The Britney Spears Problem

Why getting it almost right is OK and
Why scrambling the data may help

I'm Popular because I'm

 Popular
- With respect to the internet, answering: Which of these is the most popular web search?

is a much much easier question than answrina. ch?

[^0]Advanced Search
ilike to tape my thumbs to my hands to see what it would be like to be a dinosaur 13,400 rount
i like to take my time
i like to take long walks on the beach i like to tape my thumbs to my hands i like to take photos

Straightforward Approach

- Let's assume Google received their engine-search requests via one long data stream that they could read-in in real time...
- The straightforward solution would be to append new words to an array containing all words that have already been encountered and update a corresponding counter
- ..., "Yo dog", "Girls gone wild", "Dog ate chocolate", ...
$\{y o=1, \operatorname{dog}=2$, girls=1, gone=1, wild=1, ate $=1$, chocolate $=1\}$

Need for a constant-space algorithm

- Deciding whether to append the new word or increment a past counter might require an expensive search through the array
- But more importantly, the size of the array would be astronomical with no maximum cap

Image credit: The very Google servers pictured above (trippy right?)

Majority Rule

- Imagine if the English language was dumbed down to a few words, or better yet... the integers 1 to 9
- Also, assume that one number (let's say 4) had the majority of the number instances.
(This means $>50 \%$ of the numbers are actually 4)
- With the "majority rule" method we would have two pieces of memory:

1) the most common number up to that point (maj)
2) a 'counter' that we associate with that nimmhar (rntint)

Majority Rule

- The rule is that we increment when we stream across the number stored in memory, and decrement otherwise. Example:

$$
\begin{aligned}
& \text {.. } 4 \\
& \text { maj=4 } \\
& \text { count=1 } \\
& .44 \\
& \text { maj=4 } \\
& \text { count=2 } \\
& \text {... } 244 \\
& \text { maj=4 } \\
& \text { count=1 } \\
& \text {... } 1244 \\
& \text { maj=4 } \\
& \text { count=0 } \\
& 31244 \\
& \text { maj }=3 \\
& \text { count=1 }
\end{aligned}
$$

Majority Rule

- In this case, if 4 had actually been the majority, maj would have $=4$ when the stream was complete.
- Method is guaranteed to find the majority if there is one, but the number stored in memory at algorithm completion is not guaranteed to be a number with $>50 \%$ of the occurrences
- Extend this to use an m number of maj variables to find the $n /(m+1)$ frequency. Example: use $m=99$ to find if a word appears in 1% of web search queries. Actually pretty robust!

Almost Right

- Going back to the original straightforward method of appending to a huge array... what if we just removed the most infrequent elements every once in a while?
- This solution gives very good results, but we still have the unbounded space problem.
- This (along with Majority Rule) illustrates that we will not get the correct answer 100\% of the time if we must obey the constant-space rule.
- But is that really all that bad?

Making a Hash

- A uniform random distribution actually has expected statistical properties (much like the standard normal distribution)
- A method used in computer science called "hashing" essentially bins and scrambles values that come from a unpredictable distribution to make them appear as if they are uniformly distributed.
- The bins can then be analyzed statistically to make generalizations about the data stream

Thanks, Britney!

You'll always be Number 1 in my book, even though the 90's misses you.

Reference:
Hayes, Brian. "The Britney Spears problem." American Scientist 96.4 (2008): 274.

[^0]: i like to ta

