The Britney Spears
Problem

Why getting it almost right is OK
and
Why scrambling the data may help

sl O0ps | made it again...

I'm Popular because I'm
Popular

With respect to the internet, answering:

Which of these is the most popular web
search?

IS @ much much easier question than

i flike to tape my thumbs to my hands o sea what it would be like {o be a dincsaur 13,400 reausts
i like to take my time 144,000,000 rewuils.
i like to take long walks on the beach 25,000,000 reults
ilike to tape my thumbs ta my hands FTI000 feduity
i like to take photos 136,000,000 resuily

Straightforward Approach

Let's assume Google received their
engine-search requests via one long data
stream that they could read-in in real time...

The straightforward solution would be to
append new words to an array containing all
words that have already been encountered
and update a corresponding counter

..., "Yo dog”, “Girls gone wild”, “Dog ate
chocolate”, ...
{yo=1, dog=2, qgirls=1, gone=1, wild=1,
ate=1, chocolate=1}

Need for a constant-space
algorithm

Deciding whether to append the new word or
iIncrement a past counter might require an
expensive search through the array

But more importantly, the size of the array
would be astronomlcal W|th no maX|mum cap
on memory I e o

Image credit: The very Google servers pictured above (trippy right?)

Majority Rule

Imagine if the English language was dumbed
down to a few words, or better yet... the
Integers 1 to 9

Also, assume that one number (let’'s say 4)
had the majority of the number instances.
(This means >50% of the numbers are
actually 4)

With the “majority rule” method we would
have two pieces of memory:

the most common number up to that point
(maj)

a ‘counter’ that we associate with that

niitrmahar ([~)

Majority Rule

In this case, iIf 4 had actually been the
majority, maj would have =4 when the stream
was complete.

Method is guaranteed to find the majority if
there is one, but the number stored In
memory at algorithm completion is not
guaranteed to be a number with >50% of the
occurrences

Extend this to use an m number of maj
variables to find the n/(m+1) frequency.
Example: use m=99 to find if a word appears
In 1% of web search queries. Actually pretty
robust!

Almost Right

Going back to the original straightforward
method of appending to a huge array... what if
we just removed the most infrequent elements
every once in a while?

This solution gives very good results, but we
still have the unbounded space problem.

This (along with Majority Rule) illustrates that
we will not get the correct answer 100% of the
time if we must obey the constant-space rule.

But is that really all that bad?

Making a Hash

A uniform random distribution actually has
expected statistical properties (much like the
standard normal distribution)

A method used in computer science called
“hashing” essentially bins and scrambles
values that come from a unpredictable
distribution to make them appear as if they
are uniformly distributed.

The bins can then be analyzed statistically to
make generalizations about the data stream

Thanks, Brithey!

You'll always be Number 1 in my book, even
though the 90's misses you.

Reference:
Hayes, Brian. “The Britney Spears problem.” American Scientist 96.4
(2008): 274.

	Slide 1
	I’m Popular because I’m Popular
	Straightforward Approach
	Need for a constant-space algorithm
	Majority Rule
	Majority Rule
	Majority Rule
	Almost Right
	Making a Hash
	Thanks, Britney!

