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 Centroidal Voronoi Tessellations:

 Applications and Algorithms*

 Qiang Dut
 Vance Fabert

 Max Gunzburger?

 Abstract. A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the

 centroids (centers of mass) of the corresponding Voronoi regions. We give some applica-

 tions of such tessellations to problems in image compression, quadrature, finite difference

 methods, distribution of resources, cellular biology, statistics, and the territorial behavior

 of animals. We discuss methods for computing these tessellations, provide some analyses

 concerning both the tessellations and the methods for their determination, and, finally,

 present the results of some numerical experiments.

 Key words. Voronoi tessellations, centroids, vector quantization, data compression, clustering

 AMS subject classifications. 5202, 52B55, 62H30, 6502, 65D30, 65U05, 65Y25, 68U05, 68U10

 Pll. S0036144599352836

 1. Introduction. Given an open set Q C RN, the set {1}k is called a tessel-

 lation of Q if vi n Vj = 0 for i V& j and U1=,Vi = Q. Let denote the Euclidean
 norm on RN. Given a set of poinits {Zi}i=1 belonging to Q, the Voronoi region Vi
 corresponding to the point zi is defined by

 (1.1)~ V V= {x EQ I Ix - z1 < x - zl for j=l,...,)k, j V-i I

 The points {z%}f are called generators. The set {VJ}k= is a Voronoi tessellation or
 Voronoi diagram of Q, and each Vi is referred to as the Voronoi region corresponding
 to Zi. (Depending on the application, there exist many different names for Voronoi re-
 gions, including Dirichlet regions, area of influence polygons, Meijering cells, Thiessen

 polygons, and S-mosaics.) The Voronoi regions are polyhedra. These tessellations,
 and their dual tessellations (in R2, the Delaunay triangulations), are very useful in a
 variety of applications. For a comprehensive treatment, see [47].

 *Received by the editors December 15, 1998; accepted for publication (in revised form) March 3,
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 I 0
 0~~~~

 Fig. 1.1 On the left, the Voronoi regions corresponding to 10 randomly selected points in a square;

 the density function is a constant. The dots are the Voronoi generators and the circles

 are the centroids of the corresponding Voronoi regions. Note that the generators and the

 centroids do not coincide. On the right, a 10-point centroidal Voronoi tessellation. The

 dots are simultaneously the generators for the Voronoi tessellation and the centroids of the

 Voronoi regions.

 Given a region V C RN and a density function p, defined in V, the mass centroid
 z* of V is defined by

 /YP(y) dy
 (1.2) z* J

 /8p(y) dy

 Given k points zi, i = 1, ... , k, we can define their associated Voronoi regions
 Vi, i = 1, ... , k. On the other hand, given the regions Vi, i = 1, . . , k, we can define
 their mass centroids zi, i = 1, ..., k. Here, we are interested in the situation where

 (1.3) zi = Z* i-=1, ...,)k,

 i.e., the points zi that serve as generators for the Voronoi regions Vi are themselves
 the mass centroids of those regions. We call such a tessellation a centroidal Voronoi

 tessellation. This situation is quite special since, in general, arbitrarily chosen points

 in RJN are not the centroids of their associated Voronoi regions. See Figure 1.1 for an
 illustration in two dimensions.

 One may ask, How does one find centroidal Voronoi tessellations, and are they of
 any use? In this paper, we review some answers to these questions. Concerning the

 first question, and to be more precise, consider the following problem:

 Given

 a region Q C RjtN
 a positive integer k, and
 a density function p, defined for y in Q,

 find

 k points zi E Q and
 k regions Vi that tessellate Q

 such that simultaneously for each i,
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 CENTROIDAL VORONOI TESSELLATIONS 639

 Fig. 1.2 Two centroidal Voronoi tessellations of a square. The points zl and Z2 are the centroids
 of the rectangles on the left or of the triangles on the right.

 Vi is the Voronoi region for zi and
 zi is the mass centroid of Vi.

 The solution of this problem is in general not unique. For example, consider the case

 of N = 2, Q C JR2 a square, and p 1. Two solutions are depicted in Figure 1.2;

 others may be obtained through rotation. Another example is provided by the three
 regular tessellations of JR2 into squares, triangles, and hexagons.

 The plan of the remainder of the paper is as follows. First, in the remainder of

 section 1, we give some remarks about various generalizations of centroidal Voronoi

 diagrams. In section 2, we consider applications. These are drawn from the worlds

 of data compression, numerical analysis, biology, statistics, and operations research.

 In section 3, we discuss properties of these tessellations and their relation to the

 critical points of an energy (or cost or error) functional. In section 4, we present
 probabilistic approaches for computing these tessellations. In section 5, we present

 some deterministic methods. In section 6, we discuss some theoretical issues related

 to one of these methods. Some numerical experiments are reported in section 7, and,

 finally, concluding remarks are given in section 8.

 1. 1. Centroidal Voronoi Tessellations in Other Metrics. We first consider the

 case where, instead of a region Q, we are given a discrete set of points W y{yi}=L
 in RN. A set {V}k 1 is a tessellation of W if vi n Vj 0 for i f j and Uk=1V% = W.
 Given a set of points {Z%}>kl belonging to RN, Voronoi sets are now defined by

 (1.4) V?={xeW I Ix-zil< x-zjl for j=1,...,k, j# i,
 where equality holds only for i < j}.

 Other tie-breaking rules for points equidistant to two or more generators can also be
 used. Given a density function p defined in W, the mass centroid z* of a set V c W
 is now defined by

 (1.5) E P(Y)jy_Z*j2= inf E p(Y)jy_-z2,
 yEV yEV

 where the sums extend over the points belonging to V, and V* can be taken to be V
 or it can be a larger set like RN. In the statistical and vector quantization literature

 (see, e.g., [15, 19, 34]) discrete centroidal Voronoi tessellations are often related to
 optimal k-means clusters and Voronoi regions and centroids are referred to as clusters

 and cluster centers, respectively. More discussion of this topic is provided in section
 2.3.
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 640 QIANG DU, VANCE FABER, AND MAX GUNZBURGER

 The notions of Voronoi regions and centroids, and therefore of centroidal Voronoi

 regions, may be generalized to more abstract spaces and to metrics other than the

 Euclidean f2-norm. For example,

 (1.6) d(x, y) = llx - yllefp

 will be of interest to us. For another example, let d(x, y) denote a distance function
 induced by a norm that is equivalent to the 12 norm on RRN. Let -< be an order of
 RN. Then, Voronoi tessellations of Q, with respect to this metric, are defined by

 (1.7) Vi = x E Q I d(x, zi) < d(x, zj), j = 1,. .. .,k, j :/+ i , and
 d(x, zi) =d(x, zj), j -<i}

 Notice that, without the inclusion of the part d(x, zi) = d(x, zj), Vi does not nec-
 essarily provide a partition of Q, as there could be nonempty boundaries. Using a
 partial order, one may decide how portions of boundaries with nonempty interiors
 get assigned to specific Voronoi regions. Such a partition, in general, only guarantees

 that the Voronoi regions are star shaped (with respect to the metric) [37].
 Note that if one instead considers

 (1.8) ~Vi ={x E Q I d(x, zi) < d(x, zj), j = k j :?i },

 then the regions may overlap but they remain convex.

 A generalized definition of the centroid z* of a region V with respect to a density

 function p might be given by

 (1.9) p p(y) d(z ,y) dy = irnf* p(y)d(z, y) dy.

 Here, V* can be the closure of V or the region defined by (1.8) or even R N so long as
 the existence of z* can be guaranteed by either the compactness or the convexity of
 the region and by the convexity of the functional. Centroidal Voronoi tessellations of
 Q can again be defined by (1.3).

 One may generalize (1.9) even further to

 (1 Io) Jp(y)f(d(z*,y))dy= inf J p(y)f (d(z, y)) dy

 for some function f such that f(d(z* - y)) is convex in y.
 The notion of Voronoi regions may be extended to weighted Voronoi regions [30]

 and to more abstract spaces, and the generators can also be lines, areas, or other
 more abstract objects [47]. In addition, the metrics need not be induced by a norm.

 2. Applications. In this section, we provide a number of applications of cen-

 troidal Voronoi tessellations.

 2.1. Data Compression in Image Processing. The first application is to data

 compression. We will use a context from image processing; however, the basic ideas
 and principles are valid for many other data compression applications.

 The setting is as follows. We have a color picture composed of many pixels, each

 of which has an associated color. Each color is a combination of basic colors such as

 red, green, and blue. Let the components of y represent a possible combination of

 the basic colors, and let p(y) denote the number of times the particular combination
 y occurs in the picture. We let W denote the set of admissible colors, i.e., the set
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 CENTROIDAL VORONOI TESSELLATIONS 641

 of allowable combinations of the basic colors. In a given picture, there may be many

 different colors. For example, there may be on the order of 106 pixels in a picture,

 with each pixel potentially having a different color. Our task is to approximate the

 picture by replacing the color at each pixel by one from a smaller set of colors {zi}>'=1,
 where each zi E W. For related discussions, we refer to [24, 25, 32]. In particular, a
 discussion of different clustering algorithms in image compression applications can be

 found in [24].

 We give a concrete example. Suppose the picture is composed of 106 pixels and
 the color at each pixel is determined by a 24-bit number. (We could, for example,

 have 8 bits each for the intensity of red, green, and blue.) Then, the cardinality of

 W is 224 and the amount of information necessary to describe the picture is 106 x 24
 bits. Now, suppose we approximate the picture using only 8-bit colors, so that now

 we will use only 256 = 28 possible colors. We still have 106 pixels, so that the amount

 of information needed to describe the approximate picture is 106 x 8 bits, a reduction
 of 1/3. Note that we are reducing the amount of data not by reducing the number of
 pixels but by reducing the amount of information associated with each pixel.

 A natural question is how one assigns the colors in the original picture to the

 colors in the set {z2}f z The shell of such an algorithm is given as follows:

 Given

 the set of admissible colors W,
 a positive integer k, and

 a density function p defined in W,

 choose

 k colors zi belonging to W and
 k sets Vi that tessellate W,

 then

 if y is a color appearing in the original picture and y E Vi, replace y
 with zi.

 (A tie-breaking algorithm must be appended in case y belongs to the boundary of

 one of the sets Vi.)
 The definition of this algorithm is completed once one specifies how to choose

 the sets {z2}>1=l and {?k}>. Clearly, one would want to choose these sets so that
 the approximate picture using only k colors is a "good" approximation to the given
 picture that contains many more colors.

 In a straightforward way, one may use a Monte Carlo method, using p(y) (suitably

 normalized) as a probability density, to choose the set of approximating colors {zi} 1=.-
 Once this set is determined, it is natural to choose the assignment sets {}Vi= to be
 the associated Voronoi sets. Unfortunately, even with k = 256, the approximate
 pictures produced in this manner are not always satisfactory.

 A better approximate picture is found if the sets {z%} z and {Vi}t1 are chosen
 so that the functional

 k

 (2.1) 9 ((Zi) i),i = l, ...,)k) =E E P(yj)Yj-j_Z, 12
 i=1 yjEvi

 is minimized over all possible sets of k points belonging to W {yi}I1 and all
 possible tessellations of W into k regions Vi, i = 1, ... , k. Note that no a priori relation
 between the points zi and subsets Vi is assumed. The motivation for minimizing S
 is clear: one is then minimizing the sum of the squares of the distances, in the color
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 simulation (top right), the centroidal Voronoi algorithm (bottom left), and the centroidal
 Voronoi algorithm with dithering (bottom right).

 space W and weighted by the density function p(y), between the colors y, in the
 picture and the reduced color set zi. It is important to note that the nunimization
 process is both over all possible subsets {zi}k ' of reduced colors and, independently,
 over all possible subsets {V}k~ that tessellate W, the only restriction being that both
 sets have caxdinality k.

 In section 3, we shall show that 6E is mimimized when the Vi's are the Voronoi
 sets for the zi$s and, simultaneously, the zi's are the mass centroids of the V..s, in
 the sense of (1.3) and (1.4), respectively. In other words, the zi's and V2's form a
 cent roidal Voronoi tessellation with respect to the density function p(y). Note that
 the centroidal Voronoi property is a necessary (but in general not sufficient) optimality
 condition; see the discussion related to Figure 6.1 in section 6 1.

 The same principle can be applied to the compression of monochrome pictures.
 In Figure 2.1, we give an original 8-bit monochrome picture (top left), an approximate
 3-bit compressed image determined by a Monte.Carlo algorithm (top right), and an
 approximate 3-bit compressed image determnined by a centroidal Voronoi algorithm
 (bottom left). Clearly, the centroidal Voronoi algorithm results in a better approxi-
 mate picture. (Of course, there are other image-data compression algorithms that are
 more effective than the Monte Carlo algorithm; again, see, e.g., [24] for discussions
 and comparisons.)

 The compressed image obtained by the centroidal Voronoi algorithm suffers from

 a phenomenon known as contouring; see the shoulder in the image on the bottom
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 CENTROIDAL VORONOI TESSELLATIONS 643

 left of Figure 2.1. We emphasize that contouring is a difficulty associated with the

 assignment step of the algorithm and not with the particular choice for the reduced set

 of colors. Contouring occurs when the colors (or, in the case of a monochrome picture,

 the shades of gray) in the original, uncompressed picture are changing "continuously."

 Then, the colors (or shades) of two neighboring pixels in the physical picture can be on

 opposite sides of an edge of a Voronoi region in color space. As a result, two different

 colors (or shades) are assigned to the two neighboring pixels so that the distribution

 of colors in the compressed picture becomes discontinuous, e.g., contours appear in

 the image.

 Contouring can be ameliorated by dithering. For example, instead of always

 assigning a color to the nearest color in the reduced set, i.e., to the generator of

 the Voronoi region to which the color belongs, one sometimes assigns a color to the

 second-nearest generator. The assignments can be done based on the relative distances

 from the point to be assigned to the two nearest generators. Then, if these distances

 are nearly equal, i.e., if the point is near the boundary of its Voronoi polygon in

 color space, it is almost as probable that the point will be assigned to the second

 nearest generator. On the other hand, if the point is near its Voronoi generator, it

 is much more probable that it will be assigned to that point. If d1 and d2 denote

 the distances in color space between the point to be assigned and the nearest and

 second nearest Voronoi generators, respectively, one simple aproach is to assign the

 point to the nearest generator with probability d2/(d1 + d2) and to the second nearest
 generator with probability d1/(d1 + d2). The bottom right image in Figure 2.1 is that
 of a compressed image determined using the same centroidal Voronoi tessellation for

 the approximating shades of gray as was used for the bottom left picture, but for

 which the assignment is done by this dithering algorithm. The contours have now

 disappeared.

 2.2. Optimal Quadrature Rules. For a given region Q c RN and a given positive
 integer k, consider quadrature rules of the type

 k

 f f(y)dy Aif(zi),

 i~~~~ 1~~

 where {zi}j=1 are k points in Q and {Aj}k=1 are the volumes of a set of regions {V}k
 that tessellate Q. We would like to choose the zi's and Vi's so that the quadrature
 rule is, in some sense, as accurate as possible.

 Let us examine the quadrature error for the class of Lipschitz continuous functions

 f (y) with, say, Lipschitz constant L. In this case, we have that the quadrature error
 Q is given by

 k

 Q = >j f(y)dy-ZAif(zi)
 (2.2)kk

 (2.2) = ) E J ~(f (y) -f (zi)) dy < L ly -VI zi l dy.

 Thus, it is natural to try to choose {zi}j=1 and {VI}>k= so that the right-hand side of
 (2.2) is minimized.

 We may also consider quadrature rules that use the values of the function f and
 its first p - 1 derivatives evaluated at the points zi. Then, if the (p - 1)st derivative
 of f is Lipschitz continuous with Lipschitz constant L, we have that the quadrature
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 644 QIANG DU, VANCE FABER, AND MAX GUNZBURGER

 error Q is now estimated by

 k

 (2.3) Q< L lJ Y-zilP dy.

 Again, it is natural to try to choose {zi}>,=, and {}Jk 1 so that the right-hand side
 of (2.3) is minimized.

 The minimization of the right-hand side of (2.2) or (2.3) is accomplished when

 the Vi's are the Voronoi sets for the zi's and, simultaneously, the zi's are the mass
 centroids of the Vi's, in the sense of (1.7)-(1.9), where d(., ) is given by (1.6). This
 may be shown using techniques similar to the ones discussed in section 3.

 The problem of finding an optimal numerical quadrature rule has been well stud-

 ied in the literature. For instance, the classical Gaussian integration rules [7] and the

 quasi-Monte Carlo rules based on number-theoretic methods all share optimal prop-

 erties in some sense. We refer to [46] for a comprehensive treatment of the latter

 subject; see also [26, 49, 57] for some recent developments. In general, one can con-
 sider optimal quadrature rules over a given function space and for specific types of

 function evaluations. The appearance of the centroidal Voronoi diagrams is the result

 of the special function spaces we have chosen here. We note that for integrals over
 irregular domains, many sophisticated integration rules can provide estimates supe-

 rior to that for centroidal Voronoi diagrams, but the former require partitioning or

 mapping into regular regions. On the other hand, the quadrature rules given by the

 centroidal Voronoi diagrams can be a convenient method to provide a crude estimate

 with very limited information known about the integrand.

 2.3. Optimal Representation, Quantization, and Clustering. A related appli-

 cation is the representation or interpolation of observed data. For example, in one of

 the earliest practical applications of Voronoi diagrams, Thiessen studied the problem

 of estimating the total precipitation in 1911 in a given geographical region. The math-

 ematical problem can be described as follows. Given k locations of the pluviometers

 {xi} and associated subregions {Vi}, if p(xi) denotes the precipitation at xi, then the
 total precipitation

 k

 P p(x)dx

 can be estimated by

 k

 Zp(Xj)Xil,
 i=1

 where IViI denotes the area of Vi. If we wish to find the best locations for the plu-
 viometers in order to reduce the estimation error, we may follow the discussion in

 section 2.2 to formulate this optimization problem as an optimal quadrature prob-

 lem. Another formulation is documented in [47]. Imagine that the function p(x) is a
 random variable at x which can be expressed as

 p(x) = m(x) +?e(x),
 where m(x) is a deterministic continuous function of x and e(x) is a random function
 having zero expected value. Then, the estimation error can be formulated as
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 In the case of constant variance E[E(x)2] - u, and if the change in m(x) is small

 compared with the variance (x in the associated region, one can approximate the above

 error by

 k

 Here, Cov(x, xi) is the covariance. Empirically, 1 - Cov(x, xi) may be treated as an
 increasing function f( x - xi ) of the distance Ix-xi ; thus, the problem of finding
 the optimal locations for pluviometers can be formulated as the minimization of the

 functional

 k

 which is, again, a problem of finding the centroidal Voronoi diagram.

 A similar and even earlier example is the question of round-off, i.e., representing

 real numbers by the closest integers. This problem has been studied in [56] and the
 answer is obviously a simple example of one-dimensional centroidal Voronoi diagrams.

 The representation of a given quantity with less information is often referred to

 as quantization and it is an important subject in information theory. The subject of
 vector, i.e., multidimensional, quantization has broad applications in signal process-

 ing and telecommunications. The image compression example we discussed earlier

 belongs to this subject as well. We refer to [15, 17] for surveys on the subject and
 comprehensive lists of references to the literature; see also [16].

 In the same spirit, centroidal Voronoi diagrams also play a central role in clus-

 tering analysis; see, e.g., [19, 34, 54]. Clustering, as a tool to analyze similarities and
 dissimilarities between different objects, is fundamental and is used in various fields

 of statistical analysis, pattern recognition, learning theory, computer graphics, and

 combinatorial chemistry. Given a set W of objects, the aim is to partition the set

 into, say, k disjoint subsets, called clusters, that best classify the objects according

 to some criteria that distinguishes between them. This is commonly referred to as

 k-clustering analysis. For example, in combinatorial chemistry, k-clustering analysis

 is used in compound selection [6], where the similarity criteria may be related to the
 compound components as well as their structure. Clustering analysis provides a se-
 lection of a finite collection of templates that well represent, in some sense, a large

 collection of data. To illustrate the connection between centroidal Voronoi diagrams

 and the optimal k-clustering, let us consider a simple example where W contains m

 points in RN. Given a subset (cluster) V of W with n points, the cluster is to be
 represented by the arithmetic mean

 (2.4) ~ ~ ~ ~ -- 1 (2.4) xi-- zE xj
 xj E V

 which corresponds to the mass centroid of V in the definition (1.5) with V - RN
 The variance is given by

 Var(V) = _ -12,
 xjEC V

 and for a k-clustering {?}k= (a tessellation of W into k disjoint subsets), the total
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 646 QIANG DU, VANCE FABER, AND MAX GUNZBURGER

 variance is given by

 k k

 (2.5) Var(W) Var(V?) = x~
 i= IjE X~Vi

 As observed in [24, 301, the optimal k-clustering having the minimum total variance

 occurs when {?}> is the Voronoi partition of W with {X?J}k as the generators;
 i.e., the optimal k-clustering is a centroidal Voronoi diagram if we use the above
 variance-based criteria.

 In computational geometry, criteria such as the diameter or radius of the subsets
 have been well studied; see, e.g., [21. Other criteria have also been proposed, e.g.,
 LI based [251 and variance based [621. In some applications of statistical analysis,
 only the clusters are of interest; the cluster centers are not important themselves. In
 other applications, e.g., the color image compression problem, the cluster centers are
 the representative colors to be retained; i.e., they should be elements of W. Thus, it
 may be more appropriate to replace the simple arithmetic mean by the more general
 notion of the mass centroid given in section 1.1. For discussions of complexity issues
 involved in k-clustering as well as related clustering algorithms, see [12, 30, 32, 31, 481
 and the references cited therein. Additional references on clustering analysis are also
 provided in later sections.

 2.4. Finite Difference Schemes Having Optimal Truncation Errors. For the
 sake of ease of presentation, we consider only the simple problem

 (2.6) -divu = f and u= gradob in Q c 1R2

 where Q is a polygonal domain. We also ignore all effects due to boundaries and
 boundary conditions. (We make no judgment as to the usefulness of the algorithm
 discussed here; our goal is merely to illustrate the potential of centroidal Voronoi

 grids.) In (2.6), u and 0 are the unknowns and f is a given function defined on Qi.
 A common way to discretize (2.6) is based on Voronoi tessellations. Thus, let

 {i}> denote a Voronoi tessellation of Q with respect to a given set of k points
 {}>belonging to Q. Let _TI denote the dual tessellation, i.e., the Delaunay

 triangulation of the points {zi}k 1. Let Ai and Bj denote the area of V? and Tj,
 respectively.

 Let { tj, }3%: denote the set of vertices of the triangle Tj . Of course, for any j and
 s, tj is one of the given points z2. From the first equation in (2.6), we have that

 (2.7) -jf jdivu u-n forj=1, ...,)M,

 where &Tj denotes the boundary of Tj. We approximate these equations by

 (2.8) - B f (vj) = 3 bs (2ts i(~?) ns for j 1,M.
 S=:1

 where Bi denotes the area of the triangle Tj, ns ar d bs denote the outer unit normal
 vector to and the length of the edge joining the -N,,rtices tj and tjs, respectively,
 and where t '4 tjl . In (2.8), vj is a convenient point in Tj at which the data f is
 evaluated. If this point is chosen so that the left-hand side of (2.8) is a second-order
 approximation to the left-hand side of (2.7), then the truncation error of the difference
 equation (2.8) is of order h2, where h is some measure of the size of the triangulation,
 e.g., the largest diameter of any of the triangles in {~'1
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 CENTROIDAL VORONOI TESSELLATIONS 647

 Next, let {vij}Q1KI denote the set of vertices of the Voronoi polygon Vi. From the
 second equation in (2.6), we have that

 (2.9) Ju J grad Oj4n for i = 1,... .,k,

 where ?Vi denotes the boundary of Vi. We approximate these equations by

 1 A E (Vij) + ?b(vi,j+l) (2.10) A.u(z-) 2 aj nj for i =1,..., k,
 j_l1

 where Ai denotes the area of Vi; nj and a- denote the outer unit normal vector
 to and the length of the edge joining the vertices vij and vi,j+i, respectively; and
 Vi,Ki+l = V21. If each zi is chosen to be the centroid of the region Vi, then the
 truncation error of the difference equations (2.10) is again of order h2. This follows
 because the left-hand side of (2.10) is a second-order approximation to the left-hand

 side of (2.9) whenever zi is the centroid of Vi.
 Thus, if we discretize (2.6) according to (2.8) and (2.10), we can guarantee a

 second-order truncation error for the difference equations by choosing {Vi}k= to be

 a Voronoi tessellation of Q with respect to the points {Zi}>= and by simultaneously

 choosing the {Zi}k I to be the centroids of the corresponding regions {?}fV . (We
 note that, in general, difference equations need not have second-order truncation

 errors with respect to a given partial differential equation in order for the solution

 of the difference equations to be a second-order approximation to the solution of

 the differential equation. For example, there are many second-order accurate finite

 element schemes which, when interpreted as difference schemes, do not have second-

 order truncation errors.)

 Related to our discussion here, we can consider covolume methods for the ap-
 proximate solution of partial differential equations, making use of the dual Voronoi-

 Delaunay tessellations. Unlike the finite difference scheme discussed above, unknowns

 can be associated with edges of either or both the Voronoi polygons or the Delaunay

 triangles [45]. Here, it is possible to use centroidal Voronoi grids to obtain schemes
 for which the L2-error in the approximate solution is of order h2 and for which the
 error is only of order h for general grids.

 2.5. Optimal Placement of Resources. We consider a typical example among

 problems dealing with the optimal placement of resources. We are seeking the optimal
 placement of mailboxes in a city or neighborhood so as to make them most convenient

 for users. We make the following assumptions:
 * Users will use the mailboxes nearest to their homes.

 * The cost (to the user) of using a mailbox is a function of the distance from
 the user's home to the mailbox.

 * The total cost to users as a whole is measured by the distance to the nearest
 mailbox averaged over all users in the region.

 * The optimal placement of mailboxes is defined to be the one that minimizes
 the total cost to the users.

 Thus the total cost function can be expressed as

 k

 Then, it is not difficult to show that the optimal placement of the mailboxes is at

 the centroids of a centroidal Voronoi tessellation of the city, using the population
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 density 0 as a density function and f(z) = Z2. For other choices of f, we also get the
 centroidal Voronoi tessellation in the generalized sense. More details can be found in,

 e.g., [33, 47]
 The same formulation can be generalized to other problems related to the optimal

 placement of resources, such as schools, distribution centers, mobile vendors, bus

 terminals, voting stations, and service stops.

 2.6. Cell Division. There are many examples of animal and plant cells, usu-

 ally monolayered or columnar, whose geometrical shapes are polygonal. In many

 cases, they can be identified with a Voronoi tessellation and, indeed, with a centroidal

 Voronoi tessellation; see, e.g., [27, 28] for examples. Likewise, centroidal Voronoi
 tessellations can be used to model how cells are reshaped when they divide or are

 removed from a tissue. Here we consider one example provided in [27, 283, namely,
 cell division in certain stages in the development of a starfish (Asteria pectinifera)

 embryo. During this stage, the cells are arranged in a hollow sphere consisting of a

 single layer of columnar cells. It is shown in [27, 283 that, viewed locally along the
 surface, the cell shapes closely match that of a Voronoi tessellation and, in fact, are
 that of a centroidal Voronoi tessellation.

 The results of the cell division process can also be described using centroidal

 Voronoi tessellations; see [27, 28]. We start with a configuration of cells that, by
 observation, is a Voronoi tessellation. In this geometrical description of the cell shapes,
 cell division can be modeled as the addition of another Voronoi generator or, more
 precisely, as the splitting of a Voronoi generator into two generators. Having added a

 generator (or more than one if more than one cell divides), how does one determine
 the shapes of the new cells and the (necessarily) different shapes of the remaining old

 cells? In [27, 28] it is shown that the new shapes are very closely approximated by a
 centroidal Voronoi tessellation corresponding to the increased number of generators.

 The exact geometrical cell division algorithm described in [27, 28] is as follows. A
 photograph of an arrangement of polygonal cells is shown to be closely approximated
 by a Voronoi tessellation and is used to define data from which the corresponding

 Voronoi generators are determined. Additional photographs (taken at later times)
 are used to identify the parent cells that divide. The generator of a parent cell (now
 represented by a Voronoi polygon) is replaced by two points lying along a long axis

 of the cell; the exact placement of the two points turns out to be unimportant. A
 new Voronoi tessellation is determined using the generators of the cells that have

 not divided along with the points resulting from the replacement of the generators of

 the parent cells. In this manner, two daughter cells are introduced for each parent

 cell. The shapes of these cells are now adjusted by first moving all the generators

 to the centroids of their corresponding Voronoi polygon and then recomputing the

 Voronoi tessellation. This procedure is repeated until the cell shapes, i.e., the Voronoi

 polygons, cease to change. The final arrangement of cells determined by this iterative
 process is a centroidal Voronoi tessellation (see section 5.2) and matches very well
 with photographs of the actual cells after the cell division process is completed.

 2.7. Territorial Behavior of Animals. Many species of animals employ Voronoi

 tessellations to stake out territory. If the animals settle into a territory asynchronously,

 i.e., one or a few at a time, the distribution of Voronoi generators often resembles the

 centers of circles with fixed radius in a random circle packing problem. On the other
 hand, if the settling occurs synchronously, i.e., all the animals settle at the same

 time, then the distribution of Voronoi centers can be that for a centroidal Voronoi
 tessellation.
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 | ~~~~~~~~~~~~~~~~~."

 Fig. 2.2 A top-view photograph, using a polarizing filter, of the territories of the male Tilapia
 mossambica; each is a pit dug in the sand by its occupant. The boundaries of the territories,
 the rims of the pits, form a pattern of polygons. The breeding males are the black fish, which
 range in size from about 15cm to 20cm. The gray fish are the females, juveniles, and
 nonbreeding males. The fish with a conspicuous spot in its tail, in the upper-right corner,
 is a Cichlasoma maculicauda. Photograph and caption reprinted from G. W. Barlow,
 Hexagonal Territories, Animal Behavior, Volume 22, 1974, by permission of Academic
 Press, London.

 As an example of synchronous settling for which the territories can be visualized,
 consider the mouthbreeder fish (Tilapia mossambica). Territorial males of this species
 excavate breeding pits in sandy bottoms by spitting sand away from the pit centers
 toward their neighbors. For a high enough density of fish, this reciprocal spitting
 results in sand parapets that are visible territorial boundaries. In [3], the results of
 a controlled experiment were given. Fish were introduced into a large outdoor pool
 with a uniform sandy bottom. After the fish had established their territories, i.e.,
 after the final positions of the breeding pits were established, the parapets separating
 the territories were photographed. In Figure 2.2, the resulting photograph from [3]
 is reproduced. The territories are seen to be polygonal and, in [27, 59], it was shown
 that they are very closely approximated by a Voronoi tessellation.

 A behavioral model for how the fish establish their territories was given in [22,
 23, 60]. When the fish enter a region, they first randomly select the centers of their
 breeding pits, i.e., the locations at which they will spit sand. Their desire to place the
 pit centers as far away as possible from their neighbors causes the fish to continuously
 adjust the position of the pit centers. This adjustment process is modeled as follows.
 The fish, in their desire to be as far away as possible from their neighbors, tend to move
 their spitting location toward the centroid of their current territory; subsequently, the
 territorial boundaries must change since the fish are spitting from different locations.
 Since all the fish are assumed to be of equal strength, i.e., they all presumably have
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 the same spitting ability, the new boundaries naturally define a Voronoi tessellation of

 the sandy bottom with the pit centers as the generators. The adjustment process, i.e.,

 movement to centroids and subsequent redefinition of boundaries, continues until a

 steady state configuration is achieved. The final configuration is a centroidal Voronoi

 tessellation; see section 5.2. If we denote the center of the pit belonging to the ith

 fish by zi and the territory staked out by that fish by Vi, remarkably, the Vi's are the
 Voronoi regions for the zi's and the zi's are the mass centroids of the Vi's.

 2.8. Applications of Centroidal Voronoi Tessellations in Non-Euclidean Met-

 rics. There are many other applications in computer science, archaeology, astronomy,

 biology, crystallography, physics, the arts, and other areas related to generalized cen-

 troidal Voronoi tessellations. For example, consider the problem of setting distribution

 centers in a city whose streets are in either the north-south direction or the east-west

 direction. Since delivery routes are along the streets, distances are best measured by
 the L1-norm. (The example of section 2.5 should perhaps have been better studied

 in this setting.) Assume further that the shortest L1-path exists for any two given

 addresses, the demand at a given address (the number of deliveries required over a
 fixed period) is measured by a density p, and the cost of delivery is proportional to

 the distance. Then, for given k, the best strategy is given by the centroidal Voronoi

 diagrams in the L1-norm. The use of non-Euclidean metrics also has been considered
 in the vector quantization literature; see, e.g., [42].

 3. Some Results about Centroidal Voronoi Tessellations and Their Minimiza-

 tion Properties.

 3.1. Results Involving Centroidal Voronoi Tessellations as Minimizers. For

 the sake of completeness, we provide the following result. The analogous result for

 other metrics or for discrete sets can be proved using only slightly more complicated

 arguments.

 PROPOSITION 3.1. Given Q C RN, a positive integer k, and a density function

 p( ) defined on Q, let fzij}?I denote any set of k points belonging to Q and let {?}ik
 denote any tessellation of Q into k regions. Let

 k

 (3.1) f((Zi Vi), i = 1 v ..k) = S P(Y)lY-zi12 dy.

 A necessary condition for .F to be minimized is that the Vi 's are the Voronoi regions
 corresponding to the zi 's (in the sense of (1.1)) and, simultaneously, the zi 's are the
 centroids of the corresponding Vi 's (in the sense of (1.2)).

 Proof. First, examine the first variation of T with respect to a single point, say,

 z(zj + Ev) -'(zj) = j p(Y){iY Zj -EVT2 IY-Zj12 dy
 E Vj

 where we have not listed the fixed variables in the argument of f' and where v is

 arbitrary such that zj +Ev ev Q. Then, by dividing byE and taking the limit as 6 -e 0,
 one easily finds that

 A j yp(y) dy
 E Vj zi

 | p(y) dy
 E Vj

 Thus, the points z.j are the centroids of the regions VI.
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 Next, let us hold the points {zi}>-I fixed and see what happens if we choose a tessellation {Vi}k__ other than the Voronoi tessellation {V9}=. Let us compare the
 value of fT((zi, V), i = 1, ..., k) given by (3.1) with that of

 (3.2) T (zj, Vj))i = 1).. :k) P(Y)ly - zj I'

 At a particular value of y,

 (3.3) P(Y) ly _ Zj 12 < P(Y) ly - Z 12.

 This result follows because y belongs to the Voronoi region Vj corresponding to zj
 and possibly not to the Voronoi region corresponding to zi; i.e., y c Vi but Vi is not
 necessarily the Voronoi region corresponding to zi. Since { Vi} is not a Voronoi
 tessellation of Q, (3.3) must hold with strict inequality over some measurable set of

 Q. Thus,

 ((zj) Vj)) j =1...,k) < fF((zi, Vi), i = 1, ,. k)

 so that f is minimized when the subsets Vi, i = 1, ... , k, are chosen to be the Voronoi
 regions associated with the points zi, i = 1, ... , k. [

 Another interesting and useful point follows from the above proof. Define the

 functional

 k

 (3.4) /K((zi) , i = 1, ,. k) = , P(Y)j _yz Z,2 dy,

 where Vi's are the Voronoi regions corresponding to the zi's. Note that the functional
 in (3.4) is only a function of the zi's since, once these are fixed, the Vi's are determined;
 for the functional in (3.1) it is assumed that the zi's and Vi's are independent. For
 minimizers of the functionals in (3.1) and (3.4), we have the following result.

 PROPOSITION 3.2. Given Q c RN, a positive integer k, and a density function
 p( ) defined on Q, then f and IC have the same minimizer.

 3.2. Existence of a Minimizer. Given Q c RN, a positive integer k, and a density

 function p(.) defined on Q, let {zi}> denote any set of k points belonging to Q and let
 {Vi} denote any tessellation of Q into k regions. Let K -{Z = (Z1, Z2, ... , Zk), Zj E

 Q}. Let Ai = IVil, the area of Vi, and A = (A1,... ,Ak). Then, one easily obtains
 the following results.

 LEMMA 3.3. A is continuous [471.
 LEMMA 3.4. IC is continuous and thus it possesses a global minimum.
 Proof. Let Z, Z' C K. Then,

 k

 A?(Z) - K(Z') I= { (J - J)P(Y) Y - z,12 dy

 +j J P(Y) (Iy-z, 12- y-Z/i 2) dY}
 + E vi'

 If Q is compact and p is continuous, then there exists a constant C such that

 k

 1K(Z) -K(Z')|I < C lAi-Al + Izi-zl1
 i=l~~i
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 Then, the continuity of IC follows from Lemma 3.3. The existence of the global
 minimizer then follows from the compactness of K. [

 In general, IC may also have some local minimizers; we now show that a local

 minimizer of IC will give nondegenerate Voronoi diagrams.
 PROPOSITION 3.5. Assume that p(y) is positive except on a set of measure zero

 in Q. Then, local minimizers satisfy zi 74 zj for i #& j.
 Proof. Suppose that this is not the case. Without loss of generality, denote a

 local minimizer by {zi} I1 with 1 < m < k. Define
 mr

 W(Z1... ZM) pZyJ p(y) Y-zi 2 dy.

 For any small 6 > 0, pick Zm+l zj, j = 1, ... ,m, with minj Zm+1 - zj < 6 and
 define {Vi}7 to be the Voronoi regions corresponding to {zl, Z2, . . ., Zm+1}. Let

 m+1

 )/(zi.. ZM+0)=E P(Y) ly _Z,12 dy
 i=l YEVi

 Let f(y)_= p(y) y - zi2 for any y E V, i = 1,... ,m, and f(y) = p(y) y - Z2 for
 anyyC ?, i 1,...,m+1. Then,

 W(Zi,...,Zm) f jf(y)dy and W(Zi,... Zm+?) = jf(y)dy.

 Note that

 f(y) =f(y) foranyyE Vn?, i= 1,...,m;

 f(y) > f(y) for any y C Vi \ V i 1, ...m;

 f(y) > f(y) for any y C Vm+?.

 Since the set Vm+i has positive measure, W(zi,. .. ,Zm+l) < W(zi.... v zm), which is
 a contradiction. U

 Remark 3.6. For the general metric (assuming that p vanishes only on a set
 of zero measure), existence is provided by the compactness of the Voronoi regions.

 Uniqueness is also attained if the Voronoi regions are convex and if for any Yi, Y2 C Vi,

 YI #& Y2, the inequality

 d(z, Ay1 + (1 - A)Y2) < Ad(z, Yi) + (1 - A)d(z, Y2)

 is valid for some A E (0,1) on a subset of Vi with positive measure.

 3.3. Results for the Discrete Case. There are many results available, especially
 in the statistics literature, for centroidal Voronoi tessellations in the discrete case

 described in section 1.1, for which the given set to be tessellated is finite-dimensional,

 e.g., W {yi} LI, a set of m points in RN. The energy (which is also often referred
 to as the variance, cost, distortion error, or mean square error) is now given by

 k

 (3.5) T ((Zi) Vi), i =_ 1, .., k) =E E P(y)ly _Z,12 dy,
 i=1 yEVi

 where {V}V k1 is a tessellation of W and {zi}> are k points belonging to W or, more
 generally, to RN
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 Many results involve properties of centroidal Voronoi tessellations as the number

 of sample points becomes large, i.e., as m > o0. The convergence of the energy was

 shown in [40]. The convergence of the centroids, i.e., the cluster centers, was proved in

 [52] for the Euclidean metric under certain uniqueness assumptions. The asymptotic

 distribution of cluster centers was considered in [53], where it was shown that the

 cluster centers, suitably normalized, have an asymptotic normal distribution. These

 results generalize those of [20]. Generalization to separable metric spaces was given

 in [50].
 In [63], some large-sample properties of the k-means clusters (as the number of

 clusters k approaches oc with the total sample size) are obtained. In one dimension,
 it is established that the sample k-means clusters are such that the within-cluster

 sums of squares are asymptotically equal, and that the sizes of the cluster intervals

 are inversely proportional to the one-third power of the underlying density at the

 midpoints of the intervals. The difficulty involved in generalizing the results to the

 multivariate case is mentioned.

 In vector quantization analysis [17], clustering k-means techniques have also been
 used and analyzed. A vector quantizer is a mapping Q of N-dimensional Euclidean

 space RN into itself such that Q has a finite range space of, say, k vectors. Given a

 distortion measure d(X, Q(X)) between an input vector X and the quantized represen-

 tation Q(X), the goal is to find the mapping Q that minimizes the average distortion
 with respect to the probability distribution F governing X, D(Q, F) = Ed(X, Q(X)).
 The mathematical formulation of the average distortion is similar to that of the energy

 functional given in (3.1) for the continuous case and (3.5) for the discrete case. In
 [1], several convergence and continuity properties for sequences of vector quantizers

 or block source codes with a fidelity criterion are developed. Conditions under which

 convergence of a sequence of quantizers Qn, and distributions Fn implies convergence
 of the resulting distortion D(QTh, Fn) as n > o0 are also provided. These results
 are in turn used to draw conclusions about the existence and convergence of optimal
 quantizers.

 The results are intuitive and useful for studying convergence properties of design

 algorithms used for vector quantizers. Note that there do not yet exist general algo-

 rithms capable of finding optimal quantizers (except when the distribution has finite

 support and all quantizers can be exhaustively searched). Most algorithms can find
 only locally optimal quantizers, and hence convergence results for optimal quantizers
 are currently of limited application.

 Another interesting aspect of the discrete problem involves the reduction of the
 spatial dimension. For many practical problems, it is desirable to visualize the re-

 sulting centroidal Voronoi diagrams or the optimal clusters by some means. Various

 techniques, such as the projection pursuit method [11, 18, 29, 58], have been studied
 in the statistics literature. They can be used to characterize the centroidal Voronoi

 diagrams via lower dimensional approximations.

 3.4. Connections between the Discrete and Continuous Problems. The dis-

 crete problem is obviously connected to the continuous problem outlined earlier. This

 was pointed out in [30], where it was shown that the k-clustering problem can be
 viewed as a discrete version of the continuous geographical optimization problem
 studied in [33]; the latter is equivalent to minimizing the function in (3.1). The
 authors point out that further investigations are deserved.

 For nonuniformly distributed points, an alternative formulation of the discrete
 k-clustering problem might reveal even closer ties with the continuous problem. For
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 example, consider the set of m points W = {Y}y=Ti in RN along with a clustering
 of these points into k clusters {Wi}?1 and associated cluster centers {xi given
 by (2.4). Next, consider the Voronoi diagram {}Vi in RN generated by the points
 {jxj}>, 1 with suitable truncation of the possible unbounded regions so that each
 Voronoi region remains bounded, i.e., ignoring the overload, as is done in vector

 quantization [17]. We may associate with each point -xi a weight pj = l/lVjl (lVil
 being the area of the corresponding Voronoi region). Then, if W contains a large

 number of points, i.e., if m is large, and the areas of Vi's become small, we get from
 (2.5) that

 Var(W) = y |2=ZZpyj2vj
 i=l yj cWi i=l yj cWi

 k

 J~~~~ pxx *ldx=T((xi*Wj*))i=1 ..k),

 with {Wj* } forming a Voronoi tessellation of a suitable domain containing W and
 x* being the mass centroids of W*. F is as given in (3.1). p is a suitable density
 distribution, reflecting how the points in W are distributed in space. In this context,
 one can see that the connection made in [24, 30] is valid only if the points in W are
 more or less uniformly distributed. Indeed, to get uniform density in the continuous

 problem, we may define the weighted mean of cluster Wi as

 j Z Exj cwi PXji
 Exj E Wi P1

 and the generalized variances as

 k

 Var(Wi) = , pllxj-X2, Var(W) =ZVar(Wi).
 xj cwi i=l

 With the modification, we get, when the Vi's are small, that

 k k

 Var(W) = , j3 pI1XjI - xi| Edx.

 With the new formulation, one can perhaps study how to generalize the stochastic 2-
 clustering or k-clustering algorithms presented in section 4.2. It is possible that new
 algorithms may be constructed for which good estimates can be obtained in cases

 where the balancing conditions given in [24, 30] are not met. It may also lead to a
 better sampling strategy and improvements in performance.

 4. Probabilistic Approaches to Determining Centroidal Voronoi Tessellations.
 In this section, we discuss probabilistic approaches for the determination of centroidal

 Voronoi tessellations of a given set.

 4.1. A Sequential, Random Sampling Algorithm. We begin with an elegant
 random sequential sampling method which has the advantage that it does not require
 the calculation of Voronoi sets. (It is referred to as the random k-means method, or
 simply the k-means method, since it gives a partition of a sample into k sets by taking
 means of sampling points.)

 The random k-means method is defined as follows. Given a set Q, a positive

 integer k, and a probability density function p defined on Q,
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 0. select an initial set of k points {zi}>, e.g., by using a Monte Carlo method;

 set ji = I for i = 1 , .. ., k;
 1. select a y E Q at random, according to the probability density function p(y);

 2. find the zi that is closest to y; denote the index of that zi by i*;
 3. set

 Zi* '- ji* Zi* + and ji* ' -ji* + 1;
 ji + 1

 this new Zi*, along with the unchanged zi, i :& i*, forms the new set of points

 {Zi}X-1.
 4. If this new set of points meets some convergence criterion, terminate; otherwise,

 go back to step 1.

 Note that (ji - 1) equals the number of times that the point zi has been updated.
 The random k-means algorithm has the following interpretation. At the fth stage

 of the algorithm, one starts with the positions of the cluster centers, i.e., the means,

 Zi, i = 1, ... , k, and a clustering of (f + k - 1) points (the original k points of step 0
 plus the (f - 1) points y previously selected in step 1) into k corresponding clusters.
 One then selects a new random point y, locates the closest cluster center, and adds

 this to the corresponding cluster. Of course, one also updates the mean, i.e., the

 cluster center, of the enlarged cluster.

 The random k-means method has been analyzed in [40], where the almost sure
 convergence of the energy is proved. The mass centers often are also referred to

 as cluster centers, which are simply the means of the Voronoi regions. Employing

 the Euclidean metric, for various general optimization problems that correspond to

 f(s) = Sr in (1.10), the mean could be replaced by the median, the mode, or the
 midrange for r = 1, r > 0, and r > oc, respectively. In [40], various examples are
 discussed for which the k-means methods fail to give the optimal centroidal Voronoi

 regions. Generalizations to non-Euclidean metrics were also presented there. The

 key is to measure the closeness in the sense of the metric and replace the mean in

 step 3 by using the more general definition of the mass center. A proof of the weak

 convergence of the energy functional was also given in [401.
 Extensions to separable metric spaces are given in [51]. Let P be a probability

 measure on the separable metric space (T, d). Define the energy functional (clustering
 criterion) by

 W(A, P) - min m (d(x,aj))P(dx), J <i<k

 where A = {a, ... , ak} c T is the set of mass centers (cluster means) and X is a
 nondecreasing function satisfying certain conditions. Define Wk (P) = inf{W(A, P):

 JAI = k}, and let A*(P) be the class of all minimizing sets A* {al*,..., a*}. The
 almost sure convergence Wk (Pn) -> Wk (P) as Pn converges to P weakly is proved in
 [51].

 Variations of the k-means methods are proposed in [35] using bootstrapping tech-
 niques. Advantages of the bootstrap methods are discussed and the performance of

 bootstrap confidence sets is compared with that of the Monte Carlo confidence sets

 discussed in [52].
 In the discrete, finite-dimensional case (see section 1.1) for which one is given,

 instead of Q, a set of points W = {y.}e=1 belonging to RN, a deterministic variant of
 the k-means algorithm is easily defined by choosing the points y not at random, but
 sequentially through the set W. In section 5.1, we will return to the finite-dimensional
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 version of the algorithm. Some deterministic and stochastic variants of the k-means

 algorithm in the discrete case are given in [4].

 4.2. A Random 2-Clustering Algorithm for the Discrete Case. For variance-

 based k-clustering analysis of a finite-dimensional set of points W = {y.}eji1 belonging
 to RN, another type of probabilistic algorithm, which we refer to as the m-sample
 algorithm, has been studied in [24, 30, 31, 32]. The 2-clustering version is given as

 follows:

 0. Sample an initial subset T of m points from W, e.g., by using a Monte Carlo
 method.

 1. For every linearly separable 2-clustering (T1, T2) of T,
 * compute the centroids t1 and t2 of T1 and T2, respectively;

 * find a 2-clustering (W1, W2) of W divided by the perpendicular bisector of
 the line segment connecting t1 and t2;

 * compute the total variance of the 2-clustering (W1, W2) and maintain the
 minimlum among these values.

 2. Output the 2-clustering of W with minimum value above.

 Note that the preceding algorithm can be generalized to the k-clustering cases. It

 was pointed out that the random m-sample algorithm can be used to find good initial

 clusters for the deterministic algorithms discussed in section 5.1. Under suitable bal-

 ancing conditions on the optimal 2-clusters, it was shown in [30, 31] that in O(mNM)
 time, the m-sample algorithm finds a 2-cluster whose variance is within a factor of
 1 + O(1/(6m)) of the optimal value with probability 1 - 6 for small 8.

 In the general application of k-clustering, it was proposed [32] that the rn-sample

 algorithm may be applied in a top-down recursive manner and that the heap is used to

 obtain the subset with the maximum variance to be divided in the subsequent step.
 Extensive numerical tests were performed in [32] along with comparisons to other

 methods such as those used in [25, 62]. Suggestions on directly sampling k-clusters,
 without using the top-down binary partition technique, are also proposed.

 5. Deterministic Approaches to Determining Centroidal Voronoi Tessella-

 tions. In this section, we discuss some deterministic approaches for the determination

 of centroidal Voronoi tessellations of a given set. We refer to [47] for a discussion and
 references on algorithms to compute arbitrary Voronoi diagrams.

 5.1. Sequential Sampling Algorithms for the Discrete Case. We return to the
 deterministic version of the k-means algorithm of section 4.1, which can be used in the

 discrete case; see [19]. Given a discrete, finite-dimensional set of points W = {y}m1

 belonging to RN, an integer k > 1, and an initial set of cluster centers {zj}k=1, then
 for each y C W,

 1. find the zi that is closest to y; denote the index of that zi by i*;
 2. assign y to the cluster corresponding to zi*;
 3. recompute the cluster center zi* to be the mean of the points belonging to the

 corresponding cluster.
 An efficient implementation of this algorithm for large data sets is given in [21]; see

 also [10]. It is shown in [55] that, for the quadratic metric, the energy converges to a
 local minimum value.

 Other deterministic algorithms for determining the cluster centers are given in [25,

 62, 641. These involve recursive clustering into hyperboxes having faces perpendicular
 to the coordinate axes.
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 If m is finite, then obviously the clustering problem can be solved in a finite

 number of steps. In fact, the following result is given in [30, 32].

 THEOREM 5.1. For quadratic energies, the clustering problem for m points in

 RN into k clusters can be solved in O(mkN+?) steps.
 This bound is very pessimistic for large k. However, it is also known that, in

 general, the problem of finding the optimal clustering is an NP-hard problem [12, 13,

 48]. Other results on the k-means method and its relation to the optimnality conditions
 of a related mathematical programming problem can be found in [55].

 5.2. Lloyd's Method. Next, we discuss a method that is an obvious iteration

 between constructing Voronoi tessellations and centroids. Given a set Q, a positive

 integer k, and a probability density function p defined on Q,

 0. select an initial set of k points {zj}>- , e.g., by using a Monte Carlo method;
 1. construct the Voronoi tessellation {V = of Q associated with the points {Zi }?-;
 2. compute the mass centroids of the Voronoi regions {?Vi}?L found in step 1;

 these centroids are the new set of points {zX} 1.
 3. If this new set of points meets some convergence criterion, terminate; otherwise,

 return to step 1.

 (Here we will not discuss termination procedures since they are very much dependent

 on the specific application.) This method, at least in the electrical engineering litera-
 ture, is known as Lloyd's method [39]. (A second method was also proposed by Lloyd
 for one-dimensional problems; it is similar to a shooting approach, i.e., one guesses

 the leftmost mass center, then determines the end-point of the leftmost region, then

 extrapolates to get the next leftmost center, etc. No generalization to higher space

 dimensions is known.)
 Lloyd's method may be viewed as a fixed point iteration. For example, consider

 the case of Q c IRN, i.e., of (1.1)-(1.3). Let the mappings Ti: RkN R RN i -
 1,...,k, be defined by

 J yp(y) dy
 Ti (Z) - Vi (Z)

 IV2 P(y) dy Vi(Z)

 where

 Z = (Z1, Z2,* .. , Zk)T and Vi(Z) = Voronoi region for zi, i = 1, . . ., k .

 Let the mapping T: RkN RkN be defined by

 T = (Tl) T2) ... ,Tk )T

 Clearly, centroidal Voronoi tessellations are fixed points of T(Z).

 5.3. Variations on Lloyd's Method. In [381 (see also [15]), a probabilistic varia-
 tion of Lloyd's method is proposed. The method is essentially a continuation method

 for the global optimization problem in the spirit of simulated annealing. The data,
 i.e., the density function, are corrupted (perturbed) by noise. For strong noise, the

 centroidal region essentially depends only on the noise; it is assumed that a unique

 local minimum exists. Then, the noise level is slightly reduced in subsequent steps

 and the local minima from previous steps are used as initial guesses for later steps. It

 was argued that the algorithm might converge although new local minima might have
 been introduced. The algorithm stops when the noise level is reduced to zero. No
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 convergence theory was provided, but further studies of such ideas were given in [1].
 There, it is claimed that their analysis implies that globally optimal quantizers can

 be designed by adding "nice" noise to the original distribution and then slowly reduc-
 ing the noise to zero under the requirement that "close" distributions yield "close"

 optimal quantizers. These properties, however, have not been shown to be valid in all

 cases.

 Another generalization, in the form of a two-stage algorithm, is studied in [61].

 For that algorithm, the first stage of Lloyd's iteration is applied so as to reduce the

 value of error functionals such as

 k

 S lvA p(y)f (d(y, zi)) dy

 and its discrete analogs. At the second stage, a search for a minimizer is performed,

 using a hybrid of a dynamic programming algorithm and a Lloyd-type algorithm

 that achieves the absolute optimality of dynamic programming with much less com-

 putational effort. For a continuous distribution with log-concave density p and an
 increasing convex weighting function f, a reliable method is presented for comput-

 ing the optimal parameters with a known precision, using a generalization of Lloyd's
 method.

 In image-data compression applications, region-based algorithms have also been

 studied in [8]. Voronoi diagram-based vector quantization techniques are used in high-
 frequency regions or in regions with uncorrelated data; polynomial approximations are

 used in smooth regions or in regions with highly correlated data.

 A number of other generalizations are discussed in [15, 431.

 5.4. Descent or Gradient Methods. One can construct general iterative pro-

 cedures for determining the centroidal Voronoi tessellations by following a descent
 search algorithm of the type

 Z() ac
 (5.1) Z(n+l) =Z Z()_ g (n)) ,n = 1, 2, . ..

 where the scalar an is a suitable chosen step size. Here, one can choose C(Z) to be a
 function whose stationary points are fixed points of the Lloyd map T(Z). See section
 6.2 for a further discussion.

 For the discrete case, gradient methods, including steepest descent methods with

 line searches, are considered in [33]. The relation between centroidal Voronoi tes-
 sellations, e.g., optimal clustering, and stationary points of associated functions is

 discussed in [55].

 5.5. Newton-Like Methods. One may naturally compute the fixed point of T
 using Newton's method, i.e.,

 (I AT (Z (n)) (Z (n+l) _ Z (n)) Z (n) + T(Z(n)) 1, 2,.
 (9Z(

 For smooth density functions, one may easily verify that the Newton iteration is

 locally convergent at a quadratic rate whenever the initial guess is close enough to

 the fixed point. In practice, however, calculations of 9T/9z can be expensive in
 space dimensions higher than one or if the density function is not smooth. Thus, a
 quasi-Newton method may offer a better alternative.
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 CENTROIDAL VORONOI TESSELLATIONS 659

 6. Some Results Concerning Lloyd's Method. Lloyd's method as given in sec-

 tion 5.2, or under other names, has been proposed and studied by many authors in

 a number of different applications contexts. In this section, we discuss some of the

 properties associated with Lloyd's method.

 6. 1. Derivatives of the Energy and the Lloyd Map. Let U {uj } l IRMVIN
 be the vertices of the Voronoi regions generated by Z = {Zi} E RkN. Geometrical
 considerationl tells us that each uj is the circumcenter of the Delaunay simplex formed

 by some z,'s whose Voronoi regions share common faces. Clearly, the map: Z -) U
 is linear; we denote it by G(Z). Also, it is useful to know that if uj and {uj }i> are
 the vertices of the common face A' between two adjacent Voronoi regions generated

 by Z,n and ZnR, then we have

 (6.1) (AOu. + E AlUl - (Zm + zn)) (Zm - zn) = Q
 1>1

 for any set of nonnegative parameters {A1}11o with E1>o Al 1 such that AOuj +
 1>1 Au\jl E A\n. This is simply the perpendicular bisector property of Voronoi
 diagrams; i.e., the face An bisects the line segment joining Zm and Zn and that line
 segment is perpendicular to the face.

 Next, we let {Vi (U) } denote the set of Voronoi regions having U as vertices andl
 let M/f be a diagonal matrix with entries

 MA/i=J p(y)dy Vi.
 V(U)

 Let F denote the map that maps vertices U to the mass centroids of {Vi(U)}, i.e.,

 F : U--~ I p(y)y dy Vi Ali vi(u)

 Clearly, we see that the Lloyd map T is given by T = F o G. We shall use the

 following notation for the derivative maps:

 =dF and G- dG
 du dz

 We now investigate the relations between the maps F and G and the derivative
 maps of the energy F (see (3.1)), which are recast as

 k

 AH(Z) U) =E/ P(Y)l I- zil' dy
 ~i=lVi(U)

 In addition, in light of Propositions 3.1 and 3.2, we also define

 (Z) = 'H(Z) G (Z))

 Now, it is simple to see that

 -I = 2zi( P(y)dy2J p(y)ydy (9zi i (U) Vi(U)

 so that

 (6.2) - 2M(U)(Z - F(U)).
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 Furthermore, we have

 a2-H =: 2M(U).

 In order to differentiate with respect to u, we first state a result concerning

 differentiations with respect to change in domain.

 LEMMA 6.1. Let Q = Q(U) be a region that depends smoothly on U and that has

 a well-defined boundary. If F = fQ(U) f (y)dy, then

 dF Jf XT dY
 dU / n~~ (Y)Y, n dy,
 dU Q(U)

 where n is the unit outward normal and y denotes the derivative of the boundary
 points with respect to changes in U.

 Since U = G(Z), we have that p(y) ly -Zj 2 = p(y) ly- Z12 for any y belonging
 to AM, where An again denotes the common face of the Voronoi regions generated
 by Zm and Zn. Then, by Lemma 6.1, we have that

 AU U=G(Z)

 In fact, for U close to G(Z), in the sense that the regions formed by G(Z) are
 simple perturbations of that of U with the same topological structure, using the
 orthogonal bisector property (6.1), we can show that

 OU = A(U, Z)(U - G(Z)).

 The matrix A, or more precisely its action, is defined as follows. Let the vertices

 of the common face An between Vm and Vn be denoted by uj and {u.l}ll> and
 let y = Aou3 + El>1 Alujl E A\n for parameters {A1}1>0 belonging to the standard
 simplexi\ = {Al > 0 Vl, El A, < 1}. Then, the matrix A is defined by

 (A(U, Z)(U - G(Z)))i = 2 Aonnm p&OUj + Z Aluj) (Z?n - Zn)
 uj /Anll m 1> 1

 AO ( US-Gj(Z)) + E A (uj - Gjl (Z)) dA) 1>1

 where n" is the unit normal of A\ that has positive angle withZ, - Zm Thus, we
 have the following result.

 PROPOSITION 6.2. The derivative of g is given by

 (6.3) 09 (Z) = 2M(G(Z))(Z - T(Z)).
 Thus, if the density function p is positive except on a set of measure zero, the station-
 ary points of g are given by fixed points of the Lloyd map T(Z).

 In componentwise form, (6.3) is equivalent to

 (Z) = 2zi V p(y)dy-2 J p(y)ydy.
 Furthermore,

 ,92 (Z) 2M(G(Z))(I -F(G(Z))G'(Z)) &z2

 +(G/())F(Z)) Z)T)TF(Z -TZ)
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 Fig. 6.1 Two possible moves from the saddle point of the Voronoi tessellations of a square. The left

 move increases the energy while the right move decreases the energy.

 Thus, we arrive at the following result.

 PROPOSITION 6.3. At the stationary point, i.e., whenever Z = T(Z), we have

 ,2 (Z) = 2M(G(Z)) I- ( T (Z))

 We see that the local convexity of the energy is related to the Jacobian of the

 Lloyd map, which in turn affects the local convergence properties of the Lloyd fixed

 point iteration.

 In fact, if the energy is locally strictly convex at the minimum, then

 M(G(Z))(I- OT (Z)) is positive definite.

 So, the eigenvalues of

 M1/2 ( _ 9T (Z)\m-112 = I 1 21 2 T xm-112

 are all positive, which implies that

 the eigenvalues of OT (Z) are real and less than 1,

 a necessary condition for T to be a local contraction.

 On the other hand, a fixed point of the Lloyd map does not necessarily correspond
 to a local minimum of the energy. Take the example of two points and the square
 [-1, 1]2 given in Figure 1.2. One can show that the partition along the midline

 corresponds to a local minimum but the one along the diagonal corresponds to a

 saddle point. In fact, the energy decreases as the diagonal rotates toward the middle
 vertical line. (We can treat rotation to the middle horizontal line in a similar manner.)
 The mass centers move along the points (T1/2 ? E2/6, ?1/3E), where 1/e is the slope;
 e 1 corresponds to the diagonal and e = 0 corresponds to the vertical midline. The

 energy is given by 5/12 + E2/18 - E4/36, which decreases as e goes from 1 to 0. On
 the other hand, if we translate the diagonal parallel to itself, i.e., if we move the two
 points along the other diagonal so that one center of mass is closer to the center of
 the square than the other, then the energy increases. Thus, the diagonal partition
 forms a saddle point for the energy; see Figure 6.1.

 6.2. General Descent Methods and Lloyd's Method. With the gradient of the

 energy given by (6.3), Lloyd's method can be viewed as a special case of a general
 gradient method. One can construct general iterative procedures for determining the
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 centroidal Voronoi regions, i.e., for minimizing the energy, by following a descent
 search algorithm of the form

 (6.4) Z(n+l) = Z(n) - anB(n) 0 > (Z(n)) , n = 1, 2, . ..

 where the matrix B(n) is positive definite and the scalar an represents the step size.
 It is easy to see that if an is small enough, then g(Z(n+1)) < g(Z(n)) unless we have
 reached a stationary point. Lloyd's method is simply the special case of (6.4) with

 an = 1/2 and B(n) = M(G(Z(n)))-1.

 6.3. Convergence of Lloyd's Method for a Class of One-Dimensional Prob-

 lems. Lloyd's method has been shown to be convergent locally for a class of one-

 dimensional problems; see, e.g., [36]. Here, we present a simple proof for a result of
 this type. Without loss of generality, we assume that Q = [0,1]. Let the density
 function p be smooth and strictly positive. In addition, p is assumed to be strictly
 logarithmically concave; i.e., log p is a strictly concave function. This is equivalent to

 (log p)" < 0 or - strictly increasing.
 p

 Given k points x = {xi, i 1, ..., k} such that 0 < x1 < X2 < < xk_- <
 Xk < 1, it is clear that the corresponding Voronoi regions are the intervals V1

 [0, X V]2 [Xi?Vi=` xi+xi+ ] for i = 2, .. ., k - 1, and Vk [Xk-?Xk,1]. Let
 Ali = lvi p(y)dy. The Lloyd map is then defined as

 Ti(x) ~ yp(y) dy.

 At the fixed point x = T(x), the Jacobian matrix is a tridiagonal matrix with

 aTi (Xi i-Xi_) (Xi + Xi-i aTi (xi+i- xi) (Xi + Xi+i

 (9xi-l 4M V 2 J ai+I 4M 2 J

 9Ti (9Ti + 9Ti
 &xi &xi1l &xi+l

 One easily sees that AT/0x at the fixed point is a nonnegative matrix. Next, we
 consider
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 Let Vi = [y-,y+] and note that xi = Ti(x); then,

 -2Mi T _ 2 aTi

 -[(v?) pJ (y) - p(y)y)dy

 J= J~, p(s)p(t)dsdt - p(t) [J (p'(s)(s - t) + p(s))ds] dt

 = j J P'(s)p(t)(t - s)dsdt

 = J-, J/ (p'(s)p(t) - p'(t)p(s)) (t -s)dsdt 2 vi v

 2 Ji Jvi P(t)P(s) (t -) (t-s)dsdt
 > 0,

 where the last step follows from the logarithmic concavity. Thus, by the Gerschgorin

 theorem, the spectral radius of the Jacobian is less than 1 and we have the local
 convergence of the Lloyd iteration.

 PROPOSITION 6.4. Assume that p(x) is a smooth density function that is strictly
 positive and strictly logarithmically concave on Q. Then, the Lloyd map T is a local
 contraction map near its fixed points. Consequently, the Lloyd iteration is locally

 convergent.
 From the proof, we see that the essential requirement on the density function is

 to have

 (p'(s) p(t) - p'(t) p(s)) (t - s) > 0

 for any (t, s) except for a set of measure zero.

 As a consequence of Propositions 6.3 and 6.4, we also have the local convexity of
 the energy.

 PROPOSITION 6.5. Under the assumptions on p of Proposition 6.4, the energy
 functional g is locally strictly convex near any stationary point.

 6.4. Other Results in One Dimension.

 6.4.1. Equal Partition of Energy. We consider the unit interval with constant
 density p(x) = 1. Then, for given k, the optimal centroids with k intervals are given
 by xi = (2i - 1)/2k, i -1, ... , k. A simple calculation shows that

 fIx-_IX2dx= 13 Vi,

 i.e., the energy is equally partitioned over the k Voronoi regions. One naturally asks
 whether the centroidal Voronoi diagram for general densities shares the equal partition
 of energy property. The answer is negative in general. For example, let the density
 function be given by p(x) = x and k = 2. Then the two centroidal Voronoi regions
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 are given by (0, z) and (z, 1), where z = (5 - 1)/2, and the centers of mass are

 given by 2z/3 and 4z/3, respectively. The values of energy on each region are given

 by (7 - 3 5)/72 and (83 - 37 5)/72.

 An interesting question is related to the distribution of the energy (also referred to

 as the cost or variance or distortion error, etc., in some contexts) when the number of

 generators gets large. Let hi = ?Vil. Under the condition that the density is bounded
 and strictly positive, we have h = maxhi - 0 as k, the number of generators, goes
 to infinity. Then, from

 Xp(x)(x - xi)dx = O Vli,
 Vi~ ~ ~ ~~i

 we get the asymptotic form of the energy in each region as

 p(X)(X _ X,)2dx p(x)(x - xi)(x - mi)dx

 Vi~~~~~~~~~~~~ ViVi
 12 ~j- W2[(mi) + p'(mi)(mi - xi)] hi3 + O(h?5) Vi,

 where mi is the midpoint of the interval Vi. On the other hand, using Taylor expan-
 sions, we obtain

 p(x)(x - xi)dx = p(mi)(mi - xi)hi + -p'(nmi)h3
 1 p

 +-Ip"(mi)(mi - xi)h3 + O(h 5) Vi.
 24

 Since mi -xi = (hi+, - hi)/4, we then obtain

 hi+,-hi P'(mi)
 hi2 3p(mti)

 From this, we obtain that the energy in each region is approximately given by

 -p(m)hh3 Vi.
 12

 Furthermore, assuming that the mesh sizes hi are of the form

 hi g,-9(Mi) T Vi,'

 where g is a smoothly varying function and T is a small parameter, yields that

 g(mi+,) -g(Tni) p/(Tni)
 Tg(mi)2 3p(rni)

 On the other hand,

 mi 1-m = -h'+,I + hi1= g (Tni+ 1 ) + g (Tni) m i + I+h - (m?1 +g(j) Tg(mj),
 m~~?i - 2 2

 so that

 p'(mi) g(mTi+) - g(mi)
 3p(mi) Tg(mi)2

 g(mi+i) - g(mi) 1
 mi+ - mi g(mi)

 g'(mi)
 g(mj)
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 We see that this is satisfied by g(mi) cp-1/3(mi) for some constant c, i.e.,

 CT

 V lp1/3 (mj)

 Substituting into the asymptotic expression for the energy, we obtain

 p(x)(x - xi)2dx 1-_-(ih31_ Vi. 12 12

 These two properties are the deterministic analog of the results in [63] for the proba-
 bilistic k-means clustering that we discussed in the previous section; i.e., under some

 assumptions on the density function, asymptotically speaking, the energy is equally

 distributed in the Voronoi intervals and the sizes of the Voronoi intervals are inversely
 proportional to the one-third power of the underlying density at the midpoints of the

 intervals. In [14], an important conjecture is made which states that asymptotically,
 for the optimal centroidal Voronoi tessellation, all Voronoi regions are approximately
 congruent to the same basic cell that depends only on the dimension. The basic

 cell is shown to be the regular hexagon in two dimensions [44], but the conjecture re-
 mains open for three and higher dimensions. The equidistribution of energy principle,
 however, can be established based on Gersho's conjecture [14, 17].

 6.4.2. Linear Convergence Rate of Lloyd's Method. We again consider the unit

 interval with constant density p(x) = 1 and k points so that the optimal centroids

 are given by xi = (2i - 1)/2k, i = 1, ... , k. Let x' 0 and x+ = 1. Then, Lloyd's

 method is simply given by the iteration x`+1 = (x- + 2xn + x ) /4 for i =1 ... k.
 Therefore, the error el - x- (2i - 1)/2k satisfies e`+1 - Tke", where

 1/4 1/4 0 0... ... 0
 1/4 1/2 1/4.0 0 0
 0 1/4 1/2.0 0 0

 Tk= . . ...

 0 0 0. 1/2 1/4 0

 0 0 0 .1/4 1/2 1/4

 0 0 0 0 O 1/4 1/4

 Let Tk = TkA + diag(1/4, 0, 0, ... , 0, 0, 1/4); then, we have that ITk 11 < IITk=

 Cos2 2(7k1) and also that |ITk|1 > ?ITk-211 = cos2 2(k1) so that
 2(k+ ) a 2(k2-1) 7

 sin2 < 1- ITk < sin2
 2(k +1) -- 2 (k-1

 Thus, for large k,

 1 - ITkll 4k2

 This shows that Lloyd's method converges linearly.

 If, in (5.1), we instead let c?] = 1 and B(n) - M(G(Z(n)))-1, then the iteration
 matrix becomes 2Tk - I. For large k we have that
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 Fig. 7.1 Two-dimensional Voronoi diagrams for a constant density functihon in [-, 1]2; left: Monte
 Carlo simulation; right: centroidal diagrams; top: 64 generators; bottom: 256 generators.

 so that, for large k, the convergence will be twice as fast as that for Lloyd's method.
 This situation is similar to overrelaxation. Of course, given the largest aind the smallest

 eigenvalues Afmax and Amid of Tk, the optimal parameter to is determined from

 1 + ae(Amax ap) -1 - a (Amin - 1),i

 2

 &lopt 2 - Amax - Amin'

 which implies a conivergence rate on roughly the same order as that for the choice
 a 2.

 7. Numerical Experiments. We now illustrate centroidal Voronoi tessellations
 of a square; we compare them with Monte Carlo-based Voronoi tessellations and also
 show the effects of different density functions. For the centroidal Voronloi tessellations,
 we start from the Voronoi diagrams corresponding to a Monte Carlo distribution of
 genierators and then a-pply the Lloyd algorithm to find centroidal Voronoi diagrams.
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 Fig. 7.2 Perturbation (top center) of a utniform square Voronoi diagram (top left) with 64 generators
 leads to a hexagonal-like lattice (bottom right) with Lloyd's iteration. The pictutres are
 generated at iteration n 6mbers 0 15 30 60, and 120.

 In Figure 7.1, results for a constant density function are given. The top two images

 are for 64 generators, the bottom two for 256 generators. For the left pair, the genera-

 tors of the Voronoi tessellation are distributed randomly with uniform probability; for

 the right pair, the generators are those for centroidal Voronoi tessellations. The mluch
 greater uniformity of the centroidal Voronoi tessellation is obvious. It should be noted

 that the working precision of our implementation might affect the final appearances

 of the images and prevent them from attaining the diagram with absolute minimum

 energy. Of course, for 64 and 256 generators in a square, there exist other obvious

 centroidal Voronoi tessellations, e.g., those of 8 x 8 and 16 x 16, respectively, uniformu
 square lattices. (There are many other possible solutions; for examlple, for 64 gener-
 ators, we also have arrangements of 64 x 1, or 32 x 2, or 16 x 4 rectangles.) We have

 the following comparisons of the values of the energy. For 64 generators, the energy

 for the computed centroidal Voronoi diagram of Figure 7.1 is approximately equal to

 0.0411, while with 256 generators, that energy is approximately equal to 0.0102. For

 a centroidal Voronoi diagram with k generators corresponding to a uniform square
 lattice, the energy is 8/(3k). Thus, for k= 64, the energy is approxiately 0.041666,

 while for k =r256, the energy is approximately 0.0104166. Both values are larger
 than those corresponding to the computed centroidal Voronoi diagrams. Asymptot-
 ically, the centroidal Voronoi diagrams should approach a uniform hexagonal lattice
 with an energy on the order of 407(9 3k) [14, 441. The uniform square lattice is
 unstable under small perturbations. Figure 7.2 shows the evolution fiom a slight per-
 turbation (top center) of the uniform square lattice (top left) with 64 generators to

 a hexagon-like Voronoi diagram (bottom right) using Lloyd's method. The diagrams
 are recorded at iterations 0 (the initial perturbed configuration, top center), 15 (top
 right), 30 (bottom left), 60 (bottom center), and 120 (the final configuration, bottom
 right) .
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 Fig. 7.3 Two-dimensional Voronoi diagrams for the density function eX'2_Y 2 in [-1, 1]2; left:
 Monte Carlo simulation; right: centroidal diagrams; top: 64 generators; bottom: 256 gen-
 erators.

 In Figures 7.3-7.6 and Figure 7.8, we repeat the images of Figure 7.1 for
 nonconstant density functions. Figure 7.3 is for the density function ex 2Y . Since
 the density variation is relatively small (with a maximum of 1 and a minimum of

 I/e2), we see little change from the results of Figure 7.1. The density function for
 Figure 7.4 exhibits much greater variation, ranging from 1 to 1/e20. We now see
 considerable change from the images of Figure 7.1. For both the Monte Carlo and the

 centroidal Voronoi examples, the generators are now clustered near the center of the
 images, i.e., near the peak of the density function. However, the clustering is much

 more pronounced for the Monte Carlo simulation.

 For Figures 7.5 and 7.6, we choose density functions that have a large peak in

 the middle of the square but that also vary, with small amplitude, away from the
 peak. We again see that the generators determined through random selection tend to
 cluster near the peak more than the centroidal Voronoi generators. This is especially

 pronounced in Figure 7.6, where the relative height and sharpness of the peak are

 more pronounced. This feature of centroidal Voronoi tessellations has important con-
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 Fig. 7.4 Two-dimensional Voronoi diagrams for the density function e lx iy zn[-,1;let
 Monte Carlo simulation; right: centroidal diagrams; top: 64 generators; bottom: 256 gen-
 erators.

 sequences in applications. For example, let us return to the image processing setting.
 Suppose we have an image that has large areas covered by very few nearby colors;
 for example, we could have a portrait with a uniformly or nearly uniformly colored
 background. In color space, the density function would then have large peaks located
 at the few colors of the background. A random selection of the reduced color set used
 to approximate the picture would naturally result in many of these being at the peaks

 of the density function. However, this is not necessary to obtain a good approximate
 picture; for example, if the background consisted of only one color, it would take only
 one color to reproduce the whole background. On the other hand, using a centroidal

 Voronoi tessellation for the reduced color set results in less clustering of that set near
 the peaks and allows for more colors to be available for approximating the rest of the
 picture where interesting things are happening.

 As an example of such a situation, consider the image in the top left of Figure 7.7.
 Here, we have placed the original image of Figure 2.1 (which potentially contains 256
 shades of gray) in the corner of a larger image, the rest of which is made up of only
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 Fig. 7.5 Two-dimensional Voronoi diagrams for the density function 6-20x 220y 2 + 0.05
 sin 2 (7rx) sin2 (7ry) in [-1, 1]2; left: Monte Carlo simulation;- right: centroidal diagrams;
 top: 64 generators; bottom: 256 generators.

 8 contiguous shades. The 256 shades are represented by the integers k =,..., 255;
 the 8 shades of the background are 126 through 133. The density function for the

 256 shades of gray is given in the graph in the top right of Figure 7.7. In this density

 function, the interesting part of the picture is found mostly in the regions of small

 density. It is not surprising, given this density function, that a random selection of 8
 shades results in an approximating set consisting of the 7 shades in the peak of the
 density function, i.e., shades 126-129 and 131-133, and 1 shade, 50, outside the peak.

 (Actually, we might expect that perhaps all 8 shades selected at random are in the
 peak, but we reject repeated selections; i.e., if a shade has been selected before, then
 we select again until we find a shade that has not been selected previously. In this

 sense, the M4onte Carlo selection we report on here is a "best-case scenario" for that
 process.) The bottom-left image in Figure 7.7 is that of the Monte Carlo-approximate
 picture. Clearly, we do not obtain a good approximate picture. The centroidal Voronoi

 selection for the 8 approximating colors includes only 2 of the 8 shades in the peak

 of the density function; 6 other shades are available for approximating the interesting
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 Fig. 7.6 Two-di'mensi'onal Voronoi' diagrams for the density functi'on e-40x 2 40y + 0.001
 sin 2 (irX) sin 2 (ry) i'n [-1, 112; left: Monte Carlo simulatlion; right: centroidal di'agrams;
 top: 64 generators; bottom: 256 generators.

 part of the picture. (The precise centroidal Voronoi shades are 49, 76, 101, 127, 132,
 154, 177, and 205.) The bottom-right image in Figure 7.7 is that of the centroidal
 Voronoi approximate picture. Clearly, the centroidal Voronoi generators do a much
 better job. The reason for their superiority becomes clear once one examines the

 energy (2.1), i.e.,

 8

 E((Zi, Vi), i =1... )8)= o( P(Y)Iyj- zil1
 i=l yjCVi

 where the zi's denote the 8 approximating shades of gray, the Vi's denote their corre-
 sponding Voronoi intervals, and the yj's are the 256 shades used in the original image.

 To make the energy small, we need yj - zi to be small whenever p(y3) is large. How-
 ever, if too many of the z.'s are in the peak of the density function, then there may
 be relatively large contributions to the energy at points where p(yj) is small, since

 then Yj - zi may be large. The centroidal Voronoi choice for the zi's is optimal with
 respect to the minimization of the energy and, as we have seen, the best choice is for
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 Fig. 7.7 Top left: an 8-bit image embedded in a nearly uniform background. Top right: the gray scale
 density function for the image in the top left. Bottom left: the Monte Carlo compressed
 3-bit image. Bottom right: the centroidal Voronoi compressed 3-bit image.

 two of the zi's to be within the peak and for the other six to be distributed among
 those points at which the density is small.

 The final figure is for a smoothly varying d'ensity having a maximum at a corner of
 the image; see Figure 7.8. Many of the features of the previous examples also appear
 in this figure. In particular, note that, in general, generators chosen according to a
 centroidal Voronoi tessellation result in much more uniform and symmetric tessella-
 tions which, at least to these authors, are more pleasing to the eye and which, as we
 have seen, are also more useful.

 8. Conclusions. There are numerous analytical and computational issues con-
 nected with centroidal Voronoi tessellations that warrant further examination. Among
 these are the following: How can Lloyd's method be modified so that it has an accel-
 erated convergence rate? Can it be proved, for a constant density function, that the
 optimal quantizer is given asymptotically by a uniform lattice in higher dimensional
 space? How can we find the centroidal Voronoi tessellations corresponding to the
 global minimum while avoiding local minima? What do centroidal Voronoi solutions
 in non-Euclidean metrics look like and how can they be efficiently computed? What
 is the complexity of the local optimal quantizer problem? In this last regard, it was
 shown in [13] that a simple case of the general local optimal quantizer problem is NP-
 complete. Thus, the general problem of communication theory, in its combinatorial
 forms, has at least that complexity.
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 Fig. 7.8 Two-dimensional Vorontoi diagrams for the density function e-2x-2y in [-1, 1]2; left:
 Monte Carlo simulation; right: cenitroidal diagrams; top: 64 generators; bottom: 256 gen-
 erators.

 Grid generation for the numerical solution of partial differential equations is an-
 other potentially important application of centroidal Voronoi tessellations. Indeed,

 a Lloyd-like iteration is already in use in existing adaptive grid generation methods;

 see [9] and [41]. In these methods, a functional such as (2.1) is defined where the
 density function depends, e.g., on first or second derivatives or differences of a com-

 puted solution. The new position of the grid points is determined by minimizing the

 functional over all posible locations of the points zi. However, the associated domains
 Vi are not allowed to be defined independently of the points zi. Rather, Vi is chosen
 to be the patch consisting of all grid elements containing the point zi. For example,
 in a logically Cartesian grid in two dimensions, Vi consists of the four quadrilateral
 grid elements for which zi is a vertex. The minimizer of the functional is found by a
 Lloyd-like iteration in which one finds new positions for the grid points by locating

 the centroids of the volumes Vi of the current grid. Allowing the volumes Vi to par-
 ticipate in the minimization process, i.e., defining grids based on centroidal Voronoi

 tessellations, may offer a better alternative, at least in the unstructured grid context.

 In particular, it would be interesting to see if centroidal Voronoi-based grid genera-
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 tion can be used to avoid problems such as grid crossovers and slivers that occur in

 other grid generation methods.

 Acknowledgments. The authors thank the editors and the reviewers of the paper

 for their suggestions and comments, which have resulted in a substantial improvement.
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