Discrete Cosine Transformation (DCT)

By:

Amirhessam Tahmassebi Dept. of Scientific Computing Florida State University October 2015

What is image compression?

- The objective of image compression is to reduce irrelevant and redundant in data in order to be able store or transmit data in an efficient form.
- There are two types of image compression:
 - Lossless
 - Lossy

Types of image compression:

• Lossless:

Lossless image compression is a compression algorithm that allows the original image to be perfectly reconstructed from the compressed data.

• Lossy:

Lossy compression is a type of compression where a certain amount of information is discarded which means that some data are lost and hence the image cannot be decompressed with 100% originality.

• A discrete cosine transformation (DCT) expresses a finite sequence of data points into the summation of a series of cosine waves oscillating at different frequencies.

- The use of cosine functions is critical for compression because:
 - Rather than sine functions, fewer cosine functions are needed to approximate a typical signal.
 - For differential equations the cosines express a particular choice of boundary conditions.

They are very similar to Fourier Transformations, but:

• Discrete Fourier Transform (DFT): Uses of Complex Numbers

Formal Definitions:

- DCT is a linear, invertible function with a set of real numbers or equivalently an invertible $N \times N$ square matrix.
- There are eight standard DCT variants, of which four are common.

• DCT-I
$$X_k = \frac{1}{2}(x_0 + (-1)^k x_{N-1}) + \sum_{n=1}^{N-2} x_n \cos\left[\frac{\pi}{N-1}nk\right] \qquad k = 0, \dots, N-1.$$

• DCT-II
$$X_k = \sum_{n=0}^{N-1} x_n \cos\left[\frac{\pi}{N}\left(n+\frac{1}{2}\right)k\right] \quad k = 0, \dots, N-1.$$

• DCT-III
$$X_k = \frac{1}{2}x_0 + \sum_{n=1}^{N-1} x_n \cos\left[\frac{\pi}{N}n\left(k+\frac{1}{2}\right)\right] \quad k = 0, \dots, N-1.$$

• DCT-IV
$$X_k = \sum_{n=0}^{N-1} x_n \cos\left[\frac{\pi}{N}\left(n+\frac{1}{2}\right)\left(k+\frac{1}{2}\right)\right] \qquad k = 0, \dots, N-1.$$

Applications

- DCTs are widely used in image and audio compression such as JPEG , MP3, MJPEG, MPEG, DV, Daala.
- They use lossy compression which is the class of data coding methods that uses inexact approximations or partial data discarding to represent the content.
- These techniques are used to reduce data size for storage, handling, and transmitting content in information technology.
- In other words small high-frequency components can be discarded.

One Dimensional Example

72 70 65 65 66 68 72 75 80 84 84 89

74 3 -10

72 70 65 65 66 68 72 75 80 84 84 89 or 74 3 -10 75% less storage

space! 4 times faster!

JPEG (Joint Photographic Experts Group)

- According to JFIF Standard, the encoding steps are:
 - i. The representation of the colors in the image is converted from RGB to $Y'C_BC_{R.}$
 - ii. The resolution of the Chroma data is reduced, usually by a factor of 2 or 3.
 - iii. The image is split into blocks of 8×8 pixels, and for each block, each of the Y, C_B, and C_R data undergoes the Discrete Cosine Transform (DCT).
 - iv. The amplitudes of the frequency components are quantized.
 - v. The resulting data for all 8×8 blocks is further compressed with a lossless algorithm.

Two Dimensional Example

Γ5	2	55	61	66	70	61	64	73	-76	-73	-67	-62	-58	-67	-64	-55]
6	3	59	55	90	109	85	69	72	-65	-69	-73	-38	-19	-43	-59	-56
6	2	59	68	113	144	104	66	73	-66	-69	-60	-15	16	-24	-62	-55
6	3	58	71	122	154	106	70	69	-65	-70	-57	-6	26	-22	-58	-59
6	7	61	68	104	126	88	68	70	-61	-67	-60	-24	-2	-40	-60	-58
7	9	65	60	70	77	68	58	75	-49	-63	-68	-58	-51	-60	-70	-53
8	5	71	64	59	55	61	65	83	-43	-57	-64	-69	-73	-67	-63	-45
8	7	79	69	68	65	76	78	94		-49	-59	-60	-63	-52	-50	-34

Unquantized DCT Coefficients

$$G_{u,v} = \frac{1}{4} \alpha(u) \alpha(v) \sum_{x=0}^{7} \sum_{y=0}^{7} g_{x,y} \cos \left[\frac{(2x+1)u\pi}{16} \right] \cos \left[\frac{(2y+1)v\pi}{16} \right]$$
$$\overset{u}{\rightarrow}$$
$$G = \begin{bmatrix} -415.38 & -30.19 & -61.20 & 27.24 & 56.12 & -20.10 & -2.39 & 0.46 \\ 4.47 & -21.86 & -60.76 & 10.25 & 13.15 & -7.09 & -8.54 & 4.88 \\ -46.83 & 7.37 & 77.13 & -24.56 & -28.91 & 9.93 & 5.42 & -5.65 \\ -48.53 & 12.07 & 34.10 & -14.76 & -10.24 & 6.30 & 1.83 & 1.95 \\ 12.12 & -6.55 & -13.20 & -3.95 & -1.87 & 1.75 & -2.79 & 3.14 \\ -7.73 & 2.91 & 2.38 & -5.94 & -2.38 & 0.94 & 4.30 & 1.85 \\ -1.03 & 0.18 & 0.42 & -2.42 & -0.88 & -3.02 & 4.12 & -0.66 \\ -0.17 & 0.14 & -1.07 & -4.19 & -1.17 & -0.10 & 0.50 & 1.68 \end{bmatrix}$$

Quantization Matrix

	[16	11	10	16	24	40	51	61	
	12	12	14	19	26	58	60	55	
	14	13	16	24	40	57	69	56	
0	14	17	22	29	51	87	80	62	
Q =	18	22	37	56	68	109	103	77	•
	24	35	55	64	81	104	113	92	
	49	64	78	87	103	121	120	101	
	72	92	95	98	112	100	$51 \\ 60 \\ 69 \\ 80 \\ 103 \\ 113 \\ 120 \\ 103$	99	

Quantized DCT Coefficients

$$B_{j,k} = \text{round}\left(\frac{G_{j,k}}{Q_{j,k}}\right) \text{ for } j = 0, 1, 2, \dots, 7; k = 0, 1, 2, \dots, 7$$

round
$$\left(\frac{-415.37}{16}\right) = \text{round}(-25.96) = -26.$$

Entropy Coding

-26							
-3	0						
-3	-2	-6					
2	-4	1	-3				
1	1	5	1	2			
-1	1	-1	2	0	0		
0	0	0	-1	-1	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0		
0	0	0	0	0			
0	0	0	0				
0	0	0					
0	0						
0							

Appendix

2-D Discrete Fourier Transform (DFT)

2-D DFT of an N×N image {u(m, n) } is a separable transform defined as:

$$v(k,l) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} u(m,n) W_N^{km} W_N^{ln}, \quad 0 \le k, l \le N-1$$
$$W_N \equiv \exp\left\{\frac{-j2\pi}{N}\right\}$$

The 2-D DFT inverse transform is given as:

$$v(k,l) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} u(m,n) W_N^{km} W_N^{ln}, \quad 0 \le k, l \le N-1$$

• In matrix notation: V = FUF and $U = F^*VF^*$

Properties of 2-D DFT

[The N²×N² matrix **F** represents the N×N 2-D unitary DFT]

Symmetric and unitary

 $\mathcal{F}^{\mathsf{T}} = \mathcal{F}$ and $\mathcal{F}^{-1} = \mathcal{F}^{*}$

Periodic extensions

 $v(k + N, l + N) = v(k, l) \qquad \forall k, l$ $u(m + N, n+N) = u(m, n) \qquad \forall m, n$

Sampled Fourier spectrum

If $\overline{u}(m,n) = u(m,n)$, $0 \le m, n \le N-1$, and $\overline{u}(m,n) = 0$ otherwise, then:

$$\tilde{U}\left(\frac{2\pi k}{N},\frac{2\pi l}{N}\right) = DFT\left\{u(m,n)\right\} = v(k,lx)$$

where $\tilde{U}(\omega_1, \omega_2)$ is the Fourier transform of $\overline{u}(m, n)$

Fast transform

Since 2-D DFT is separable, it is equivalent to 2N 1-D unitary DFTs, each of which can be performed in $O(N \log_2 N)$ via the FFT. Hence the total number of operations is $O(N^2 \log_2 N)$.

Properties of 2-D DFT

Conjugate symmetry

$$v\left(\frac{N}{2}\pm k, \frac{N}{2}\pm l\right) = v*\left(\frac{N}{2}\mp k, \frac{N}{2}\mp l\right), \quad 0 \le k, l \le \frac{N}{2} - 1$$

or $v(k, l) = v*(N-k, N-l), \quad 0 \le k, l \le N-1$

Basis Images

The basis images are given by definition:

$$\mathbf{A}_{k,l}^{*} = \Phi_{k} \Phi_{l}^{T} = \frac{1}{N} \left\{ W_{N}^{-(km+\ln)}, \ 0 \le m, n \le N-1 \right\}, \ 0 \le k, l \le N-1$$

2-D circular convolution theorem

The DFT of the 2-D circular convolution of two arrays is the product of their DFTs:

 $DFT{h(m, n) \otimes u(m, n)} = DFT{h(m, n)}.DFT{u(m, n)}$

Examples of DFT

Log(magnitude of DFT coeff)

Discrete Cosine Transform (DCT)

• The N×N DCT matrix $\mathbf{C} = \{c(k, n)\}$, is defined as

$$c(k,n) = \begin{cases} \frac{1}{\sqrt{N}}, & k = 0, \ 0 \le n \le N-1 \\ \sqrt{\frac{2}{N}} \cos \frac{\pi(2n+1)k}{2N}, & 1 \le k \le N-1, \ 0 \le n \le N-1 \end{cases}$$

- Properties of DCT:
 - 1. Real and orthogonal
 - 2. $\mathbf{C} = \mathbf{C}^* \Longrightarrow \mathbf{C}^{-1} = \mathbf{C}^T$
 - 3. Not the real part of the unitary DFT
 - 4. Fast transform
 - 5. Excellent energy compaction.
 - The basis vector of the DCT (rows of C) are eigen-vectors of symmetric traditional matrix Q,
 - DCT is very close to the KL (Karhunen-Loeve) transform of a firstorder stationary Markov sequence.

$$\mathbf{Q}_r = \begin{bmatrix} 1-\alpha & -\alpha & 0 & \mathbf{0} \\ -\alpha & 1 \\ 0 & 1 & -\alpha \\ \mathbf{0} & -\alpha & 1-\alpha \end{bmatrix}$$

Discrete Cosine Transform (DCT)

• The N×N DCT matrix $\mathbf{C} = \{c(k, n)\}$, is defined as

$$c(k,n) = \begin{cases} \frac{1}{\sqrt{N}}, & k = 0, \ 0 \le n \le N - 1\\ \sqrt{\frac{2}{N}} \cos \frac{\pi (2n+1)k}{2N}, & 1 \le k \le N - 1, \ 0 \le n \le N - 1 \end{cases}$$

- Properties of DCT:
 - 1. Real and orthogonal
 - $2. \quad \mathbf{C} = \mathbf{C}^* \Longrightarrow \mathbf{C}^{-1} = \mathbf{C}^{\mathsf{T}}$
 - 3. Not the real part of the unitary DFT
 - 4. Fast transform
 - 5. Excellent energy compaction.
 - The basis vector of the DCT (rows of C) are eigen-vectors of symmetric traditional matrix Q_r
 - DCT is very close to the KL (Karhunen-Loeve) transform of a firstorder stationary Markov sequence.

Example of DCT

