Top Ten Algorithms Class 2

John Burkardt Department of Scientific Computing Florida State University

 $http://people.sc.fsu.edu/{\sim}jburkardt/classes/tta_2015/class02.pdf$

31 August 2015

There will be no class on Monday, September 7th. It's the Labor Day Holiday.

- Bernoulli number calculation
- 2 Euclid's algorithm

Still lots of algorithms to choose from, including the list at: http://people.sc.fsu.edu/~jburkardt/classes/tta_2015/algorithms.html

Question From Last Week

The FSU libraries have 3,000,000 books.

How can I determine which books:

- contain the word **multipole**?
- contain the words multipole and n-body?
- contain the words multipole and n-body in proximity?
- are probably about multipole n-body problems?

Can these questions be answered:

- quickly?
- exactly?
- approximately?

What would be a good algorithm (a plan, to solve this problem) ...assuming I am an idiot...and don't speak English!

The World Wide Web:

- big, 30 trillion pages
- disorganized
- dynamic, (broken links, updated pages)

Task: report relevant web pages.

Acceptable approximation: report web pages containing key words

Puzzle: It can take several seconds to access a single page. How does a search engine return an answer in $\frac{1}{8}$ second? after checking every word in every page?

Obviously, this is impossible.

The Teeny Tiny Web only contains 3 web pages!

1	the cat sat on	2	the dog stood	3	the cat stood
	the mat		on the mat		while a dog sat

Algorithmic idea: to answer questions rapidly, create an index:

а	3		
cat	1	3	
dog	2	3	
mat	1	2	
on	1	2	
sat	1	3	
stood	2	3	
the	1	2	3
while	3		

Now I only have to access my index file to answer questions!

- I can answer the query dog;
- I can answer the query cat sat;
- But...I cannot answer the phrase query "cat sat";

My index only knows that cat and sat occur in documents 1 and 3. But it does not tell me whether they occur consecutively.

Algorithmic improvement:

Have the index also store the position of each word in the page!

1	the cat sat on <i>1 2 3 4</i> the mat <i>5 6</i>	2	the dog stor <i>1 2 3</i> on the mat <i>4 5 6</i>	od 3	the cat stood 1 2 3 while a dog sat 4 5 6 7
		cat dog mat on sat stood the	3-5 1-2 3-2 2-2 3-6 1-6 2-6 1-4 2-4 1-3 3-7 2-3 3-3 1-1 1-5 2-1 3-4	2-5 3-1	

Now we can answer the phrase query "cat sat"!

Algorithmic improvement:

For multiple key words, being close means more relevance.

If we enter malaria cause, the better page has these words closer:

1	By far the most common cause of malaria is being bitten by an infected mosquito, but there are also other ways to contract the	2	Our cause was not helped by the poor health of the troops, many of whom were suffering from malaria and other tropical
	disease.		diseases.

also	1-19		
 cause	1-6	2-2	
 malaria	1-8	2-19	

9/15

Algorithmic improvement:

Index the metawords as well, and use them for relevance.

1	<titlestart> my cat <titleend> <bodystart> the cat sat on the mat <bodyend></bodyend></bodystart></titleend></titlestart>	2	<titlestart> my dog <titleend> <bodystart> the dog stood on the mat <bodyend></bodyend></bodystart></titleend></titlestart>	<titlestart> my pets <titleend> <bodystart> the cat stood while a dog sat <bodyend></bodyend></bodystart></titleend></titlestart>
	cat sat on the		dog stood on the	

а	3-10
cat	1-3 1-7 3-7
dog	2-3 2-7 3-11
mat	1-11 2-11
my	1-2 2-2 3-2
on	1-9 2-9
pets	3-3
sat	1-8 3-12
stood	2-8 3-8
the	1-6 1-10 2-6 2-10 3-6
while	3-9
<bodyend></bodyend>	1-12 2-12 3-13
<bodystart></bodystart>	1-5 2-5 3-5
<titleend></titleend>	1-4 2-4 3-4
<titlestart></titlestart>	1-1 2-1 3-1

10/15

The metawords tell us that page 2 is probably about a dog.

- You could use the very same search strategy if the web pages were in Swedish, or Martian. You don't need to **understand** the words, just match them. An idiot (=computer) can.
- Metawords are different from key words; the index must understand them ...a little... to take advantage of them.
- The scheme will work independently of the Internet, even if the rest of the Internet is down.
- The scheme requires a huge amount of initial work setting up the index, **and** then constantly refreshing it as pages change.
- We have not answered the question of whether the pages returned are actually useful, or really about the topics, or the best pages...Google PageRank (on our list of algorithms).

https://www.youtube.com/watch?v=kk-_DDgoXfk

Bryan Hayes, "Sorting out the genome", American Scientist.

You have a stack of pancakes, of different sizes.

You want to sort the stack so it runs from largest to smallest.

You have a spatula which you can insert into the stack, flipping the order of all the pancakes above the spatula.

- Can you sort them? (of course!)
- Is there a way to organize this operation?
- What is the most difficult stack to sort?
- For an arbitrary stack of N pancakes, what is the most number of flips needed?
- Why do biologists care about this?

By a terrible mistake, I have been asked to judge a competition in Nanology... but I know nothing about Nanology. There is a room with 100 Nanology scholars, and I need to award first, second and third prizes. There is some room for argument, but if I award really bad people, I will get in trouble.

I get an inspiration, and ask every scholar to point to the two other scholars in the room that they most respect. Unfortunately, most scholars only know a few people, and so everyone is pointing to people nearby them in the room, so this brilliant idea gives me lots of information, but I don't immediately see how to use it.

Is there a way to fake good judgment, that is, to make a good guess as to who are the most respected scholars of Nanology?

Nick Berry, "Wounded QR codes", DataGenetics blog, Nov 2013.

Your smartphone can view a QR ("Quick Response") code, decode the information, and access the corresponding web site.

- How does a QR code store information?
- What error-correction features are included?
- Can codes handle bad light, bad angle, missing bits?

