d[0] = 0.0; d[1] = 4.0 * r * pow ( sin ( theta / 2.0 ), 3 ) / 3.0 / ( theta - sin ( theta ) ); return d; } //****************************************************************************80 double *circle_segment_centroid_from_sample ( double r, double c[2], double p1[2], double p2[2], int n, int &seed ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_CENTROID_FROM_SAMPLE estimates a circle segment centroid. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double C[2], the center of the circle. // // Input, double P1[2], P2[2], the ends of the chord. // // Input, int N, the number of sample points. // // Input/output, int *&EED, a seed for the random // number generator. // // Output, double CIRCLE_SEGMENT_CENTROID_FROM_SAMPLE[2], the estimated // centroid of the circle segment. // { double *d; double *x; double *y; x = new double[n]; y = new double[n]; circle_segment_sample_from_chord ( r, c, p1, p2, n, seed, x, y ); d = new double[2]; d[0] = r8vec_sum ( n, x ) / ( double ) ( n ); d[1] = r8vec_sum ( n, y ) / ( double ) ( n ); delete [] x; delete [] y; return d; } //****************************************************************************80 int circle_segment_contains_point ( double r, double c[2], double omega1, double omega2, double xy[2] ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_CONTAINS_POINT reports whether a point is in a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // In this function, we allow the circle to have an arbitrary center C, // arbitrary radius R, and we describe the points P1 and P2 by specifying // their angles OMEGA1 and OMEGA2. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double C[2], the center of the circle. // // Input, double OMEGA1, OMEGA2, the angles of the two points on // the circumference of the circle that define the circle segment. // OMEGA1 < OMEGA2 <= OMEGA1 + 2 * PI // // Input, double XY[2], a point. // // Output, int CIRCLE_SEGMENT_CONTAINS_POINT, is TRUE if the point is inside // the circle segment. // { double h; double omegah; const double pi = 3.141592653589793; double theta; double v[2]; double v_omega; double v_project; double v_r; int value; if ( r <= 0.0 ) { cerr << "\n"; cerr << "CIRCLE_SEGMENT_CONTAINS_POINT - Fatal error!\n"; cerr << " R <= 0.0.\n"; exit ( 1 ); } while ( omega2 < omega1 ) { omega2 = omega2 + 2.0 * pi; } // // Compute the vector V = XY - C: // v[0] = xy[0] - c[0]; v[1] = xy[1] - c[1]; // // a: Point must be inside the circle, so ||V|| <= R. // v_r = sqrt ( v[0] * v[0] + v[1] * v[1] ); if ( r < v_r ) { value = 0; return value; } // // b: Angle made by the vector V must be between OMEGA1 and OMEGA2. // v_omega = atan2 ( v[1], v[0] ); while ( omega1 <= v_omega + 2.0 * pi ) { v_omega = v_omega - 2.0 * pi; } while ( v_omega + 2.0 * pi <= omega1 ) { v_omega = v_omega + 2.0 * pi; } if ( omega2 < v_omega ) { value = 0; return value; } // // c: Projection of V onto unit centerline must be at least R-H. // omegah = 0.5 * ( omega1 + omega2 ); v_project = v[0] * cos ( omegah ) + v[1] * sin ( omegah ); theta = omega2 - omega1; h = circle_segment_height_from_angle ( r, theta ); if ( v_project < r - h ) { value = 0; return value; } value = 1; return value; } //****************************************************************************80 double circle_segment_height_from_angle ( double r, double angle ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_HEIGHT_FROM_ANGLE: height of a circle segment from angle. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // This function is given the radius R and angle of the segment, and // determines the corresponding height. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double ANGLE, the angle of the circle segment. // 0 <= ANGLE <= 2.0 * PI. // // Output, double CIRCLE_SEGMENT_HEIGHT_FROM_ANGLE, the height of the // circle segment. // { double h; const double pi = 3.141592653589793; if ( angle < 0.0 ) { cerr << "\n"; cerr << "CIRCLE_SEGMENT_HEIGHT_FROM_ANGLE - Fatal error!\n"; cerr << " ANGLE < 0.0.\n"; exit ( 1 ); } if ( angle == 0.0 ) { h = 0.0; return h; } if ( angle == 2.0 * pi ) { h = 2.0 * r; return h; } if ( 2.0 * pi < angle ) { cerr << "\n"; cerr << "CIRCLE_SEGMENT_HEIGHT_FROM_ANGLE - Fatal error!\n"; cerr << " 2.0 * pi < ANGLE.\n"; exit ( 1 ); } if ( r <= 0.0 ) { cerr << "\n"; cerr << "CIRCLE_SEGMENT_HEIGHT_FROM_ANGLE - Fatal error!\n"; cerr << " R <= 0.0.\n"; exit ( 1 ); } if ( angle <= pi ) { h = r * ( 1.0 - cos ( angle / 2.0 ) ); } else { h = r * ( 1.0 + cos ( ( 2.0 * pi - angle ) / 2.0 ) ); } return h; } //****************************************************************************80 double circle_segment_height_from_area ( double r, double area ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_HEIGHT_FROM_AREA: height of a circle segment from area. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // This function is given the radius R and area of the segment, and // determines the corresponding height. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double AREA, the area of the circle segment. // 0 <= AREA <= 2.0 * PI * R^2. // // Output, double CIRCLE_SEGMENT_HEIGHT_FROM_AREA, the height of the // circle segment. // { double a; double area_circle; double eps; double h; double h1; double h2; int it; const double r8_pi = 3.141592653589793; if ( area < 0.0 ) { cerr << "\n"; cerr << "CIRCLE_SEGMENT_HEIGHT_FROM_AREA - Fatal error!\n"; cerr << " AREA < 0.0.\n"; exit ( 1 ); } area_circle = 2.0 * r8_pi * r * r; if ( area == 0.0 ) { h = 0.0; return h; } if ( area == area_circle ) { h = 2.0 * r; return h; } if ( area_circle < area ) { cerr << "\n"; cerr << "CIRCLE_SEGMENT_HEIGHT_FROM_AREA - Fatal error!\n"; cerr << " 2.0 * pi * r^2 < AREA.\n"; exit ( 1 ); } if ( r <= 0.0 ) { cerr << "\n"; cerr << "CIRCLE_SEGMENT_HEIGHT_FROM_AREA - Fatal error!\n"; cerr << " R <= 0.0.\n"; exit ( 1 ); } h1 = 0.0; //circle_segment_area_from_height ( r, h1 ); h2 = 2.0 * r; //circle_segment_area_from_height ( r, h2 ); it = 0; eps = DBL_EPSILON; while ( it < 30 ) { h = 0.5 * ( h1 + h2 ); a = circle_segment_area_from_height ( r, h ); it = it + 1; if ( fabs ( a - area ) < sqrt ( eps ) * area ) { break; } if ( a < area ) { h1 = h; // a1 = a; } else { h2 = h; // a2 = a; } } return h; } //****************************************************************************80 double circle_segment_height_from_chord ( double r, double c[2], double p1[2], double p2[2] ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_HEIGHT_FROM_CHORD: height of a circle segment from chord. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double C[2], the coordinates of the circle center. // // Input, double P1[2], P2[2], the coordinates of the // chord endpoints. // // Output, double CIRCLE_SEGMENT_HEIGHT_FROM_CHORD, the height of the circle segment. // { double h; double theta; theta = circle_segment_angle_from_chord ( r, c, p1, p2 ); h = circle_segment_height_from_angle ( r, theta ); return h; } //****************************************************************************80 double circle_segment_rotation_from_chord ( double r, double c[], double p1[], double p2[] ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_ROTATION_FROM_CHORD computes the rotation of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double C[2], the center of the circle. // // Input, double P1[2], P2[2], the ends of the chord. // Warning! If P1 = P2, we can't tell whether the segment is the whole // circle or none of it! // // Output, double CIRCLE_SEGMENT_ROTATION_FROM_CHORD, the rotation of the // circle segment. 0 <= ALPHA < 2 * PI. // { double alpha; double pi = 3.141592653589793; double rho1; double rho2; double theta; double v1[2]; double v2[2]; // // Compute the radial vectors V1 and V2. // v1[0] = p1[0] - c[0]; v1[1] = p1[1] - c[1]; v2[0] = p2[0] - c[0]; v2[1] = p2[1] - c[1]; // // Use R8_ATAN to guarantee that 0 <= RHO1, RHO2 <= 2 * PI. // rho1 = r8_atan ( v1[1], v1[0] ); rho2 = r8_atan ( v2[1], v2[0] ); // // Force RHO2 to be bigger than RHO1. // while ( rho2 <= rho1 ) { rho2 = rho2 + 2.0 * pi; } // // Compute THETA. // theta = rho2 - rho1; // // ALPHA is RHO1, plus half of the angular distance between P1 and P2. // alpha = rho1 + 0.5 * theta; while ( 2.0 * pi <= alpha ) { alpha = alpha - 2.0 * pi; } return alpha; } //****************************************************************************80 void circle_segment_sample_from_chord ( double r, double c[2], double p1[2], double p2[2], int n, int &seed, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_SAMPLE_FROM_CHORD samples points from a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double C[2], the center of the circle. // // Input, double P1[2], P2[2], the endpoints of the chord. // // Input, int N, the number of sample points. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double X[N], Y[N], the sample points. // { double c2[2]; double *eta; double h; int i; double t; double vc[2]; double vr[2]; double *xi; // // Determine unit vectors VR and VC. // VR points to the center of the chord from the radius. // VC points along the chord, from P1 to P2. // vr[0] = 0.5 * ( p1[0] + p2[0] ) - c[0]; vr[1] = 0.5 * ( p1[1] + p2[1] ) - c[1]; t = sqrt ( vr[0] * vr[0] + vr[1] * vr[1] ); vr[0] = vr[0] / t; vr[1] = vr[1] / t; vc[0] = p2[0] - p1[0]; vc[1] = p2[1] - p1[1]; t = sqrt ( vc[0] * vc[0] + vc[1] * vc[1] ); vc[0] = vc[0] / t; vc[1] = vc[1] / t; // // Get the height of the circle segment. // c2[0] = 0.0; c2[1] = 0.0; h = circle_segment_height_from_chord ( r, c2, p1, p2 ); // // Sample (xi,eta) in the reference coordinates, where the chord // is horizontal. // xi = new double[n]; eta = new double[n]; circle_segment_sample_from_height ( r, h, n, seed, xi, eta ); // // XI is the left/right coordinate along VC. // ETA is the distance along VR. // for ( i = 0; i < n; i++ ) { x[i] = c[0] + eta[i] * vr[0] + xi[i] * vc[0]; y[i] = c[1] + eta[i] * vr[1] + xi[i] * vc[1]; } delete [] eta; delete [] xi; return; } //****************************************************************************80 void circle_segment_sample_from_height ( double r, double h, int n, int &seed, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_SAMPLE_FROM_HEIGHT samples points from a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double H, the height of the circle segment. // 0 <= H <= 2 * R. // // Input, int N, the number of sample points. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double X[N], Y[N], the sample points. // { double area; double *area2; double *h2; int i; double *u; double *wh; area = circle_segment_area_from_height ( r, h ); // // Pick CDF's randomly. // u = r8vec_uniform_01_new ( n, seed ); // // Choose points randomly by choosing ordered areas randomly. // area2 = new double[n]; for ( i = 0; i < n; i++ ) { area2[i] = u[i] * area; } // // Each area corresponds to a height H2. Find it. // h2 = new double[n]; for ( i = 0; i < n; i++ ) { h2[i] = circle_segment_height_from_area ( r, area2[i] ); } // // Determine the half-width WH of the segment for each H2. // wh = new double[n]; for ( i = 0; i < n; i++ ) { wh[i] = sqrt ( h2[i] * ( 2.0 * r - h2[i] ) ); } // // Choose an X position randomly in [-WH,+WH]. // delete [] u; u = r8vec_uniform_01_new ( n, seed ); for ( i = 0; i < n; i++ ) { x[i] = ( 2.0 * u[i] - 1.0 ) * wh[i]; } // // Our circle center is at (0,0). Our height of H2 is subtracted // from the height R at the peak of the circle. Determine the Y // coordinate using this fact. // for ( i = 0; i < n; i++ ) { y[i] = r - h2[i]; } delete [] area2; delete [] h2; delete [] u; delete [] wh; return; } //****************************************************************************80 double circle_segment_width_from_height ( double r, double h ) //****************************************************************************80 // // Purpose: // // CIRCLE_SEGMENT_WIDTH_FROM_HEIGHT computes the width of a circle segment. // // Discussion: // // Begin with a circle of radius R. Choose two points P1 and P2 on the // circle, and draw the chord P1:P2. This chord divides the circle // into two pieces, each of which is called a circle segment. // Consider one of the pieces. The "angle" of this segment is the angle // P1:C:P2, where C is the center of the circle. Let Q be the point on // the chord P1:P2 which is closest to C. The "height" of the segment // is the distance from Q to the perimeter of the circle. The "width" // of the circle segment is the length of P1:P2. // // This function is given the radius R and height H of the segment, and // determines the corresponding width W. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // 0 < R. // // Input, double H, the height of the circle segment. // 0 <= H <= 2 * R. // // Output, double CIRCLE_SEGMENT_WIDTH_FROM_HEIGHT, the width of the // circle segment. // { double w; w = 2.0 * sqrt ( h * ( 2.0 * r - h ) ); return w; } //****************************************************************************80 void filename_inc ( string *filename ) //****************************************************************************80 // // Purpose: // // FILENAME_INC increments a partially numeric file name. // // Discussion: // // It is assumed that the digits in the name, whether scattered or // connected, represent a number that is to be increased by 1 on // each call. If this number is all 9's on input, the output number // is all 0's. Non-numeric letters of the name are unaffected. // // If the name is empty, then the routine stops. // // If the name contains no digits, the empty string is returned. // // Example: // // Input Output // ----- ------ // "a7to11.txt" "a7to12.txt" (typical case. Last digit incremented) // "a7to99.txt" "a8to00.txt" (last digit incremented, with carry.) // "a9to99.txt" "a0to00.txt" (wrap around) // "cat.txt" " " (no digits to increment) // " " STOP! (error) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input/output, string *FILENAME, the filename to be incremented. // { char c; int change; int i; int lens; lens = (*filename).length ( ); if ( lens <= 0 ) { cerr << "\n"; cerr << "FILENAME_INC - Fatal error!\n"; cerr << " The input string is empty.\n"; exit ( 1 ); } change = 0; for ( i = lens - 1; 0 <= i; i-- ) { c = (*filename)[i]; if ( '0' <= c && c <= '9' ) { change = change + 1; if ( c == '9' ) { c = '0'; (*filename)[i] = c; } else { c = c + 1; (*filename)[i] = c; return; } } } // // No digits were found. Return blank. // if ( change == 0 ) { for ( i = lens - 1; 0 <= i; i-- ) { (*filename)[i] = ' '; } } return; } //****************************************************************************80 void gauss ( int n, double alpha[], double beta[], double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GAUSS computes a Gauss quadrature rule. // // Discussion: // // Given a weight function W encoded by the first N recurrence coefficients // ALPHA and BETA for the associated orthogonal polynomials, the call // call gauss ( n, alpha, beta, x, w ) // generates the nodes and weights of the N-point Gauss quadrature rule // for the weight function W. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 July 2013 // // Author: // // Original MATLAB version by Walter Gautschi. // C++ version by John Burkardt. // // Reference: // // Walter Gautschi, // Orthogonal Polynomials: Computation and Approximation, // Oxford, 2004, // ISBN: 0-19-850672-4, // LC: QA404.5 G3555. // // Parameters: // // Input, int N, the order of the desired quadrature rule. // // Input, double ALPHA[N], BETA[N], the alpha and beta recurrence // coefficients for the othogonal polynomials associated with the // weight function. // // Output, double X[N], W[N], the nodes and weights of the desired // quadrature rule. The nodes are listed in increasing order. // { double *a; int i; int it_max; int it_num; int j; int rot_num; double *v; // // Define the tridiagonal Jacobi matrix. // a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = alpha[i]; } else if ( i == j - 1 ) { a[i+j*n] = sqrt ( beta[j] ); } else if ( i - 1 == j ) { a[i+j*n] = sqrt ( beta[i] ); } else { a[i+j*n] = 0.0; } } } // // Get the eigenvectors and eigenvalues. // it_max = 100; v = new double[n*n]; jacobi_eigenvalue ( n, a, it_max, v, x, it_num, rot_num ); for ( j = 0; j < n; j++ ) { w[j] = beta[0] * v[0+j*n] * v[0+j*n]; } delete [] a; delete [] v; return; } //****************************************************************************80 int i4vec_sum ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SUM sums the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_SUM = 10 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be summed. // // Output, int I4VEC_SUM, the sum of the entries of A. // { int i; int sum; sum = 0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } //****************************************************************************80 void jacobi_eigenvalue ( int n, double a[], int it_max, double v[], double d[], int &it_num, int &rot_num ) //****************************************************************************80 // // Purpose: // // JACOBI_EIGENVALUE carries out the Jacobi eigenvalue iteration. // // Discussion: // // This function computes the eigenvalues and eigenvectors of a // real symmetric matrix, using Rutishauser's modfications of the classical // Jacobi rotation method with threshold pivoting. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2013 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*N], the matrix, which must be square, real, // and symmetric. // // Input, int IT_MAX, the maximum number of iterations. // // Output, double V[N*N], the matrix of eigenvectors. // // Output, double D[N], the eigenvalues, in descending order. // // Output, int &IT_NUM, the total number of iterations. // // Output, int &ROT_NUM, the total number of rotations. // { double *bw; double c; double g; double gapq; double h; int i; int j; int k; int l; int m; int p; int q; double s; double t; double tau; double term; double termp; double termq; double theta; double thresh; double w; double *zw; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { v[i+j*n] = 1.0; } else { v[i+j*n] = 0.0; } } } for ( i = 0; i < n; i++ ) { d[i] = a[i+i*n]; } bw = new double[n]; zw = new double[n]; for ( i = 0; i < n; i++ ) { bw[i] = d[i]; zw[i] = 0.0; } it_num = 0; rot_num = 0; while ( it_num < it_max ) { it_num = it_num + 1; // // The convergence threshold is based on the size of the elements in // the strict upper triangle of the matrix. // thresh = 0.0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { thresh = thresh + a[i+j*n] * a[i+j*n]; } } thresh = sqrt ( thresh ) / ( double ) ( 4 * n ); if ( thresh == 0.0 ) { break; } for ( p = 0; p < n; p++ ) { for ( q = p + 1; q < n; q++ ) { gapq = 10.0 * fabs ( a[p+q*n] ); termp = gapq + fabs ( d[p] ); termq = gapq + fabs ( d[q] ); // // Annihilate tiny offdiagonal elements. // if ( 4 < it_num && termp == fabs ( d[p] ) && termq == fabs ( d[q] ) ) { a[p+q*n] = 0.0; } // // Otherwise, apply a rotation. // else if ( thresh <= fabs ( a[p+q*n] ) ) { h = d[q] - d[p]; term = fabs ( h ) + gapq; if ( term == fabs ( h ) ) { t = a[p+q*n] / h; } else { theta = 0.5 * h / a[p+q*n]; t = 1.0 / ( fabs ( theta ) + sqrt ( 1.0 + theta * theta ) ); if ( theta < 0.0 ) { t = - t; } } c = 1.0 / sqrt ( 1.0 + t * t ); s = t * c; tau = s / ( 1.0 + c ); h = t * a[p+q*n]; // // Accumulate corrections to diagonal elements. // zw[p] = zw[p] - h; zw[q] = zw[q] + h; d[p] = d[p] - h; d[q] = d[q] + h; a[p+q*n] = 0.0; // // Rotate, using information from the upper triangle of A only. // for ( j = 0; j < p; j++ ) { g = a[j+p*n]; h = a[j+q*n]; a[j+p*n] = g - s * ( h + g * tau ); a[j+q*n] = h + s * ( g - h * tau ); } for ( j = p + 1; j < q; j++ ) { g = a[p+j*n]; h = a[j+q*n]; a[p+j*n] = g - s * ( h + g * tau ); a[j+q*n] = h + s * ( g - h * tau ); } for ( j = q + 1; j < n; j++ ) { g = a[p+j*n]; h = a[q+j*n]; a[p+j*n] = g - s * ( h + g * tau ); a[q+j*n] = h + s * ( g - h * tau ); } // // Accumulate information in the eigenvector matrix. // for ( j = 0; j < n; j++ ) { g = v[j+p*n]; h = v[j+q*n]; v[j+p*n] = g - s * ( h + g * tau ); v[j+q*n] = h + s * ( g - h * tau ); } rot_num = rot_num + 1; } } } for ( i = 0; i < n; i++ ) { bw[i] = bw[i] + zw[i]; d[i] = bw[i]; zw[i] = 0.0; } } // // Restore upper triangle of input matrix. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { a[i+j*n] = a[j+i*n]; } } // // Ascending sort the eigenvalues and eigenvectors. // for ( k = 0; k < n - 1; k++ ) { m = k; for ( l = k + 1; l < n; l++ ) { if ( d[l] < d[m] ) { m = l; } } if ( m != k ) { t = d[m]; d[m] = d[k]; d[k] = t; for ( i = 0; i < n; i++ ) { w = v[i+m*n]; v[i+m*n] = v[i+k*n]; v[i+k*n] = w; } } } delete [] bw; delete [] zw; return; } //****************************************************************************80 void r_jacobi ( int n, double a, double b, double alpha[], double beta[] ) //****************************************************************************80 // // Purpose: // // R_JACOBI computes recurrence coefficients for monic Jacobi polynomials. // // Discussion: // // This function generates the first N recurrence coefficients for monic // Jacobi polynomials with parameters A and B. // // These polynomials are orthogonal on [-1,1] relative to the weight // // w(x) = (1.0-x)^A * (1.0+x)^B. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2013 // // Author: // // Original MATLAB version by Dirk Laurie, Walter Gautschi. // C version by John Burkardt. // // Reference: // // Walter Gautschi, // Orthogonal Polynomials: Computation and Approximation, // Oxford, 2004, // ISBN: 0-19-850672-4, // LC: QA404.5 G3555. // // Parameters: // // Input, int N, the number of coefficients desired. // // Input, double A, B, the parameters for the Jacobi polynomial. // -1.0 < A, -1.0 < B. // // Output, double ALPHA[N], BETA[N], the first N recurrence // coefficients. // { int i; double i_r8; double mu; double nab; double nu; if ( a <= -1.0 ) { cerr << "\n"; cerr << "R_JACOBI - Fatal error!\n"; cerr << " Illegal value of A.\n"; exit ( 1 ); } if ( b <= -1.0 ) { cerr << "\n"; cerr << "R_JACOBI - Fatal error!\n"; cerr << " Illegal value of B.\n"; exit ( 1 ); } nu = ( b - a ) / ( a + b + 2.0 ); mu = pow ( 2.0, a + b + 1.0 ) * tgamma ( a + 1.0 ) * tgamma ( b + 1.0 ) / tgamma ( a + b + 2.0 ); alpha[0] = nu; beta[0] = mu; if ( n == 1 ) { return; } for ( i = 1; i < n; i++ ) { i_r8 = ( double ) ( i + 1 ); alpha[i] = ( b - a ) * ( b + a ) / ( 2.0 * ( i_r8 - 1.0 ) + a + b ) / ( 2.0 * i_r8 + a + b ); } beta[1] = 4.0 * ( a + 1.0 ) * ( b + 1.0 ) / ( a + b + 2.0 ) / ( a + b + 2.0 ) / ( a + b + 3.0 ); for ( i = 2; i < n; i++ ) { i_r8 = ( double ) ( i + 1 ); nab = 2.0 * ( i_r8 - 1.0 ) + a + b; beta[i] = 4.0 * ( i_r8 - 1.0 + a ) * ( i_r8 - 1.0 + b ) * ( i_r8 - 1.0 ) * ( i_r8 - 1.0 + a + b ) / nab / nab / ( nab + 1.0 ) / ( nab - 1.0 ); } return; } //****************************************************************************80 double r8_acos ( double c ) //****************************************************************************80 // // Purpose: // // R8_ACOS computes the arc cosine function, with argument truncation. // // Discussion: // // If you call your system ACOS routine with an input argument that is // outside the range [-1.0, 1.0 ], you may get an unpleasant surprise. // This routine truncates arguments outside the range. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double C, the argument, the cosine of an angle. // // Output, double R8_ACOS, an angle whose cosine is C. // { const double pi = 3.141592653589793; double value; if ( c <= -1.0 ) { value = pi; } else if ( 1.0 <= c ) { value = 0.0; } else { value = acos ( c ); } return value; } //****************************************************************************80 double r8_asin ( double s ) //****************************************************************************80 // // Purpose: // // R8_ASIN computes the arc sine function, with argument truncation. // // Discussion: // // If you call your system ASIN routine with an input argument that is // outside the range [-1.0, 1.0 ], you may get an unpleasant surprise. // This routine truncates arguments outside the range. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double S, the argument, the sine of an angle. // // Output, double R8_ASIN, an angle whose sine is S. // { double angle; const double pi = 3.141592653589793; if ( s <= -1.0 ) { angle = - pi / 2.0; } else if ( 1.0 <= s ) { angle = pi / 2.0; } else { angle = asin ( s ); } return angle; } //****************************************************************************80 double r8_atan ( double y, double x ) //****************************************************************************80 // // Purpose: // // R8_ATAN computes the inverse tangent of the ratio Y / X. // // Discussion: // // R8_ATAN returns an angle whose tangent is ( Y / X ), a job which // the built in functions ATAN and ATAN2 already do. // // However: // // * R8_ATAN always returns a positive angle, between 0 and 2 PI, // while ATAN and ATAN2 return angles in the interval [-PI/2,+PI/2] // and [-PI,+PI] respectively; // // * R8_ATAN accounts for the signs of X and Y, (as does ATAN2). The ATAN // function by contrast always returns an angle in the first or fourth // quadrants. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double Y, X, two quantities which represent the tangent of // an angle. If Y is not zero, then the tangent is (Y/X). // // Output, double R8_ATAN, an angle between 0 and 2 * PI, whose tangent is // (Y/X), and which lies in the appropriate quadrant so that the signs // of its cosine and sine match those of X and Y. // { double abs_x; double abs_y; const double pi = 3.141592653589793; double theta; double theta_0; // // Special cases: // if ( x == 0.0 ) { if ( 0.0 < y ) { theta = pi / 2.0; } else if ( y < 0.0 ) { theta = 3.0 * pi / 2.0; } else if ( y == 0.0 ) { theta = 0.0; } } else if ( y == 0.0 ) { if ( 0.0 < x ) { theta = 0.0; } else if ( x < 0.0 ) { theta = pi; } } // // We assume that ATAN2 is correct when both arguments are positive. // else { abs_y = fabs ( y ); abs_x = fabs ( x ); theta_0 = atan2 ( abs_y, abs_x ); if ( 0.0 < x && 0.0 < y ) { theta = theta_0; } else if ( x < 0.0 && 0.0 < y ) { theta = pi - theta_0; } else if ( x < 0.0 && y < 0.0 ) { theta = pi + theta_0; } else if ( 0.0 < x && y < 0.0 ) { theta = 2.0 * pi - theta_0; } } return theta; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double *r8mat_uniform_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01_NEW returns a unit pseudorandom R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8's, stored as a vector // in column-major order. // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Philip Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0, otherwise the output value of SEED // will still be 0, and R8_UNIFORM will be 0. On output, SEED has // been updated. // // Output, double R8MAT_UNIFORM_01_NEW[M*N], a matrix of pseudorandom values. // { int i; int j; int k; double *r; r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r[i+j*m] = ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_LINSPACE_NEW creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12. // // In other words, the interval is divided into N-1 even subintervals, // and the endpoints of intervals are used as the points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 int s_len_trim ( char *s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, a pointer to a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; char *t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double *tridisolve ( int n, double a[], double b[], double c[], double d[] ) //****************************************************************************80 // // Purpose: // // TRIDISOLVE solves a tridiagonal system of linear equations. // // Discussion: // // We can describe an NxN tridiagonal matrix by vectors A, B, and C, where // A and C are of length N-1. In that case, a linear system can be // represented as // b(1) * x(1) + c(1) * x(2) = d(1), // a(j-1) * x(j-1) + b(j) * x(j) + c(j) * x(j+1) = d(j), j = 2:n-1, // a(n-1) * x(n-1) + b(n) * x(n) = d(n) // // This function produces the solution vector X. // // This function is derived from Cleve Moler's Matlab suite. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2013 // // Author: // // John Burkardt. // // Parameters: // // Input, int N, the order of the linear system. // // Input, double A(N-1), B(N), C(N-1), the matrix entries. // // Input, double D(N), the right hand side. // // Output, double TRIDISOLVE[N], the solution. // { double *bi; int j; double mu; double *x; x = new double[n]; for ( j = 0; j < n; j++ ) { x[j] = d[j]; } bi = new double[n]; for ( j = 0; j < n; j++ ) { bi[j] = 1.0 / b[j]; } for ( j = 0; j < n - 1; j++ ) { mu = a[j] * bi[j]; b[j+1] = b[j+1] - mu * c[j]; x[j+1] = x[j+1] - mu * x[j]; } x[n-1] = x[n-1] * bi[n-1]; for ( j = n - 2; 0 <= j; j-- ) { x[j] = ( x[j] - c[j] * x[j+1] ) * bi[j]; } delete [] bi; return x; }