
Top Ten Algorithms Class 6

John Burkardt
Department of Scientific Computing

Florida State University
..........

http://people.sc.fsu.edu/∼jburkardt/classes/tta 2015/class06.pdf

05 October 2015

1 / 24

Our Current Algorithm List

1 Bernoulli number calculation
2 Bootstrap algorithm
3 Data stream: most common item
4 Euclid’s greatest common factor algorithm
5 Monte Carlo Sampling
6 PageRank algorithm for ranking web pages
7 Pancake flipping algorithm for genome relations
8 Path counting with the adjacency matrix
9 Power method for eigenvector problems
10 Probability evolution with the transition matrix
11 Prototein model of protein folding
12 Search engine indexing
13 Trees for computational biology

2 / 24

Feifei Xu: UPC and QR Codes

Nick Berry, “Wounded QR codes”, DataGenetics blog, Nov 2013.

UPC and QR codes must store and deliver information despite
physical damage, low light, bad angles, viewer motion.

How does a UPC (Uniform Price Code) work?

Why are QR codes better than UPC’s?

How does a QR code store information?

What is an error correction code?

Can codes handle bad light, bad angle, missing bits?
3 / 24

Error Detection

A computer has three tasks:

1 compute data;
2 store data;
3 transmit and receive data.

We need to worry about items 2 and 3!

The original ASCII code for storing characters allowed 7 bits for
data, plus an 8-th parity bit.

Character Decimal 7 bits Parity bit
@ 64 1000000 1
A 65 1000001 0
B 66 1000010 0
C 67 1000011 1
D 68 1000100 0

Computer memory also included parity bits.
4 / 24

Error Detection

Parity bits are a simple response to errors. In this case, if a
single bit changed in the word, the sum of the bits becomes odd,
and the error has been detected.

Of course, this system only catches single bit errors, and can’t tell
us how to correct the error.

We will see various ways of dealing with the existence of error,
depending on what kinds of errors are typical, how badly we want
to avoid them, and how much overhead we are willing to pay.

5 / 24

Repetition

Suppose we are transmitting a bank balance over a noisy line.
Just like when talking in a noisy room, we can ask that the
message be repeated. Even if the message is never transmitted
exactly correctly, we can probably retrieve it:

#1: $ 5, 2 7 8, 5 2 3. 3 4
#2: $ 2, 3 6 8, 5 2 3. 7 9
#3: $ 5, 3 7 8, 5 8 3. 7 6
#4: $ 9, 9 7 6, 4 2 1. 3 1
#5: $ 5, 3 0 8, 5 9 4. 3 4

Most: $ 5, 3 7 8, 5 2 3. 3 4

Notice that the final “4” occurs most often, but is not the majority
value! But the noiser the line, the more repetitions we will need.
The longer the message, the more repetitions we will need.

6 / 24

Checksum

For our numerical example, an error that changes one digit to
another is undetectable. Assuming that errors aren’t all that
common, it would be nice to force simple errors to stick out. A
simple method is to append an extra chunk of data as an error
detector, called a checksum.

Suppose we are transmitting a string of numbers:

4 6 7 5 6

Sum these numbers (28), use the remainder mod 10 (8) as a tag:

4 6 7 5 6 3 Rejected
4 5 7 5 6 8 Rejected
4 6 7 5 6 8 Accepted (correctly)
2 6 7 6 6 6 Accepted (incorrect, but 2 errors)

7 / 24

Checksum

Taking the remainder base 10 of the digits in a string is an
example of a checksum or hash value.

This can be regarded as a function f (text) = checksum whose goal
is to produce a short, easily examined value that serves as a
signature or quality label or verification. For the remainder
function, if any single digit is changed, the discrepancy will be
visible.

However, a more sophisticated checksum would be useful, because
the second most common error, made by humans, is to transpose
two digits. Such an error will not be detected by a checksum of
the remainder of the sum.

8 / 24

Checksum Examples

UPC: Uniform Product Code, 12 digits, digit 12 is the checksum.

3d1+d2+3d3+d4+3d5+d6+3d7+d8+3d9+d10+3d11+d12 = 0 mod (10)

1-23456-78999-9
6-39382-00039-3
0-80047-44069-4

9 / 24

Compute UPC Check Digit

1 s = ’ 12345678901 ’ <−− i n comp l e t e s t r i n g
2 %
3 % Turn c h a r a c t e r s i n t o d i g i t s .
4 %
5 f o r i = 1 : 11
6 dvec (i) = str2num (s (i))
7 end
8 %
9 % Compute sum .

10 %
11 dsum = sum (dvec (1 : 2 : 1 1)) ∗ 3 + sum (dvec (2 : 2 : 1 0)) ;
12 %
13 % Mod .
14 %
15 dsum = mod (dsum , 10) ;
16 %
17 % C + DSUM = 0 , mod 10
18 %
19 c = mod (10 − dsum , 10) ;
20 %
21 % Append C to s t r i n g
22 %
23 s = [s , num2str (c)] ;

Listing 1: UPC Check Digit in MATLAB

10 / 24

Checksum Examples

ISBN: International Standard Book Number, 10 digits, last is the
checksum, and can have the value ’X’ meaning 10:

10d1+9d2+8d3+7d4+6d5+5d6+4d7+3d8+2d9+1d10 = 0 mod (11)

0-691-15819-8
0-387-94677-2
0-898-71317-X
2-1234-5680-2

11 / 24

Checksum Examples

Luhn/IBM, any number of digits. Used on credit cards.

2#d1 +d2 +2#d3 +d4 +2#d5 +d6 +2#d7 +d8 +... = 0 mod (10)

Here, 2#d1 means compute 2 ∗ d1 and sum the digits.

799-273-9871-3
499-273-9871-6
123-456-781-234-567-0

12 / 24

Checksum Examples

US Bank Routing Numbers: 9 digits, last digit is checksum.

3d1 + 7d2 + d3 + 3d4 + 7d5 + d6 + 3d7 + 7d8 + d9 = 0 mod (10)

323-371-076

13 / 24

Redundancy

One of the problems with our data is that any change in the
data creates new data that looks just as legitimate as the original.
But suppose our message literally spelled out the bank balance?

Sent: fice threm s.ven ei#7t give two ttree thxxe foux
Assumed:five three seven eight five two three three four

It takes more than a single error to turn a “five” into a “four”, so
the original message is still recognizable, even after most of the
words in it have been hit with one or two errors.

Redundancy, which is cheaper than repetition, means adding
something extra to a message that makes it more resilient.

In fact, we were not only able to detect errors in this single copy of
the message, but also to correct them.

14 / 24

Redundancy Example

If 12345 is our message, the “distance” to 22345, or 12845 is
just 1 - a single error gives a valid, but erroneous, message.

What if we space our valid numbers, so if one digit is altered, we
can correct it because there’s only one valid answer nearby?

If hexagon centers are our data, and an error moves us one node
away, this arrangement corrects 1 bit errors and detects 2 bit errors.

15 / 24

Hamming Codes

This is the idea behind Hamming codes.

Suppose we want to transmit words of 4 bits (binary 0000 to
1111). The Hamming (7,4) code transforms each word w into a 7
bit word x , which is then transmitted. The receiver gets a 7 bit
value y (which might be x , or maybe x with one bit damaged.)
recovers a value z , which we hope is equal to w !

w -----> x ---------> y ------> z
code transmit decode

The transformation from data word to code word is accomplished
by a 7x4 matrix G , so that

x = G ∗ w(mod 2)

16 / 24

Hamming Codes

The matrix G has the form:

1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

and a typical transformation x = G ∗ w would be:

1 1 0 1 0 2 0
1 0 1 1 1 1 1
1 0 0 0 0 0 0
0 1 1 1 * 1 = 2 = 0
0 1 0 0 1 1
0 0 1 0 0 0
0 0 0 1 1 1

17 / 24

Hamming Codes - Error Detection and Correction

The matrix H has the form:

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

Our word w = (0,1,0,1) became codeword x = (0,1,0,0,1,0,1) and
was received as y . Compute H ∗ y to detect errors:

H * (0,1,0,0,1,0,1) (mod 2) = (0,0,0)
H * (1,1,0,0,1,0,1) (mod 2) = (1,0,0) (bit #1 is wrong!)
H * (0,0,0,0,1,0,1) (mod 2) = (0,1,0) (bit #2 is wrong!)
H * (0,1,1,0,1,0,1) (mod 2) = (1,1,0) (bit #3 is wrong!)
...
H * (0,1,0,0,1,0,0) (mod 2) = (1,1,1) (bit #7 is wrong!)

18 / 24

Hamming Codes - Convert Corrected Codeword to Data

The matrix R has the form:

0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

Our codeword y has been corrected, but it contains 7 bits. We can
recover the original 4 bit codeword by z = R ∗ y :

R * (0,1,0,0,1,0,1) (mod 2) = (0,1,0,1)

...or you can just notice that, for this code, the data is in columns
3, 5, 6 and 7.

19 / 24

Hamming Codes

0: (0 0 0 0) --> (0 0 0 0 0 0 0)
1: (0 0 0 1) --> (1 1 0 1 0 0 1)
2: (0 0 1 0) --> (0 1 0 1 0 1 0)
3: (0 0 1 1) --> (1 0 0 0 0 1 1)
4: (0 1 0 0) --> (1 0 0 1 1 0 0)
5: (0 1 0 1) --> (0 1 0 0 1 0 1)
6: (0 1 1 0) --> (1 1 0 0 1 1 0)
7: (0 1 1 1) --> (0 0 0 1 1 1 1)
8: (1 0 0 0) --> (1 1 1 0 0 0 0)
9: (1 0 0 1) --> (0 0 1 1 0 0 1)
10: (1 0 1 0) --> (1 0 1 1 0 1 0)
11: (1 0 1 1) --> (0 1 1 0 0 1 1)
12: (1 1 0 0) --> (0 1 1 1 1 0 0)
13: (1 1 0 1) --> (1 0 1 0 1 0 1)
14: (1 1 1 0) --> (0 0 1 0 1 1 0)
15: (1 1 1 1) --> (1 1 1 1 1 1 1) 20 / 24

Hamming Codes

Given two strings of n digits, the Hamming distance is the
number of digits that differ. The Hamming distance measures how
easily one data word can be corrupted into another.

Before, 0000 had a Hamming distance of 1 to the values 0001,
0010, 0100, 1000. Now, using the Hamming code, it is not
possible to alter (0000000) to another value without making at
least 3 changes. This increased distance is true for any pair of 7 bit
codewords.

Hamming codes can be created for data of any size, and as the
data size increases, the relative amount of overhead from parity
bits decreases. For instance, H(72,64) can handle 64 bits of data
with 8 parity bits.

21 / 24

Reed-Solomon Codes

Instead of Hamming codes, Reed-Solomon codes are used for
error correction in CDs, DVDs, QR codes and data transmission
protocols such as DSL and WiMAX.

The n bits of data (d1, d2, ..., dn) are used as polynomial
coefficients:

p(x) =
n∑

i=1

di ∗ x i−1

and the codeword is the sequence of polynomial values at n + q
points (with arithmetic carried out over a specific field).

We can afford to lose up q bits of the message...because the
polynomial can be reconstructed from its value at any n points.

We can also detect and correct up to q
2 bit errors.

22 / 24

Student Volunteer?

Several telecom companies are fighting for a contract to
maintain cellphone towers. One difficulty is that they must assign
a frequency to each tower, in such a way that nearby towers don’t
use the same one.

I have discovered such a scheme, and I want to offer it to the
highest bidder. Until I have all the bids, I don’t want to reveal my
scheme, otherwise any of the bidders can steal it. But the bidders
don’t want to bid unless they believe I really have a scheme that
works.

Is there a way to convince each bidder that I’ve got a scheme that
works, without revealing the actual scheme?

Reference: Matthew Green, Zero Knowledge Proofs,
http://blog.cryptographyengineering.com/2014/11/zero-
knowledge-proofs-illustrated-primer.html

23 / 24

Student Volunteer?

I am watching a radar screen that is updated every minute.

The radar screen is a 500x500 array of pixels which are OFF or ON.

The radar signal is noisy, so that each pixel has a chance of turning
on even though there’s nothing there.

I know there are two intruders somewhere on my screen. One is
not moving, and one is moving at a constant speed and direction.
After observing the screen for 30 minutes, can I detect the location
of either intruder?

Reference: Nick Berry, Detecting Targets in Noisy Radar Signals,
http://datagenetics.com/blog/may22014/index.html

24 / 24

