
The Britney Spears
Problem

Why getting it almost right is OK
and

Why scrambling the data may help

Oops I made it again…

With respect to the internet, answering:
 Which of these is the most popular web
search?
 is a much much easier question than
answering:
 What is the most popular web search?

I’m Popular because I’m
Popular

Let’s assume Google received their
engine-search requests via one long data
stream that they could read-in in real time…

The straightforward solution would be to
append new words to an array containing all
words that have already been encountered
and update a corresponding counter

…, “Yo dog”, “Girls gone wild”, “Dog ate
chocolate”, …

 {yo=1, dog=2, girls=1, gone=1, wild=1,
ate=1, chocolate=1}

Straightforward Approach

Deciding whether to append the new word or
increment a past counter might require an
expensive search through the array

But more importantly, the size of the array
would be astronomical with no maximum cap
on memory

Need for a constant-space
algorithm

Image credit: The very Google servers pictured above (trippy right?)

Imagine if the English language was dumbed
down to a few words, or better yet… the
integers 1 to 9

Also, assume that one number (let’s say 4)
had the majority of the number instances.
(This means >50% of the numbers are
actually 4)

With the “majority rule” method we would
have two pieces of memory:

1) the most common number up to that point
(maj)

2) a ‘counter’ that we associate with that
number (count)

Majority Rule

The rule is that we increment when we stream across the number stored in memory, and decrement
otherwise. Example:

 … 4
 maj=4
 count=1

 … 4 4
 maj=4
 count=2

 … 2 4 4
 maj=4
 count=1

 … 1 2 4 4
 maj=4
 count=0

 3 1 2 4 4
 maj = 3
 count=1

Majority Rule

In this case, if 4 had actually been the
majority, maj would have =4 when the stream
was complete.

Method is guaranteed to find the majority if
there is one, but the number stored in
memory at algorithm completion is not
guaranteed to be a number with >50% of the
occurrences

Extend this to use an m number of maj
variables to find the n/(m+1) frequency.
Example: use m=99 to find if a word appears
in 1% of web search queries. Actually pretty
robust!

Majority Rule

Almost Right

Going back to the original straightforward
method of appending to a huge array… what if
we just removed the most infrequent elements
every once in a while?

This solution gives very good results, but we
still have the unbounded space problem.

This (along with Majority Rule) illustrates that
we will not get the correct answer 100% of the
time if we must obey the constant-space rule.

But is that really all that bad?

A uniform random distribution actually has
expected statistical properties (much like the
standard normal distribution)

A method used in computer science called
“hashing” essentially bins and scrambles
values that come from a unpredictable
distribution to make them appear as if they
are uniformly distributed.

The bins can then be analyzed statistically to
make generalizations about the data stream

Making a Hash

You’ll always be Number 1 in my book, even
though the 90’s misses you.

Thanks, Britney!

Reference:
Hayes, Brian. “The Britney Spears problem.” American Scientist 96.4
(2008): 274.

	Slide 1
	I’m Popular because I’m Popular
	Straightforward Approach
	Need for a constant-space algorithm
	Majority Rule
	Majority Rule
	Majority Rule
	Almost Right
	Making a Hash
	Thanks, Britney!

