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a b s t r a c t

In this work, we investigate the suitability of several meshing strategies for use with a common peri-
dynamics solution scheme. First, we use a manufactured solution to quantify the influence of different
meshes on the accuracy and conditioning of a nonlocal boundary value problem in one and two dimen-
sions.We explore convergence behavior, the effects ofmodel parameters, and sensitivity to perturbations.
We then apply the same meshing strategies to a three-dimensional impact simulation that employs the
full peridynamic mechanical theory. We present a qualitative comparison of the fracture patterns that
result, and suggest best practices for generatingmeshes that lead to efficient, high-quality numerical sim-
ulations of peridynamic models.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Peridynamics [1–3] is a generalization of the classical theory of
continuum mechanics to include nonlocal force interactions. The
spatial extent of these interactions provides an intrinsic length,
resulting in models that exhibit a scale-dependent response to
applied stimuli. Balance laws and constitutive relations are for-
mulated using integrals (rather than spatial derivatives which are
only defined on smooth fields), so the formation and evolution of
discontinuities, such as cracks, boundaries, and interfaces, can be
controlled by a single constitutive relation. These features en-
able models that reproduce many complex materials phenomena,
including fracture, failure modes in composites, and phase transi-
tions. In the same spirit of the mechanical theory, an entire nonlo-
cal calculus is under development [4,5] for general scalar, vector,
and tensor quantities.

Due to the finite nature of computing machines, peridynamic
simulations are prone to subtle computational difficulties. An ap-
preciable source of such difficulties is the computational mesh,
which represents the model geometry, and in many solution
schemes, is invoked as part of a quadrature rule that resolves in-
teractions near each material point. At present, guidance on gen-
erating meshes that are appropriate for peridynamic problems is
tenuous, and best practices are not established for irregular
meshes, which are desirable for their versatility and efficiency in
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representing complex geometries. These details present sources
for computation error and motivate the present study, where we
systematically explore the relationship between model parame-
ters and the underlying spatial discretization in an attempt to im-
prove the fidelity of nonlocal simulations.

Several techniques, such as direct quadrature methods [6–9]
and finite element methods [7,10,11], have been proposed for
approximating solutions to this class of nonlocal models. The ef-
ficiency and accuracy of these approaches relies intimately on a
discrete representation of the model geometry that tracks or cap-
tures the deformation of continuum bodies, including the location
of any discontinuous features that may develop during the sim-
ulation. When present, discontinuities are constrained to follow
contours of the mesh. As a result, the local resolution limits our
knowledge of the position of discontinuities, and presents a restric-
tion on the family of configurations that can be realized for that
system. As a complement to mesh refinement procedures, which
have been discussed by others [12,13], this work examines how
irregular point placement strategies affect the accuracy of these
computations and alleviates some obvious mesh dependent be-
haviors that have been observed. Previous studies have focused on
other numerical issues in the peridynamic setting, including the
performance of finite elementmeshes in the presence of stationary
jump discontinuities [11], crack propagation and branching be-
havior [14], and symmetry breaking in dynamic fracture [15].

We first study mesh sensitivity in the simplified setting of a
nonlocal boundary value problem (Section 2), where a manufac-
tured solution enables a quantitative evaluation of discretization
errors and conditioning. There, we identify primary error sources
and examine the robustness of quadrature schemes to small
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disturbances in the placement of grid points. In addition to the
widely-used tensor product grids,wedemonstrate that the genera-
tors of a centroidal Voronoi tessellation (CVT) bear desirable prop-
erties for integrating peridynamic interactions. Lessons from the
scalar problem are then applied (Section 3) towards understanding
meshing issues in a three-dimensional impact simulation that uti-
lizes the full peridynamic mechanical theory. Qualitative aspects
of the resulting fracture patterns are discussed and explanation
of the observed behavior is attempted. We conclude (Section 4)
with a summary of our findings and some suggestions for future
investigations.

2. Nonlocal boundary value problem

As an initial attempt at understanding mesh sensitivity in peri-
dynamic systems, we study meshing issues in a simpler, related
context: the nonlocal ‘‘elliptic’’ boundary value problem. Using a
manufactured solution and direct quadrature method, we explore
the response of the discrete system to different quadrature point
positioning strategies in one and two dimensions.

2.1. Nonlocal elliptic boundary value problem

A nonlocal elliptic boundary value problem [4,5,16] is governed
by the balance equation,

b (x) =


Ω

γ

x, x′

 
u (x) − u


x′


dVx′ , ∀

x, x′


∈ Ω, (1)

where b (x) contains the known problem data, γ

x, x′


is a two-

point modulus function that is symmetric in its arguments (i.e.,
γ

x, x′


= γ


x′, x


), u (x) is the unknown scalar quantity, and

Vx′ is the volume ascribed to the material point x′. This equation
is termed ‘‘elliptic’’, because it corresponds [16] with the spatial
differential operator of the classical wave and diffusion equations,
and nonlocal because the behavior at any point x within the
domain depends on the behavior of points x′ at a finite distance.
Unlike its local counterpart, a constraint domain for nonlocal
problems must have a measurable volume for well-posedness.
Nonlocal versions of classical boundary conditions are obtained by
specifying a function value (Dirichlet) or integral flux (Neumann)
over a subset of the computational domain.

The strength of the interaction modulus typically decays with
distance, so it is customary to truncate nonlocal interactions out-
side a finite region Hx ⊂ Ω surrounding each material point x.
That is,

γ

x, x′


= 0 ∀ x′

∉ Hx. (2)

This choice reduces the number of interactions that must be
processed in simulating models, and supports a banded matrix
structure in the discrete case. In this work, we assume that such
a neighborhood exists, and is a ball,

Hx =

x′

∈ Ω :
x − x′

 ≤ δ

, (3)

parameterized by its radius δ, termed theperidynamic horizon. The
local limit of δ provides correspondence with classical theories [5],
and facilitates determining parameters in the modulus function.
Changes to the horizon modify the relationship between these pa-
rameters (through a process called scaling [12,13]), and generally
alters the dispersive properties of a medium [17]. Consequently,
the cut-off radius is viewed as a constitutive parameter rather than
a computational convenience. For more on physical and computa-
tional aspects involving the horizon see Refs. [6,11,17–19].
On the interior of the nonlocal region, wemake the constitutive
assumption that the modulus function is given by,

γ

x, x′


=
x′

− x
−P

∀ x′
∈ Hx, (4)

where thenonlocal exponent P controls the strengthprofile of non-
local interactions and affects the amount of smoothing [4] the in-
tegral operator imparts on the problem data. The form of Eq. (4)
subsumes modulus functions found in a variety of settings, includ-
ing micromechanics [1,2] (P = 1), mass and heat transport [20,21]
(P = 2), and the fractional Laplacian [16,22] (P = d + 2s, where
d is the spatial dimension and the parameter 0 < s < 1). In prob-
lems where the domain is stationary, changing the value of P is
equivalent to convolution of the integral operator with a spherical
influence function [2,23].

2.2. Problem setup

For the computational experiments, we select a smooth manu-
factured solution that also appears in Ref. [11], and generalize it for
multiple dimensions,

û (x) = R2
− ∥x∥2 , ∀ x ∈ Ω ∪ Γ , (5)

where Ω is the solution domain and Γ the constraint domain. Di-
rect substitution can be used to determine the forcing term that
corresponds to this manufactured solution,

b̂ (x) =


2δ3−P/ (3 − P) d = 1, P < 3
2πδ4−P/ (4 − P) d = 2, P < 4,

(6)

which depends on the number of spatial dimensions d, nonlocal
horizon δ, and nonlocal exponent P .

To facilitate a comparisonwith the impact problem that appears
later in this paper, the solution domain Ω is chosen to be the ball-
shaped region,

Ω := {x : ∥x∥ ≤ r} , (7)

that is enclosed by a constraint domain Γ , shaped like a spherical
shell,

Γ := {x : r < ∥x∥ ≤ R} . (8)

These domains are parameterized by an inner radius r and outer
radius R, such that r + δ ≤ R. Throughout the volume of the con-
straint region, we augment the governing equation with nonlocal
Dirichlet data by enforcing the values,

u (x) = û (x) , ∀ x ∈ Γ . (9)

This setup effectively removes all boundaries and their associated
difficulties (see [10,13,15]) from this research.

2.3. Solution method

Approximation of the governing equation (1) by a composite
quadrature rule yields the discretization,

b (xi) ≈


j≠i

γ

xi, xj

 
u (xi) − u


xj


Vj, (10)

where all points positioned inside the computational domain are
assigned an equal fraction of the region’s analytical volume. This
can be written as a linear system of equations,
A

xi, xj

 
u

xj


= [b (xi)] , (11)

where the entries of the system matrix are given by,


A

xi, xj


=



j≠i

γ

xi, xj


Vj i = j

−γ

xi, xj


Vj i ≠ j.

(12)
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(a) Manufactured solution. (b) Integrand.

Fig. 1. The uniform forcing term b (x) yields the manufactured solution û (x). Substituting û (x) into the integrand i

x, x′


reveals the various limiting behaviors near x′

= x
that are represented by this formulation.
This numerical method is occasionally termed ‘‘meshless’’ or
‘‘meshfree’’ because an explicit topological mesh is not required.
For discussion, we still find it convenient to refer to the agglomera-
tion of quadrature points that represent the computational domain
as a mesh.

This discrete system is sparse whenever δ ≪ r , and is banded
for certain node orderings. Accordingly, we obtain an approximate
solution ũ to Eq. (11) using the forcing term b̂ and the LAPACK [24]
banded solver dgbsvx,

b̂ (xi) =


j≠i

γ

xi, xj

 
ũ (xi) − ũ


xj


Vj. (13)

With the manufactured solution û in hand, we can also directly
evaluate b̃, the result of the integral operator approximation,

b̃ (xi) =


j≠i

γ

xi, xj

 
û (xi) − û


xj


Vj. (14)

Thus, the quality of the solutions we obtain is characterized using
the absolute L2 integration error (per node),

ϵb =
1
N


N
i=1

b̃ (xi) − b̂ (xi)
2 Vi

1/2

, (15)

the absolute L2 solution error (per node),

ϵu =
1
N


N
i=1

ũ (xi) − û (xi)
2 Vi

1/2

, (16)

and the L1 condition number estimate provided by the dgbsvx
routine.

Throughout the numerical results presented here, the peridy-
namic horizon that we provide as input to our computer solution
routines is revised to be slightly higher than the values we report
here. We confirm that this adjustment, which is also mentioned
in Ref. [25], was necessary for obtaining consistent results for our
analysis. Without this change, particles at the edge of the nonlo-
cal horizon were frequently excluded due to floating point errors.
We found that a constant offset of 10−8 was sufficient for these
purposes.

2.4. Numerical results for uniform meshes in 1-D

We begin studying the effects of meshing on the quality of
peridynamic solutions in one dimension, where length is the
only geometric construct that must be considered. This simplified
setup provides insight into the behaviors observed in multiple
dimensions, where geometry complicates the analysis. Here, we
investigate how integration error, solution error, and conditioning
are affected by the model parameters, uniform mesh refinement,
and disturbances in the mesh regularity.

2.4.1. Manufactured solution
The manufactured solution and its corresponding forcing term

possess the functional form of an inverted parabola and a positive
constant value, respectively. These functions are plotted together
in Fig. 1(a). Substituting the modulus function (4) and manufac-
tured solution (5) into the governing equation (1), yields the piece-
wise integrand,

i

x, x′


= sgn


x′

− x
 

x′
+ x

 x′
− x

1−P
, (17)

shown for several values of P in Fig. 1(b). The nature of the singu-
larity in this integrand changes depending on the value of P relative
to P = 1,

lim
x′→x

i

x, x′


=


+∞, P > 1, x′ > x
+2x, P = 1, x′ > x
0, P < 1
−2x, P = 1, x′ < x
−∞, P > 1, x′ < x,

(18)

where the termenclosed by the absolute value transitions between
the numerator and the denominator. Thus, the singularity at x′

= x
is removable when P < 1, has a jump that grows with x when
P = 1, and is infinite whenever P > 1.

2.4.2. Convergence behavior
We demonstrate the convergence behavior of the direct inte-

gration method by overlaying the computational domain with a
uniform grid of quadrature points. This quadrature scheme uses
the same sample points to resolve both the nonlocal horizon and
the geometry of the body, so the grid spacing is chosen proportion-
ate to the peridynamic horizon (i.e. 1x = δ/m, for some m ≥ 1).
The appropriate value for this mesh resolution parameter has been
a subject of debate (see [6,9,11–15]). In these discussions, the val-
ues m = 3 and m = 4 are frequently suggested as a balance
between accuracy and computational work for a particular hori-
zon. In anisotropicmaterials, even largerm-valuesmay be required
[26,27]. To explore the effects of uniform mesh refinement on the
system we have defined, we plot its integration error, solution er-
ror, and reciprocal condition number over a range ofm in Fig. 2.
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Fig. 2. Parameter study of the nonlocal boundary value problem in one dimension (with r = 1, R = 2). Plots on the left have P = {0.0, 0.5, 1.0, 1.5, 2.0}, and the horizon
δ = 1/8 fixed. Plots on the right have δ = {1/2, 1/4, 1/8, 1/16, 1/32}, and the exponent P = 1 fixed. The mesh resolution parameterm increases from left to right.
As themesh resolution changes,we observe periodic patterns in
all of the observed quantities. The plots containing the integration
and solution errors exhibit similar cusped features at each abscissa,
and the reciprocal condition number repeats in a sawtooth pat-
tern. All patterns repeat across each unit interval of m. For P ≤ 1,
the maximum integration and solution errors are achieved near
integer resolutions, and the minimum errors near half-integer
resolutions. As the nonlocal exponent is increased beyond P = 1,
the value of m that achieves the minimum error approaches its
floor until P = 2, when a sharp jump appears near every integer
m. Reducing the nonlocal horizon is associated with lower integra-
tion and solution errors, and a larger condition number. The dom-
inant trend is that larger values of m reduce discretization errors,
as is necessary for convergence of the method. It is interesting to
note the similarities between these results and those obtained in
Ref. [28].

The observed periodic behavior is an artifact of how the solution
scheme and mesh we have chosen interact. In this study, the
primary error source is the approximation of the integral operator
with a quadrature rule. The integral approximation can be written
as (see derivation in Appendix A),

b (xi) =


δ

m

3−P ⌊m⌋
k=1


(2i + k) |k|1−P

− (2i + k − ⌊m⌋ − 1) |k − ⌊m⌋ − 1|1−P , (19)

where a uniformly spaced mesh (i.e. xi = i1x) is assumed. In this
expression, the flooring of m in the summation limit accounts for
the periodic behavior in Fig. 2, and reflects the manner with which
peridynamic interactions are processed: In this solution scheme,
the spatial region occupied by the continuum body is decomposed
into subregions. The behavior of each subregion is assumed to be
well-represented by the response of a single chosenmaterial point.
Interactions are recorded between material points whenever they
are located inside a shared peridynamic horizon. Consequently,
whenever a material point is placed slightly inside (outside) the
nonlocal horizon, interactions are (are not) recorded for the entire
subregion. Thus, this binary approach to interaction processing
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Table 1
Mean and standard deviation of L2 solution error for an equidistant one-dimensional grid subject to small uniform perturbations. The maximum perturbation distance ε is
chosen as a fraction of the unperturbed mesh spacing 1x = δ/m. (R = 2.0, r = 1.0, 64 trials).

δ ε/1x P = 0.0 P = 1.0 P = 2.0

(a) Mesh resolution m = 2

2−2

– (0.00 ± 0.00) · 10+01 (2.67 ± 0.00) · 10−02 (2.62 ± 0.00) · 10−03

2−2 (3.43 ± 1.51) · 10−02 (2.28 ± 0.95) · 10−02 (3.91 ± 0.78) · 10−02

2−3 (3.33 ± 1.83) · 10−02 (2.22 ± 1.12) · 10−02 (3.85 ± 0.89) · 10−02

2−4 (2.89 ± 1.78) · 10−02 (1.94 ± 1.10) · 10−02 (3.66 ± 0.83) · 10−02

2−3

– (1.73 ± 0.00) · 10−02 (1.20 ± 0.00) · 10−02 (5.77 ± 0.00) · 10−04

2−2 (1.21 ± 0.54) · 10−02 (7.97 ± 3.33) · 10−03 (1.61 ± 0.26) · 10−02

2−3 (1.21 ± 0.54) · 10−02 (7.99 ± 3.43) · 10−03 (1.60 ± 0.27) · 10−02

2−4 (1.26 ± 0.51) · 10−02 (8.27 ± 3.10) · 10−03 (1.63 ± 0.23) · 10−02

2−4

– (8.07 ± 0.00) · 10−03 (5.70 ± 0.00) · 10−03 (1.35 ± 0.00) · 10−04

2−2 (5.17 ± 1.95) · 10−03 (3.36 ± 1.16) · 10−03 (7.34 ± 0.82) · 10−03

2−3 (5.52 ± 1.51) · 10−03 (3.58 ± 0.93) · 10−03 (7.48 ± 0.69) · 10−03

2−4 (5.06 ± 1.66) · 10−03 (3.27 ± 1.04) · 10−03 (7.26 ± 0.81) · 10−03

(b) Mesh resolutionm = 4

2−2

– (1.14 ± 0.00) · 10−02 (7.48 ± 0.00) · 10−03 (6.03 ± 0.00) · 10−04

2−2 (3.72 ± 1.80) · 10−03 (2.43 ± 1.21) · 10−03 (6.37 ± 0.95) · 10−03

2−3 (3.83 ± 1.65) · 10−03 (2.50 ± 1.12) · 10−03 (6.41 ± 0.91) · 10−03

2−4 (3.70 ± 1.65) · 10−03 (2.39 ± 1.10) · 10−03 (6.27 ± 0.90) · 10−03

2−3

– (5.17 ± 0.00) · 10−03 (3.48 ± 0.00) · 10−03 (0.00 ± 0.00) · 10+01

2−2 (1.27 ± 0.57) · 10−03 (8.30 ± 3.76) · 10−04 (2.81 ± 0.27) · 10−03

2−3 (1.18 ± 0.46) · 10−03 (7.67 ± 3.07) · 10−04 (2.77 ± 0.26) · 10−03

2−4 (1.27 ± 0.52) · 10−03 (8.30 ± 3.46) · 10−04 (2.78 ± 0.29) · 10−03

2−4

– (2.46 ± 0.00) · 10−03 (1.68 ± 0.00) · 10−03 (3.30 ± 0.00) · 10−05

2−2 (4.58 ± 2.03) · 10−04 (2.93 ± 1.33) · 10−04 (1.30 ± 0.09) · 10−03

2−3 (4.63 ± 1.97) · 10−04 (2.94 ± 1.28) · 10−04 (1.30 ± 0.09) · 10−03

2−4 (4.84 ± 2.35) · 10−04 (3.07 ± 1.53) · 10−04 (1.30 ± 0.11) · 10−03
introduces a systematic estimation error into the quadrature rule
and results in the regular cusped features observed in Fig. 2. Had
we properly accounted for the partial overlap of nonlocal volumes,
the ‘‘serendipitous’’ error cancelation near half-integer values ofm
would likely not be observed, and the systematic over- or under-
estimation of the integrand would be reduced. These inaccuracies
directly influence the quality of the approximate solutions that are
obtained.

2.4.3. Robustness to perturbations
One way to describe motion in time-dependent models is to

allow the geometry representation to deform along with the con-
tinuum bodies it represents. This typically requires a temporal in-
tegration routine, and is accompanied by additional error sources.
Such errors often result in minute changes in the relative distance
between mesh points, thus affecting the accuracy of the spatial
quadrature rule. In other cases, small perturbations may be intro-
duced intentionally to break symmetries in the mesh (e.g. [9]). Us-
ing the same stationary solution as above, we examine statistically
how these small errors in the location of quadrature points affect
the accuracy of the numerical scheme.

For this investigation, we apply a uniform random perturbation
to the position of all quadrature points in the initially equidistant
discretization. The applied perturbation is small, and chosen rela-
tive to the initial lattice spacing, which provides an intrinsic length
scale for the mesh. If the random disturbance places quadrature
points outside the computational domain, the perturbation is re-
jected and generated again. The results of this study are displayed
in Table 1, where we list the mean L2 solution error and its stan-
dard deviation averaged over several independent trials. There, we
also report the effects of controlled parameters through varying
the maximum perturbation distance, mesh resolution parameter
m, nonlocal horizon δ, and nonlocal exponent P .

Table 1 reveals the counterintuitive result that the presence of
small random perturbations in the spacing of quadrature points,
on average, lowers solution errors for this one-dimensional prob-
lem. In all cases, error statistics show little sensitivity to the size of
perturbations, demonstrating that small disturbances in quadra-
ture point positions result in significant changes in accuracy. With
all other factors held constant, increasing the mesh resolution m
or decreasing the nonlocal horizon δ tends to reduce error. The ef-
fects of varying the nonlocal exponent P are not so straightforward.
With a uniform discretization, solution errors decrease monotoni-
cally as P increases. However, when perturbations are introduced,
simulations with P = 1 have the smallest error when all other pa-
rameters are held constant, followed by P = 0, then P = 2. In
the next sections, we extend this analysis to two dimensions and
demonstrate that many of these curious effects are unique to the
one-dimensional problem.

2.5. Numerical results for square lattices in 2-D

The square tensor product grid is a straightforward generaliza-
tion of the uniform one-dimensionalmesh tomultiple dimensions.
With a second dimension, we now must consider both length and
shape in our analyses. As a result, there are multiple ways to uni-
formly tile the disc that comprises our computational domain. We
consider another approach to two-dimensional uniform grids in
the next section.

2.5.1. Convergence behavior
Due to the additional structure of the added dimension, it is

no longer possible to write a general mathematical expression
that describes the error in our discrete integration and solution
schemes. Following our work in one dimension, we begin with a
study of mesh refinement, and plot the integration error, solution
error, and condition number as the grid is refined.

In Fig. 3, we observe that the distinct periodic features thatwere
characteristic of our one-dimensional study are no longer clearly
visible. Changes to the value of the nonlocal exponent P no longer
result in dramatic differences in the features of each series. Smaller
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Fig. 3. Parameter study of the nonlocal boundary value problem in two dimensions (with r = 1, R = 2). Plots on the left have P = {0.0, 0.5, 1.0, 1.5, 2.0}, and the horizon
δ = 1/8 fixed. Plots on the right have δ = {1/2, 1/4, 1/8, 1/16, 1/32}, and the exponent P = 1 fixed. The mesh resolution parameterm increases from left to right.
values of the nonlocal horizon δ continue to produce smaller er-
rors, but larger condition numbers. Once again, the dominant trend
is that increasing values of m reduce errors, demonstrating con-
vergence for our method. We postulate that the noise that follows
this downward trend is related to the systematic approximation
errors described in the previous section, and the irregularity of
these features can be attributed to the geometric incompatibility
between the square grid and the rounded geometry of the nonlocal
neighborhoods.

2.5.2. Robustness to perturbations
In two dimensions, random uniform perturbations applied to

the placement of grid points (Table 2) tend to increase solution
errors relative to their nominal values. Interestingly, the magni-
tude of these errors again appears to be insensitive to the size of
the perturbation. This suggests that the higher order convergence
that is associated with regular grids is fleeting, and may not be re-
liable for transient solution schemes that deform the grid. Conver-
gence is again observed as the mesh resolution m increases or the
nonlocal extent δ decreases. A simple explanation for the behavior
of the nonlocal exponent P is elusive. Ranked in order of increas-
ing solution error, themost accuratemodels on perturbed grids for
m = 2 are P = 1, P = 2, then P = 0. Whenm = 4 error decreases
with increasing P . Computational issues involving modulus func-
tions clearly warrant further study.

2.6. Numerical results for CVT generators in 2-D

The regularity of square tensor product grids may not always
be desirable, especially in fracture simulations where cracks have
a tendency to follow symmetry lines in the mesh. Motivated by
a suggestion in Ref. [6], we study the effectiveness of meshes
based on the generator points for a centroidal Voronoi tessella-
tion (CVT) [29,30] which have previously been reported [31] to
be high quality point sets for (local) meshless methods. CVT point
distributions offer additional benefits, such as providing a more-
faithful resolution of curved boundaries (thus avoiding the Carte-
sian staircase effect), attributing a meaningful volume to each
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Table 2
Mean and standard deviation of L2 solution error for a square two-dimensional grid subject to small uniform perturbations. The maximum perturbation distance ε is chosen
as a fraction of the unperturbed mesh spacing 1x = δ/m. (R = 2.0, r = 1.0, 64 trials).

δ ε/1x P = 0.0 P = 1.0 P = 2.0

(a) Mesh resolution m = 2

2−2

– (6.89 ± 0.00) · 10−04 (3.66 ± 0.00) · 10−04 (2.28 ± 0.00) · 10−04

2−2 (1.93 ± 0.16) · 10−03 (1.51 ± 0.11) · 10−03 (1.56 ± 0.08) · 10−03

2−3 (1.95 ± 0.16) · 10−03 (1.53 ± 0.11) · 10−03 (1.57 ± 0.07) · 10−03

2−4 (1.93 ± 0.17) · 10−03 (1.51 ± 0.12) · 10−03 (1.56 ± 0.08) · 10−03

2−3

– (1.48 ± 0.00) · 10−04 (7.48 ± 0.00) · 10−05 (6.20 ± 0.00) · 10−05

2−2 (4.51 ± 0.15) · 10−04 (3.56 ± 0.10) · 10−04 (3.70 ± 0.07) · 10−04

2−3 (4.51 ± 0.17) · 10−04 (3.56 ± 0.11) · 10−04 (3.70 ± 0.08) · 10−04

2−4 (4.46 ± 0.18) · 10−04 (3.53 ± 0.12) · 10−04 (3.68 ± 0.08) · 10−04

2−4

– (0.00 ± 0.00) · 10+01 (1.74 ± 0.00) · 10−05 (1.53 ± 0.00) · 10−05

2−2 (1.09 ± 0.02) · 10−04 (8.61 ± 0.12) · 10−05 (8.95 ± 0.08) · 10−05

2−3 (1.09 ± 0.02) · 10−04 (8.59 ± 0.13) · 10−05 (8.94 ± 0.09) · 10−05

2−4 (1.09 ± 0.02) · 10−04 (8.61 ± 0.15) · 10−05 (8.95 ± 0.10) · 10−05

(b) Mesh resolutionm = 4

2−2

– (6.90 ± 0.00) · 10−05 (5.55 ± 0.00) · 10−05 (6.63 ± 0.00) · 10−05

2−2 (2.19 ± 0.03) · 10−04 (1.61 ± 0.02) · 10−04 (1.34 ± 0.01) · 10−04

2−3 (2.20 ± 0.04) · 10−04 (1.61 ± 0.03) · 10−04 (1.34 ± 0.02) · 10−04

2−4 (2.19 ± 0.04) · 10−04 (1.60 ± 0.03) · 10−04 (1.34 ± 0.02) · 10−04

2−3

– (1.61 ± 0.00) · 10−05 (1.32 ± 0.00) · 10−05 (1.58 ± 0.00) · 10−05

2−2 (5.03 ± 0.04) · 10−05 (3.73 ± 0.03) · 10−05 (3.15 ± 0.02) · 10−05

2−3 (5.04 ± 0.05) · 10−05 (3.74 ± 0.03) · 10−05 (3.16 ± 0.02) · 10−05

2−4 (5.04 ± 0.04) · 10−05 (3.74 ± 0.03) · 10−05 (3.15 ± 0.02) · 10−05

2−4

– (3.88 ± 0.00) · 10−06 (3.18 ± 0.00) · 10−06 (0.00 ± 0.00) · 10+01

2−2 (1.21 ± 0.00) · 10−05 (8.98 ± 0.03) · 10−06 (7.63 ± 0.02) · 10−06

2−3 (1.20 ± 0.00) · 10−05 (8.98 ± 0.03) · 10−06 (7.62 ± 0.02) · 10−06

2−4 (1.20 ± 0.00) · 10−05 (8.97 ± 0.03) · 10−06 (7.62 ± 0.02) · 10−06
generator point, and offering the potential for adaptive refinement
and non-uniform point densities.

Given a set of input points {zi} belonging to a domain Ω , a
Voronoi region Vi contains all points in Ω that are closer to the
generator point zi than to any other generator zj,

Vi =

x ∈ Ω : ∥x − zi∥ <

x − zj


∀ j = 1, . . . ,N and j ≠ i

. (20)

The set {Vi} is a Voronoi diagram (or tessellation) of Ω . The mass
centroid of a Voronoi region is defined by

z∗

i =


Vi

xρ̂ (x) dV


Vi

ρ̂ (x) dV , (21)

where the generator density function ρ̂ (x), in general, differs from
the physical mass density ρ (x) that appears elsewhere in this
work. When the generators coincide with the mass centers of the
Voronoi regions,

zi = z∗

i ∀ i = 1, . . . ,N, (22)

the tessellation of Ω is a centroidal Voronoi tessellation. The con-
struction of a CVT can be thought of as an optimization problem
that seeks to reduce the distortion of the Voronoi regions, or equiv-
alently, minimize the energy functional

E =

N
i=1


Vi

ρ̂ (x) ∥x − zi∥2 dV . (23)

This leads to a number of probabilistic and deterministic meth-
ods for computing CVTs that attempt to minimize Eq. (23) in some
way.

In this work, we generate CVTs using a probabilistic variant of
Lloyd’smethod. Lloyd’smethod [32] alternates between construct-
ing Voronoi regions, and moving generator points the centroids
Table 3
L2 solution error statistics for two-dimensional CVT meshes (R = 2.0, r = 1.0, 12
trials).

δ P = 0.0 P = 1.0 P = 2.0

(a) Mesh resolutionm = 2

2−2 (2.49±0.34) ·10−04 (1.81±0.40) ·10−04 (5.90 ± 0.51) · 10−04

2−3 (5.07±1.61) ·10−05 (2.66±0.42) ·10−05 (1.20 ± 0.13) · 10−04

2−4 (1.12±0.21) ·10−05 (3.42±0.62) ·10−06 (2.76 ± 0.13) · 10−05

(b) Mesh resolutionm = 4

2−2 (4.54±0.81) ·10−05 (3.04±0.61) ·10−05 (1.29 ± 0.39) · 10−05

2−3 (1.08±0.10) ·10−05 (7.44±0.78) ·10−06 (2.03 ± 0.48) · 10−06

2−4 (2.73±0.33) ·10−06 (1.90±0.25) ·10−06 (3.53 ± 1.57) · 10−07

of their corresponding region. The variant we use is probabilis-
tic because we sample the domain to determine region centroids
without ever constructing the actual Voronoi diagram.Weperform
these iterations until the generators satisfy a convergence crite-
rion. In this case, we require that no individual generator moves
further than a distance of 1x/32, where 1x is the mesh spacing
in the square Cartesian grid that we use to initialize the method.
Once amesh is within our chosen tolerance, we sample a final time
to assign a volume to each generator. The volume we assign is the
analytical volume of the domain scaled by the fraction of sample
points that fall nearest each generator. A plot of the Voronoi re-
gions for a square grid and a CVT grid on a disk-shaped domain are
shown in Fig. 4.

2.6.1. Intrinsic variations
Centroidal Voronoi tessellations are not unique [29]. Table 3

summarizes the variation in solution error that is inherent in CVT
point distributionsmanufactured to our chosen tolerance. It shows
that, on average, solution errors and their standard deviations
decrease as the extent of nonlocal interactions is reduced, or the
mesh is refined. When m = 2, maximum accuracy is realized at
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(a) Square grid. (b) Centroidal Voronoi generators.

Fig. 4. Illustration of Voronoi regions of the two-dimensional grid types that are used in this work.
Table 4
Mean and standard deviation of L2 solution error for a two-dimensional centroidal Voronoi generators subject to small uniform perturbations. The maximum perturbation
distance ε is chosen as a fraction of the unperturbed mesh spacing 1x = δ/m. (R = 2.0, r = 1.0, 64 trials.)

δ ε/1x P = 0.0 P = 1.0 P = 2.0

(a) Mesh resolutionm = 2

2−2

– (2.29 ± 0.00) · 10−04 (1.83 ± 0.00) · 10−04 (6.10 ± 0.00) · 10−04

2−2 (2.32 ± 0.15) · 10−04 (1.97 ± 0.22) · 10−04 (6.22 ± 0.26) · 10−04

2−3 (2.27 ± 0.09) · 10−04 (1.85 ± 0.15) · 10−04 (6.14 ± 0.16) · 10−04

2−4 (2.25 ± 0.04) · 10−04 (1.82 ± 0.09) · 10−04 (6.11 ± 0.10) · 10−04

2−3

– (0.00 ± 0.00) · 10+01 (2.40 ± 0.00) · 10−05 (1.12 ± 0.00) · 10−04

2−2 (5.82 ± 0.31) · 10−05 (2.33 ± 0.09) · 10−05 (1.13 ± 0.02) · 10−04

2−3 (5.78 ± 0.23) · 10−05 (2.32 ± 0.07) · 10−05 (1.13 ± 0.02) · 10−04

2−4 (5.87 ± 0.14) · 10−05 (2.35 ± 0.05) · 10−05 (1.13 ± 0.01) · 10−04

2−4

– (9.45 ± 0.00) · 10−06 (3.66 ± 0.00) · 10−06 (2.88 ± 0.00) · 10−05

2−2 (9.51 ± 0.28) · 10−06 (3.61 ± 0.11) · 10−06 (2.88 ± 0.02) · 10−05

2−3 (9.46 ± 0.16) · 10−06 (3.63 ± 0.07) · 10−06 (2.88 ± 0.01) · 10−05

2−4 (9.52 ± 0.12) · 10−06 (3.59 ± 0.05) · 10−06 (2.88 ± 0.01) · 10−05

(b) Mesh resolutionm = 4

2−2

– (5.44 ± 0.00) · 10−05 (3.76 ± 0.00) · 10−05 (8.03 ± 0.00) · 10−06

2−2 (5.33 ± 0.10) · 10−05 (3.67 ± 0.08) · 10−05 (8.32 ± 0.36) · 10−06

2−3 (5.35 ± 0.06) · 10−05 (3.69 ± 0.05) · 10−05 (8.26 ± 0.21) · 10−06

2−4 (5.39 ± 0.05) · 10−05 (3.71 ± 0.04) · 10−05 (8.18 ± 0.16) · 10−06

2−3

– (1.06 ± 0.00) · 10−05 (7.25 ± 0.00) · 10−06 (2.18 ± 0.00) · 10−06

2−2 (1.06 ± 0.01) · 10−05 (7.25 ± 0.07) · 10−06 (2.18 ± 0.05) · 10−06

2−3 (1.06 ± 0.01) · 10−05 (7.28 ± 0.05) · 10−06 (2.16 ± 0.03) · 10−06

2−4 (1.06 ± 0.01) · 10−05 (7.29 ± 0.04) · 10−06 (2.16 ± 0.02) · 10−06

2−4

– (3.08 ± 0.00) · 10−06 (2.17 ± 0.00) · 10−06 (2.06 ± 0.00) · 10−07

2−2 (3.07 ± 0.01) · 10−06 (2.17 ± 0.01) · 10−06 (2.08 ± 0.03) · 10−07

2−3 (3.07 ± 0.01) · 10−06 (2.17 ± 0.01) · 10−06 (2.08 ± 0.02) · 10−07

2−4 (3.07 ± 0.00) · 10−06 (2.17 ± 0.00) · 10−06 (2.07 ± 0.02) · 10−07
P = 1, followed by P = 0 then P = 2. However, when m = 4
accuracy increases with P . Overall, the accuracy CVT distributions
is similar to that of the perfect square lattice.

2.6.2. Robustness to perturbations
Following our investigation of regular Cartesian grids, Table 4

reports the statistics of small perturbations in a CVT point dis-
tribution. To clarify, we select a single representative mesh from
the collection that was characterized in Table 3, and over sev-
eral independent trials, we accumulate statistics of the errors that
arise in response to applying uniform randomdisplacements to the
initial positions of all quadrature points. The number of quadra-
ture points and lattice spacing correspond exactly with the square
lattices studied in the previous section. This procedure reveals that
CVT point distributions are robust to small disturbances in quadra-
ture point positions. Inmany cases, perturbations lower error, sim-
ilar to the one-dimensional result. Identical tests were carried out
for the other CVT point distributions, and the observed behaviors
are consistent.

3. Peridynamic projectile impact

The impact of a brittle target by a high speed projectile has
become a benchmark problem for peridynamics. In this section,
we use the impact problem as a prototype for investigating how
meshing affects fracture simulations. Although the state-based [2]
theory enables a wider range of elastic responses, the simpler
bond-based formulation of peridynamics is sufficient for the
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Fig. 5. Kinematic quantities that describe the motion of a peridynamic continuum
body as it deforms from its reference configuration (B0) to its current configuration
(B).

purpose of the present investigation, and we use it here. The no-
tation and model we summarize below is almost identical to the
Refs. [6,9].

3.1. Peridynamic theory of solid mechanics

The peridynamic theory of mechanics is based on an integro-
differential equation of motion,

ρ (x) ü (x, t) =


Hx

f (η, ξ) dVx′ + b (x, t) , (24)

whereρ (x) is themass density, f (η, ξ) is a pairwise force function,
and b (x, t) is a loading force density.

Relationships between the kinematic variables, including the
mechanical displacement u (x, t), relative reference position ξ (x),
and relative displacement η (x, t), are illustrated in Fig. 5. The
definition of the nonlocal neighborhood that has already been
given in Eq. (3) remains unchanged.

We employ the peridynamic microelastic brittle (PMB) [6]
material model, in which bonded particles exert a force on each
other that is analogous to that of an elastic spring,

f (η, ξ) = csµ
η + ξ

∥η + ξ∥
. (25)

Above, c is an elastic modulus, µ is a scalar damage function, and
the bond stretch s is the change in length of a bond relative to its
length in the reference configuration,

s =
∥ξ + η∥ − ∥ξ∥

∥ξ∥
. (26)

The elastic modulus c is fixed by matching the peridynamic
and classical energy expressions for a homogeneous deformation,
where the theories coincide. This approach yields [6]

c =
18K
πδ4

, (27)

where K is the bulk modulus of the elastic material.
In a brittle damage model, bonds stretched beyond a critical

extension (denoted s0) are broken irreversibly so that the particle
pair no longer interacts,

µ =


1, s


t ′


< s0 ∀ t ′ ∈ (0, t)
0, otherwise. (28)

The chosen value for s0 can be related to the fracture energy G0
through the relation [6],

G0 =
π

10
cs20δ

5. (29)
Fig. 6. The initial problem geometry consists of a high speed spherical projectile
incident upon a cylindrical plate of the same composition.

A repulsive short-range force is introduced in the current configu-
ration to prevent the overlap of moving material,

f SR (η, ξ) = g (η, ξ)
η + ξ

∥η + ξ∥
, (30)

where the force magnitude is given by

g (η, ξ) = min

0,

cSR

δ


∥η + ξ∥ − dSR


(31)

as has been done in other work [9,10]. The short-range interaction
modulus cSR is nonzero over the distance,

dSR = min

0.90

x − x′
 , 1.35


r̂ + r̂ ′


, (32)

that depends on the relative position of material points in the ref-
erence configuration and the fixed node radii r̂ and r̂ ′.

3.2. Problem setup

The initial problem geometry (depicted in Fig. 6) consists
of a high speed spherical projectile incident along the central
longitudinal axis of a cylindrical plate. The impactor has radius
r = 0.45 cm and speed ∥v∥ = 100m/s. The target has radius R =

3.75 cm and thickness H = 0.30 cm. The center of the projectile is
displaced by a distance d0 = 0.18 cm, which is slightly larger than
r + δ, from the top surface of the plate. Every node is assigned a
radius r̂ = 0.5 cm, that is used in calculating non-bonded forces.
As the simulation transpires, the impactor collides with the target
with both sustaining damage. The simulation is terminated at the
moment when the projectile, if unobstructed, would arrive at its
mirror position on the opposite side of the plate.

The bodies are designated to have the same composition, with
material parameters chosen identically to the Refs. [6,9,23]: the
mass density ρ = 2200 kgm−3, bulk modulus K = 1.4900 ×

1010 Nm−2, and horizon δ = 5 × 10−03 m. The chosen critical
stretch value s0 = 5 × 10−04 corresponds to a material with frac-
ture energyG0 ≈ 33.5 Jm−2. As suggested in Ref. [10], themodulus
for short range forces is selected so it is roughly equivalent to the
bulk elastic modulus of the material, specifically cSR = 15c.

Although our problem setup is shared with the Refs. [6,9,23],
our implementation differs in several important ways. First, our
projectile is modeled as a physical body that sustains damage
during the course of the simulation. This approach requires short
range forces to model contact and contrasts the idealized force
field used in previous work. Second, we use a simplified bond-
breaking criterion that is independent of the state of other bonds
in the system, rather than the damage-dependent critical stretch
suggested in [6,9]. Thus, material points that have sustained
damage manifest a relatively weaker material (for more see [15]).
Together, these factors account for the majority of discrepancies
between the fracture patterns shown here, and those published in
previous works.
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Table 5
Effects of spatial and temporal refinement on damage patterns in the brittle impact problem. All simulations use a simple cubic grid and an impact velocity of 100m/s.

1t = 2.0 × 10−8 1t = 1.0 × 10−8 1t = 0.5 × 10−8

m = 2

m = 3

m = 4
3.3. Solution method

We discretize the peridynamic equation of motion (24) using
the mesh-free ‘‘EMU’’ method [6,9], which approximates spatial
integrals using a composite quadrature rule,

ρiün
i ≈


xj∈Hxi

f

un
j − un

i , xj − xi

Vj + bn

i , (33)

and temporal derivatives using a central difference method,

ün
i =

un+1
i − 2un

i + un−1
i

(1t)2
+ O


(1t)2


. (34)

In these equations, superscripts denote the time step, and sub-
scripts indicate the nodewhere the quantity is evaluated. The error
term in the spatial integration method is formally shown [6] to be
O

(1x)2


for smooth solutions, but reverts to O (1x) in the pres-

ence of discontinuities. Throughout this section, our simulations
internally use a slightly higher value of δ than we report (to allevi-
ate numerical errors). The actual horizon used in these simulations
is 1e−8 length units longer than the values stated here.

3.4. Numerical results

The results reported here detail an investigation into the factors
that influence mesh dependent behavior. In the following, we
present a parametric study of the impact problem and highlight
qualitative differences in the fracture patterns that result from
refining the domains, changing the impact velocity, and using
irregular quadrature point distributions. Simulation runtimes are
listed in Appendix B.
3.4.1. Spatial and temporal refinement effects
The impact model simulated in Ref. [9], was able to show that

increasing the horizon at a fixed grid resolution leads to fracture
patterns that deviate from the mesh symmetry axes. We assume
the complementary view, that the horizon is a fixed constitutive
parameter, and demonstrate how the uniform refinement of a cu-
bic tensor product grid alters the outcome of the simulation (Ta-
ble 5). Grid refinement techniques for peridynamic brittle fracture
also appear in Refs. [14,15], where this mode of convergence is
termed m-convergence [12,13]. Because spatial and temporal ac-
curacy are linkedwithin our solution scheme, the following results
also display the effects of changing the time step length.

Corroborating the finding of Ref. [9], we observe that the level
of spatial detail can strongly influence the obtained damage fields.
The lowest resolution,m = 2, shows increasing damage as the iter-
ation interval is lengthened. This likely occurs because the damage
model, which has an implicit time-dependence in the bond stretch,
is increasingly overwhelmed by the larger displacements that tran-
spire. This strong response to time-step hints that the results with
m = 2 may not be reliable. There is little evidence of time step
sensitivity for m = 3, but the cracks that develop artificially con-
centrate along coordinate axes. Close inspection reveals that such
fissures are caused by short range interactions between free par-
ticles. These particles at the center of the target debond at initial
contact, and are directed outward along the coordinate axes. Be-
cause mesh points are aligned in rows, the free particles collide
with and dislodge their neighbors in a repeating pattern that prop-
agates to the edge of the target, bisecting it along the path. As a
result,m = 4 is the coarsest spatial resolution that simultaneously
yields fracture patterns that deviate from themesh symmetry axes,
and is insensitive to the time step duration. We also note that the
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Table 6
Effects of impactor speed on damage patterns in the brittle impact problem. All simulations were carried out with the same number of quadrature points (corresponding to
a simple cubic grid withm = 3) and time step 1t = 10−8 .

Simple cubic Perturbed simple cubic Centroidal Voronoi generators

Speed 50 m/s

Speed 100 m/s

Speed 200 m/s
broken symmetry observed in all of the fracture patterns is a di-
rect result of numerical errors in the solution scheme. A detailed
explanation of this behavior was provided in Ref. [15].

3.4.2. Impact velocity effects
In addition to the iteration interval, temporal stability is also af-

fected by the impact speed of the projectile. To understand this de-
pendence, we repeat the simulations: first with the impact speed
halved, then a second time with the impact speed doubled. While
we have demonstrated favorable outcomes using a mesh resolu-
tion of m = 4, we concentrate here on the coarser mesh that
has m = 3 and demands less computational work. Moreover,
this choice provides an opportunity to investigate the axis-aligned
cracking that was observed in the domain resolution study.

Existing solution schemes for peridynamic models have largely
been based on cubic Cartesian meshes. As demonstrated, the regu-
larity of these grids can introduce a directional bias into solutions,
resulting in fracture patterns that artificially track symmetries in
the mesh. To alleviate this behavior, it has been suggested [9] that
small perturbations be applied to the mesh points ‘‘as a way of
incorporating the inherent randomness in the distribution of de-
fects in real materials’’. This idea can be generalized to fully irregu-
lar quadrature point distributions, such as the CVT generators that
were introduced earlier in this work (see Section 2.6). CVT gener-
ators appear to be a promising alternative to tensor product grids
because they achieve similar accuracy, yet possess a robustness to
small position perturbations that the latter lacks. We continue by
comparing the response of cubic Cartesian, perturbed cubic Carte-
sian, and CVT generator point distributions to projectile impacts at
increasing speed.

Table 6 depicts the diverse family of damage patterns that
result from controlling the impact speed and the computational
mesh. At the largest (200m/s) and smallest (50m/s) impact
speeds, these simulations qualitatively show some agreement on
the overall amount of damage incurred by the target and the size of
fragments in the debris field. At the intermediate speed (100m/s),
the fracture patterns that are obtained differ substantially, with
the simulations using Cartesian grids showing a significantly
lower level of overall damage and larger fragment sizes than the
simulations based on the CVT generator mesh. However, it is the
CVT mesh that appears to most resemble to the high resolution
(m = 4) models in the mesh refinement study.

3.4.3. Variety in irregular grids
To demonstrate that the irregular grid results in the previous

section are typical, we repeat the simulations using several mesh
instances in Table 7. These runs have an impact speed of 100m/s,
time step 10−8 s, and the same number of grid points (correspond-
ing to the cubic Cartesian gridwithm = 3).While there is variation
in the fracture patterns, the fragment size distribution and the av-
erage damage are relatively consistent across runs.

4. Summary and conclusion

This work identified several meshing issues that arise in sim-
ulating peridynamic models. We began with a nonlocal elliptic
boundary value problem, andmanufactured a solution to facilitate
analysis of a numerical scheme. Using a one-dimensional exam-
ple, we illustrated the role of the model parameters, and linked
periodic trends in the solution quality indicators to the interaction
processing procedure. The two-dimensional example presented an
opportunity to investigate multiple ‘‘uniform’’ quadrature point
placement strategies. In this case, we found that a square Carte-
sian grid and a CVT generators support approximate solutionswith
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Table 7
Multiple realizations of the irregular grid types demonstrate the variety of fracture
patterns that each supports. All simulations contain the same number of grid points
(corresponding to a simple cubic grid with m = 3), use an impact velocity of
100m/s, and time step 1t = 10−8 s.

Perturbed simple cubic Centroidal Voronoi generators

Trial 1

Trial 2

Trial 3

Trial 4

similar accuracy. However, small perturbations in the quadrature
point positions have little effect on the accuracy of CVT mesh so-
lutions, but result in an immediate loss of quality for solutions on
square grids.

We then exercised the full bond-based peridynamic theory
of mechanics in a impact simulation with brittle fracture. We
provided evidence that the time and space domains contained
sufficient detail, then demonstrated how the computational mesh
exerts influence on the outcome of the simulations at intermediate
resolutions. The regularity of the cubic meshes was problematic,
resulting in cracks that propagate along lines of symmetry in the
mesh, while fracture patterns on the CVT generators contained
complex branching patterns that compared favorably to the
results obtained at higher resolutions. Repeated simulations of
the irregular grids displayed noticeably different crack paths, but
represent qualitatively similar behaviors.

The core of any peridynamic solution scheme is a quadrature
method that integrates nonlocal interactions within the peri-
dynamic horizon. Improvements to the accuracy of a quadra-
ture scheme may be obtained through modifying the number,
weighting, or position of sample points. Thiswork shows that care-
ful placement of grid points seems to eliminate any obvious signs of
mesh sensitivity without incurring additional computational costs
within the simulation. This is an important result because, inmany
cases, the added cost of generating point distributions (which was
several hours for the grids used in Section 3) is amortized over
several simulation runs that share the same geometry. Because
we have attempted to limit the scope of this work to investigat-
ing quadrature point placement, we have neglected the potential
gains in accuracy that are possible using a so-called ‘‘partial vol-
ume method’’ (e.g. [9,13]). A partial volume method can improve
integration accuracy by including assumptions about the geomet-
ric arrangement of sample points within the solution scheme, but
care must be taken so the new method does not introduce addi-
tional bias or errors into the simulation. Combined, it is hoped that
changing the position and weights of quadrature points will lead
to improved quadrature schemes without resorting to increasing
the number of quadrature points.

Peridynamic theory shows great promise in describing materi-
als phenomena that include evolving discontinuities. To fully re-
alize this promise it will be important to develop strategies that
ensure the computationalmesh exertsminimal interference on the
outcome of a simulation. It is hoped that this work is progress to-
wards that goal, and helps others in developing successful models
that accurately mimic the behavior of true mechanical systems.
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Appendix A. Integration error

The integration error expression (19) is obtained by combining
Eqs. (10) and (17),

b (xi) =

i+⌊m⌋
j=i+1


xj + xi

 xj − xi
1−P

1x

−

i−1
j=i−⌊m⌋


xj + xi

 xj − xi
1−P

1x (A.1)

where a uniform discretization has been introduced to divide the
one-dimensional domain into m = δ/1x sub-intervals of width
1x. We select an origin so that xi = i1x,

b (xi) = (1x)3−P


i+⌊m⌋
j=i+1

(j + i) |j − i|1−P

−

i−1
j=i−⌊m⌋

(j + i) |j − i|1−P


, (A.2)

then merge the two summations by shifting their limits,

b (xi) = (1x)3−P
i+⌊m⌋
j=i+1


(j + i) |j − i|1−P

− (j + i − ⌊m⌋ − 1) |j − i − ⌊m⌋ − 1|1−P . (A.3)
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Table B.8
Total serialized runtimes for the impact simulations in Section 3. The actual simulations are run in parallel using OpenMP, so these timings include a small overhead cost
that would not be present in a single processor run. The represented grid types are simple cubic (SC), simple cubic with random perturbation (RND), and centroidal Voronoi
generators (CVT).

Impact velocity (m/s) Time step (s) Grid type Resolution (m-value) Run time

100 0.5 × 10−8 SC 2 217min 18.922 s
100 1.0 × 10−8 SC 2 107min 12.683 s
100 2.0 × 10−8 SC 2 49min 52.611 s
100 0.5 × 10−8 SC 3 1864min 10.379 s
50 1.0 × 10−8 SC 3 1921min 05.558 s

100 1.0 × 10−8 SC 3 932min 46.746 s
100 2.0 × 10−8 SC 3 462min 53.558 s
200 1.0 × 10−8 SC 3 384min 45.274 s
100 1.0 × 10−8 CVT 3 939min 13.863 s
100 1.0 × 10−8 CVT 3 919min 52.121 s
100 1.0 × 10−8 CVT 3 938min 00.665 s
100 1.0 × 10−8 CVT 3 917min 13.780 s
100 1.0 × 10−8 RND 3 935min 56.995 s
100 1.0 × 10−8 RND 3 937min 02.418 s
100 1.0 × 10−8 RND 3 936min 20.317 s
100 1.0 × 10−8 RND 3 933min 43.913 s
100 0.5 × 10−8 SC 4 6491min 27.189 s
100 1.0 × 10−8 SC 4 3253min 52.351 s
100 2.0 × 10−8 SC 4 1629min 47.724 s
Finally, we define k = j − i and replace 1x using its definition,

b (xi) =


δ

m

3−P ⌊m⌋
k=1


(2i + k) |k|1−P

− (2i + k − ⌊m⌋ − 1) |k − ⌊m⌋ − 1|1−P , (A.4)

which achieves the result.

Appendix B. Simulation runtimes

See Table B.8.
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