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We present an adaptive high-order accurate time-stepping numerical scheme for the 
flow of vesicles suspended in Stokesian fluids. Our scheme can be summarized as an 
approximate implicit spectral deferred correction (SDC) method. Applying a fully-implicit 
SDC scheme to vesicle flows is prohibitively expensive. For this reason we introduce 
several approximations. Our scheme is based on a semi-implicit linearized low-order time 
stepping method. (Our discretization is spectrally accurate in space.) We expect that the 
accuracy can be arbitrary-order, but our examples suffer from order reduction which limits 
the observed accuracy to third-order. We also use invariant properties of vesicle flows, 
constant area and boundary length in two dimensions, to reduce the computational cost 
of error estimation for adaptive time stepping. We present results in two dimensions for 
single-vesicle flows, constricted geometry flows, converging flows, and flows in a Couette 
apparatus. We experimentally demonstrate that the proposed scheme enables automatic 
selection of the time step size and high-order accuracy.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Vesicles are deformable capsules filled with a viscous fluid. Vesicle flows refer to flow of vesicles that are suspended 
in a Stokesian fluid. Vesicles are differentiated from other capsules in the balance of forces in their interface. In particular, 
their boundary is locally inextensible (in 3D is locally incompressible). Vesicle flows find applications in many biological 
applications such as the simulation of biomembranes [47] and red blood cells [23,32,38,39,41].

The dynamics of a vesicle is governed by bending, tension (enforces inextensibility), hydrodynamic forces from other 
vesicles in the suspension, and possibly hydrodynamic forces from flow confinement boundary walls. Vesicle suspensions 
are modeled using the Stokes equations, a jump in the stress across each vesicle to match the interfacial forces on the 
membrane of the vesicle, and a no-slip boundary condition on the vesicles and the confinement walls.

A significant challenge in simulating vesicle flows is that their governing equations are stiff. One stiffness source is 
associated with the interfacial forces, bending forces, and inextensibility related tension forces (these depend mainly on 
the curvature of the vesicle). Another stiffness source is the hydrodynamic interaction between vesicles (these depend on 
the minimum distance between vesicles). A third stiffness source is the hydrodynamic interaction between vesicles and 
external boundary walls (these depend on the minimum distance between the vesicles and the wall). Therefore, to resolve 
the dynamics of a vesicle, it may be necessary to take a small time step when the vesicle has regions of large curvature, or 
when a vesicle approaches a boundary wall, or approaches another vesicle. However, a large time step may be taken when 
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a vesicle has a smooth boundary and is separated from all other vesicles and the boundary walls. These considerations 
necessitate that we use an adaptive time-stepping scheme, mostly for robustness of the code and to remove the need to 
manually select a time step size.

Another challenge in simulating vesicle flows is that maintaining good accuracy for long horizons requires a great num-
ber of time steps when using a low-order time-stepping method. One remedy to accumulating error is to use artificial 
forces and algorithms that correct each vesicle’s area and length (these quantities are conserved by the physics) [1,4,5,13]. 
However, these approaches may not successfully stabilize the dynamics if too large of a time step is taken. Alternatively, 
higher-order methods such as diagonally-implicit Runge–Kutta (DIRK) or implicit–explicit (IMEX) multistep can mitigate 
error accumulation over long simulation times. While DIRK is high-order, we are unaware of a formulation for a set of 
integro-differential equations, such as the ones that vesicle suspensions satisfy. Moreover, when applying many DIRK meth-
ods to stiff algebraic-differential equations, order reduction is often present [8]. While order reduction of DIRK methods 
can be reduced, we choose to develop high-order accurate methods with time-stepping methods that we have successfully 
used in our previous work: constant time step size IMEX multistep methods. Unfortunately, unless IMEX-Euler is used, these 
become unstable if the time step size is changed too quickly [22]. Therefore, we will be developing high-order solutions by 
iteratively applying an IMEX-Euler method.

In summary, the design goals for a time-stepping scheme for vesicle flows are to address stiffness with reasonable 
computational costs, allow for adaptivity, and enable high-order time marching (at least second-order). In the past (in 
other groups as well as our group), methodologies have addressed parts of the design goals above, but no method, to our 
knowledge, addresses all of them. In this paper, we propose a scheme that provides this capability.

Summary of the method and contributions. To address stiffness, we use our recent work in which wall–vesicle, vesicle–vesicle, 
and bending and tension self-interactions are treated implicitly [42]. There we used backward difference formulas (BDFs) 
with constant time step sizes. As we discussed, it is possible to extend BDF with adaptive time-stepping, but, since BDFs 
require the solution from multiple previous time step sizes, they become quite difficult to use in practice [22]. We develop 
a new high-order method that uses spectral deferred correction (SDC) to iteratively increase the order of a first-order time 
integrator. By introducing SDC, we are able to iteratively construct high-order solutions that only require the solution from 
the previous time step.

In addition, we propose a time-stepping error estimation specific to vesicle flows. The incompressibility and inextensibil-
ity conditions impose that two-dimensional vesicles preserve both their enclosed area and total length. Thus, errors in area 
enclosed by a vesicle and errors in its perimeter can be used to estimate the local truncation error. In this way we avoid 
forming multiple expensive solutions to estimate the local truncation error. We numerically verify that this estimate is valid 
by comparing it to the truncation error of the vesicle position.

Our contributions are summarized below.

• We propose an SDC formulation to construct high-order solutions of an integro-differential-algebraic equation that 
governs vesicle suspensions.

• We propose an adaptive time-stepping method that uses conserved quantities to estimate the local truncation error, 
therefore not requiring multiple numerical solutions to form this estimate.

• We conduct numerical experiments for several different flows involving multiple vesicles, confined flows, and long time 
horizons that demonstrate the behavior of our scheme.

Related work. There is a rich literature on numerical methods for Stokesian particulate flows. We only discuss some rep-
resentative time-stepping methods for vesicle flows and we omit details on the spatial discretization. Most methods for 
vesicle flows are based on integral equation formulations [43,44,46,49,54–56,59,60], but other formulations based on stencil 
discretizations also exist [6,19,33,34].

The time-stepping schemes used for vesicle flows can be grouped in three classes of methods. The first class is fully 
explicit methods, which often include a penalty formulation for the inextensibility constraint [27,33,34,46,49,54]. These are 
relatively easy to implement but a small time step is necessitated by the bending stiffness. Another class of methods treats 
self-interactions using linear semi-implicit time-stepping [44,55,59,60]. This addresses one main source of stiffness but they 
are fragile. No adaptive or higher than second-order scheme have been reported for these schemes. Finally, a third class of 
methods treat all the vesicle interactions using linearization and semi-implicit time-stepping. We are aware of two papers 
in this direction. In [60] a first-order backward Euler scheme is used (with no adaptivity). As we mentioned in our own 
work [42,45], we used a BDF scheme for vesicle flows that treats all interactions implicitly, but again, it is not adaptive and 
is accurate only up to second-order.

Finally, we briefly review the literature on SDC methods. SDC was first introduced by Dutt et al. [20]. SDC has been 
applied to partial differential equations [9,18,21,31,36,50,51], differential algebraic equations [12,30], and integro-differential 
equations [29], but not to vesicle flows. In [37], Minion was the first to apply SDC to implicit–explicit (IMEX) methods by 
studying the problem ẋ(t) = F E (x, t) + F I (x, t) where F E is non-stiff and F I is stiff. Unfortunately, our governing equations 
do not exhibit an additive splitting as non-stiff and stiff terms. Moreover, IMEX SDC often suffers from order reduction, 
meaning that a very small time step is required before the asymptotic convergence rate is achieved. We will see similar 
behavior in our work.
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Table 1
Index of frequently used notation.

Symbol Definition

N Number of points per vesicle
M Number of vesicles
Nt Number of time steps
γk Boundary of vesicle k
xk(s, t) Parameterization of γk at time t and parameterized in arclength s
σk(s, t) Tension of vesicle k at time t and parameterized in arclength s
� Boundary of the confined geometry
B(xk) Bending operator due to vesicle k
T (xk) Tension operator due to vesicle k
Div(xk) Surface divergence operator due to vesicle k
S(x j ,xk) Single-layer potential due to vesicle k and evaluated on vesicle j
D(x j ,�) Double-layer potential due to � and evaluated on vesicle j
v∞(x j) Background velocity due to a far-field condition
v(x j;xk) Velocity of vesicle j due to hydrodynamic forces from vesicle k
r(t; x̃) Residual of equation (8) due to the provisional solution x̃
p Number of Gauss–Lobatto points used to approximate r
ex j Error between the exact vesicle position and the provisional position x̃ j

eσ j Error between the exact vesicle tension and the provisional tension σ̃ j

A(t), L(t) Area and length of the vesicles at time t
e A , eL Relative error in area and length
ε Desired final tolerance for the area and length of the vesicles
βup ≥ 1 Maximum rate that the time step is increased per time step
βdown ≤ 1 Minimum rate that the time step is decreased per time step
α ≤ 1 Multiplicative safety factor for the new time step size

Algorithmically, SDC has been accelerated using several strategies. SDC can be parallelized by either assigning each 
iteration of SDC to its own processor [15,17,18,40], or by embedding SDC in a parareal or multigrid framework [21,36,50,
51]. We anticipate that similar parallelization strategies are possible for vesicle suspensions, but we do not report results 
at this time. Next, high-order (greater than first-order) methods can be used at each SDC iteration, and this is analyzed 
in [16] for the initial value problem y′ = f (y, t). Finally, by interpreting SDC as an iterative method that converges to the 
collocation scheme (a fully-implicit Runge–Kutta discretization), several methods of accelerating the convergence have been 
investigated [11,12,21,28,30,31,36,50–52,57,58]. However, as a first step towards applying SDC to vesicle suspensions, we 
investigate the use of a first-order method applied to a predetermined number of SDC iterations.

Limitations. The novelty of this work is to introduce a high-order adaptive time stepper. This addresses one of the limitations 
form our previous work [42], but also introduces new limitations.

• We cannot provide a proof on the convergence order of our scheme. We will see in Section 5 that each SDC iteration 
reduces the error significantly. However, when large numbers of SDC iterations are used, the asymptotic convergence 
rates are unclear. Many other groups have observed similar order reduction, and several methods of reducing its effect 
include Krylov deferred corrections [11,12,28,30,31], multilevel SDC [21,36,50,51], and diagonally implicit Runge–Kutta 
sweeps [57]. Understanding the asymptotic rates of convergence, and resolving the observed order reduction, could be 
used to further optimize the method for choosing optimal time step sizes.

• Currently, each vesicle must use the same time step size. Therefore, in flows with multiple vesicles, the time step size 
is controlled by the vesicle requiring the smallest time step. This can result in the actual global error being much less 
than the desired error (see Couette example). Simulations could be accelerated if each vesicle had its own time step 
size, resulting in a multirate time integrator.

Let us remark that we do not use adaptivity in space.

Outline of the paper. In Section 2, we briefly discuss SDC for initial value problems (IVPs), and then discuss how to extend 
SDC to vesicle suspensions. In Section 3, we discretize the differential and integral equations arising in the SDC framework, 
discuss preconditioning, and provide complexity estimates. Section 4 discusses our adaptive time-stepping strategy, and 
numerical results are presented in Section 5. Finally, we make concluding remarks in Section 6, and we reserve a more in 
depth formulation of our governing equations in the SDC framework in Appendix A.

Notation. In Table 1, we summarize the main notation used in this paper.

2. Formulation

In this section, we briefly summarize the SDC formulation for IVPs and then extend SDC to an integro-differential equa-
tion that governs vesicle dynamics. We first discuss the theory of SDC and then describe its numerical implementation in 
Section 3.
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2.1. Spectral deferred correction

In its original development [20], SDC iteratively constructed a high-order solution of the IVP

dx

dt
= f (x, t), t ∈ [0, T ], x(0) = x0. (1)

While classical deferred correction methods discretize the time derivative in (1), SDC uses a Picard integral to avoid unstable 
numerical differentiation. Equation (1) is reformulated as

x(t) = x0 +
t∫

0

f (x, τ )dτ , t ∈ [0, T ]. (2)

A time stepping scheme is applied to compute a numerical solution at p quadrature points in [tm, tm+1]. By interpolating at 
these quadrature points, a provisional solution x̃(t) is generated. Given this provisional solution x̃(t) of (2), the residual is 
defined as

r(t; x̃) = x(tm) − x̃(t) +
t∫

tm

f (x̃, τ )dτ , t ∈ [tm, tm+1]. (3)

The provisional solution at the p quadrature points is then used to approximate the integral in (3) with pth-order accuracy. 
The error e = x − x̃ satisfies

e(t) = r(t; x̃) +
t∫

tm

( f (x̃ + e, τ ) − f (x̃,τ ))dτ , t ∈ [tm, tm+1], (4)

and an approximation ẽ of e is computed, generally using the same numerical method used to compute x̃ . Finally, the 
provisional solution is updated to x̃ + ẽ and the procedure is repeated as many times as desired. The process of forming 
the residual r, approximating the error e, and updating the provisional solution is referred to as an SDC iteration or sweep. 
We note that a time stepping scheme forms a discrete provisional solution which does not have to be interpolated; instead, 
one forms discrete values at quadrature points which are then used to approximate the residual r.

The accuracy of SDC depends on the discretization of (2) and (4) and the accuracy of the quadrature rule used to 
estimate r(t; ̃x). An abstract error analysis for applying deferred correction methods to the operator equation F (y) = 0
has been performed in [7,35,48,53]. In [26], this abstract framework was applied to (1) and the main result is stated in 
Theorem 4.2. Here we formulate the result in terms of first-order corrections, which we will be using.

Proposition 2.1. Let x be the unique solution of (1), and x̃ be an order k approximation of x formed with a stable time integrator 
meaning that

‖x̃(T ) − x(T )‖ = O(	tk),

where the constant depends only on the derivatives of f and on T , but not on 	t. Assume the residual (3) is computed exactly. If the 
exact error e satisfying (4) is approximated with a first-order solution ẽ, then

‖ẽ(T ) + x̃(T ) − x(T )‖ = O(	tk+1).

However, since r is approximated with a quadrature rule, the asymptotic error is

‖ẽ(T ) + x̃(T ) − x(T )‖ = O(	tmin(k+1,
)),

where 
 is the quadrature’s order of accuracy.

Proposition 2.1 tells us that by estimating the error e with a first-order method, which is the only order we will con-
sider, the order of accuracy is increased by one, with the constraint that this convergence is limited by the accuracy of the 
quadrature rule for approximating (3). However, the theorem states nothing about the stability of SDC. In [20], the authors 
consider three discretizations of (2) and (4): fully explicit, fully implicit, and linear combinations of the two. We do not con-
sider explicit methods since the governing equations are stiff. The other two methods could be used for vesicle suspensions, 
but both would require solving non-linear equations.

We have successfully used a variant of IMEX methods for vesicle suspensions [42,44,55], and we couple these methods 
with SDC in this work. IMEX methods [3] are a family of time integrators that treat some terms (generally, linear) implicitly 
and other terms explicitly. IMEX methods for additive splittings ẋ(t) = FEXPLICIT(x, t) + F IMPLICIT(x, t) = F E (x, t) + F I (x, t) of (1)
were first applied to SDC by Minion [37]. We summarize the numerical results from [37] since their behavior resembles 
results that we will observe. First, the Van der Pol oscillator is considered in a non-stiff, mildly stiff, and stiff regime, and 
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Fig. 1. Two typical vesicle suspensions. Left: M vesicles are submerged in an unbounded shear flow. Right: 13 vesicles are in a bounded domain. In the 
right configuration, the flow is driven by Dirichlet boundary conditions on �.

the number of SDC iterations ranges from two to six. In the non-stiff regime, the error behaves according to Proposition 2.1. 
In the mildly stiff case, the correct asymptotic result is observed, but not until 	t is much smaller. In the stiff regime, 
the convergence behavior differs considerably from the formal error. This behavior is attributed to order reduction which 
is further analyzed. The author proceeds to claim that “the correct asymptotic convergence rates would be observed given 
sufficiently small 	t; however, this is not the relevant issue in most applications”.

An alternative interpretation of SDC which is often useful is as an iterative method that is converging to the solution of 
the fully-implicit Gaussian collocation scheme of (2). By using this interpretation, Krylov deferred correction methods [11,
12,28,30,31] can be applied, the stability and convergence properties of SDC can be analyzed and improved [57], and inexact 
and multilevel approximations can be made [21,36,50–52]. These methods have been shown to accelerate SDC convergence. 
However, in this first work on applying SDC to vesicle suspensions, we focus on using the simplest algorithm: we apply a 
preselected number of SDC iterations to a set of quadrature points which remain fixed at all the SDC iterations.

2.2. SDC for vesicle suspensions

Let {γ j}M
j=1 be a collection of vesicles parameterized by x j and with tension σ j (Fig. 1). We use the integro-differential 

equation derived in [55]. It expresses the balance of the bending and tension forces of the vesicle with the stress jump of 
the fluid across the vesicle membrane and is augmented by a constraint to enforce the inextensibility condition. In detail, 
the equations that govern the evolution of the vesicle suspensions is an equation for the velocity of the interface (7) and 
the vesicle surface inextensibility condition (6). The key term in these two equations is v(x j; xk)—the velocity of vesicle j
due to the hydrodynamic forces from vesicle k. This term is given by

v(x j;xk) = v∞(x j)δ j,k + S(x j,xk)(−B(xk)(xk) + T (xk)(σk)), (5)

where δ j,k is the Kronecker delta function,

S(x j,xk)(f) = 1

4π

∫
γk

(
− logρ + (x j − xk) ⊗ (x j − xk)

ρ2

)
f(xk)dsk,

ρ = ‖x j − xk‖,

B(xk)(f) = d4f

ds4
k

,

T (xk)(σk) = d

dsk

(
σk

dxk

dsk

)
,

sk is the arclength of γk , and v∞ is the background velocity (unconfined flows) or the velocity due to solid walls (confined 
flows). In the case of confined flows, we use the double-layer potential of an unknown density function η defined on the 
boundary of the solid walls. The extra equation comes from a non-slip boundary condition on the solid walls and the details 
are presented in [44]. We point out that v is not symmetric, meaning that v(x j; xk) 
= v(xk; x j) for all j 
= k, and S , B, T
are all linear in their second argument.

The notation we are using is chosen so that terms such as B(xm+1
k )(xm+1

k ) can be approximated as

B(xm
k )(xm+1

k ) = d4

ds4
k

xm+1
k .

The tension σ j acts as a Lagrange multiplier to satisfy the inextensibility constraint

Div(x j)

(
M∑

v(x j;xk)

)
= 0, (6)
k=1
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where

Div(x j)(f) = dx j

ds j
· df

ds j
,

which is also linear in its second argument. Equation (6) can be eliminated using the Schur complement of the tension to 
write σ j in terms of the positions xk , k = 1, . . . , M . Then, the vesicle velocity (5) can be written entirely in terms of x j and 
xk , and the no-slip boundary condition of vesicle j gives

dx j

dt
=

M∑
k=1

v(x j;xk), j = 1, . . . , M. (7)

The formulation (7) is easiest to present our numerical methods, but we in fact do not eliminate the tension in our imple-
mentation. The resulting changes to the SDC formulation are presented in Appendix A.

Following the SDC method, given the solution of (7) at time tm , the solution at some later time t satisfies

x j(t) = x j(tm) +
t∫

tm

M∑
k=1

v(x j;xk)dτ , t ∈ [tm, tm+1]. (8)

A provisional solution x̃ is formed at a set of quadrature nodes in [tm, tm+1] by using a time stepping method that we 
describe in Section 3.4. By interpolating this discrete solution (which is not done in practice), we can define the residual

r j(t; x̃) = x j(tm) − x̃ j(t) +
t∫

tm

M∑
k=1

v(x̃ j; x̃k)dτ , t ∈ [tm, tm+1], (9)

which is approximated by a quadrature formula defined in Section 3.3. Then, the error ex j = x j − x̃ j satisfies

ex j (t) = x j(tm) − x̃ j(t) +
t∫

tm

M∑
k=1

v(x̃ j + ex j ; x̃k + exk )dτ , t ∈ [tm, tm+1],

which we write using the residual r as

ex j (t) = r j(t; x̃) +
t∫

tm

M∑
k=1

(v(x̃ j + ex j ; x̃k + exk ) − v(x̃ j; x̃k))dτ , t ∈ [tm, tm+1]. (10)

Then, the solution of (10) is approximated by a function ẽx using the same time stepping method and interpolation scheme 
used to form x̃ . Finally, we update the new provisional solution as x̃ + ẽx . Again, this procedure of computing the resid-
ual (9), numerically solving (10) for the error, and updating the provisional solution is referred to as an SDC iteration. 
Assuming that we take a prediction step followed by nsdc first-order SDC iterations, and 
 is the quadrature error for com-
puting the residual r, from Proposition 2.1, we expect that the asymptotic rate of convergence is min(nsdc + 1, 
). However, 
we will see that order reduction is present and this asymptotic error is difficult to achieve unless nsdc ≤ 2. This has been 
analyzed in [57]; in particular, it is shown that order reduction for SDC is present in differential-algebraic problems and 
problems with a scale separation between non-stiff and highly stiff components. Both of these characteristics are present in 
our governing equations. We plan to introduce more sophisticated algorithms to reduce order reduction in future work.

3. Numerical scheme

In this section, we present our numerical scheme for solving (8), (9), and (10). Evaluating v involves layer potentials 
and Fourier differentiation, and for concentrated suspensions, this can be costly, especially when this work is extended to 
three dimensions. Moreover, high-order derivatives in the governing equations introduce stiffness, and this can result in 
order reduction. In this first implementation of SDC for vesicle suspensions, we opt to use the following strategy: we fix 
the number of SDC iterations and apply our previous first-order semi-implicit time integrator [42] to (8) and (10), and use 
standard quadrature to compute the residual defined in (9). In addition, there are several approximations when comparing 
our discretization of (10) with standard methods of discretizing (4). More expensive discretizations are possible, but we 
found that they did not improve the overall accuracy of the method. We also discuss how the block-diagonal preconditioner 
outlined in [42] is applied. We conclude with estimates of the overall work per time step as a function of the number of 
vesicles and the number of points per vesicle.
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3.1. Spatial discretization

Following our previous work [42,44,55], we use a Lagrangian formulation by marking each vesicle with N tracker points. 
Since vesicles are modeled as smooth closed curves, all the derivatives are computed spectrally using the fast Fourier 
transform (FFT). Near-singular integrals are handled using the near-singular integration scheme outlined in [42]. Finally, we 
use Alpert’s high-order Gauss-trapezoid quadrature rule [2] with accuracy O(h8 log h) to evaluate the single-layer potential, 
and the trapezoid rule for the double-layer potential which has spectral accuracy since its kernel is smooth.

3.2. Temporal discretization

A fully explicit discretization of (7) results in a stiff system for multiple reasons. A stiffness analysis in [55] reveals that 
the leading sources of stiffness, and the corresponding time step restrictions, are:

• S(x j, x j)B(x j)(x j) (self-hydrodynamic bending force) – 	t ∼ 	s3;
• S(x j, x j)T (x j)(x j) (self-hydrodynamic tension force) – 	t ∼ 	s;
• Div(x j)(x j) (self-inextensibility force) – 	t ∼ 	s;
• S(x j, xk)(B(xk)(xk) + T (xk)(σk)), j 
= k (inter-vesicle hydrodynamic forces) – depends on the inter-vesicle distance.

The leading sources of stiffness result from the intra-vesicle interactions; but, for concentrated suspensions, inter-vesicle 
interactions become significant and introduce stiffness. In future work, we plan to use spectral analysis to analyze the 
stiffness due to inter-vesicle interactions. In particular, we hope to find a relationship between the stable time step size and 
the distance between vesicles.

To address these multiple sources of stiffness, we use a variant of IMEX [3] time integrators. IMEX methods were de-
veloped for the problem ẋ(t) = F E (x) + F I (x), where F E is non-stiff and is treated explicitly, and F I is stiff and is treated 
implicitly. For problems with this additive splitting, the family of time integrators is

βxm+1 − x0

	t
= F E(xe) + F I (xm+1),

where x0 and xe are linear combinations of previous time steps and β > 0. Unfortunately, (7) does not have an additive 
splitting between stiff and non-stiff terms. However, we have observed first- and second-order convergence [42] for the 
time integrator

βxm+1
j − x0

j

	t
=

M∑
k=1

v(xe
j;xm+1

k ), j = 1, . . . , M,

where

v(xe
j;xm+1

k ) = S(xe
j,xe

k)(−B(xe
k)(xm+1

k ) + T (xe
k)(σ

m+1
k )).

Note that in this formulation, it is the operators involved in v, such as the bending B(xk) and the single-layer potential 
S(x j, xk), that are discretized explicitly at xe . In line with our previous work, we use the first-order method given by β = 1, 
x0 = xm , and xe = xm , and the second-order backward difference formula (BDF) given by β = 3/2, x0 = 2xm − 1/2xm−1, and 
xe = 2xm − xm−1.

3.3. Quadrature formula

SDC requires a quadrature formula to approximate (9), the residual of the Picard integral. The quadrature rule affects the 
accuracy of SDC (Proposition 2.1). However, the stability of SDC is also effected by the quadrature rule, and this has been 
investigated in depth in [9]. In order to achieve the highest possible accuracy, we could use Gaussian nodes; however, in 
order to avoid extrapolation, we would like both endpoints to be quadrature nodes. Therefore, we use Gauss–Lobatto points, 
tm = t1 < · · · < tp = tm+1, since they include both endpoints and have successfully been used by other groups [9,10,37], and 
have an order of accuracy of 2p −2. Alternatively, we could use Radau quadrature formula which include the right endpoint, 
but not the left endpoint.

For computational efficiency, the accuracy of the quadrature formula should not exceed the expected rate of convergence. 
This will become especially important in three dimensions since multiple variables must be stored at each of the quadrature 
nodes for future SDC iterations. In our numerical examples, we take p to be the smallest value such that the quadrature 
order of accuracy (in our case, 2p − 2) is greater than or equal to nsdc + 1 (the expected order of convergence of the time 
integrator). Once a quadrature formula for (8) is chosen, the result is a fully-implicit collocation scheme whose solution the 
SDC iteration attempts to converge towards.
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3.4. Picard integral discretization

Equations (8) and (10) have similar structure, and we take advantage of this structure in their discretizations. For adap-
tivity, we want a scheme that easily allows for variable time step sizes. For this reason, we use only first-order methods 
for (8) and (10). When desired, we use SDC iterations to increase the accuracy.

The first-order provisional solution is found at the substeps t1, . . . , tp by discretizing (8) as

xm+1
j = xm

j + 	tm

M∑
k=1

v(xm
j ;xm+1

k ), m = 1, . . . , p − 1, (11)

where 	tm = tm+1 − tm . This is exactly the first-order time integrator we introduced in [42]. As we march in time with (11), 
we save the variables required for near-singular integration for future SDC iterations. Then, we evaluate the residual (9)
using the Gauss–Lobatto quadrature rule.

In line with [37], which considers semi-implicit SDC methods, we would like to discretize (10) as

em+1
x j

= em
x j

+ rm+1
j − rm

j + 	tm

M∑
k=1

(v(x̃m
j + em

x j
; x̃m+1

k + em+1
xk

) − v(x̃m
j , x̃m+1

k )).

The issue with this formulation is that it requires additional storage and computations to find the velocity due to the vesicle 
parameterized by x̃m

j + em
x j

. Again, in three dimensions this restriction is even more prohibitive. We have experimented with 
other discretizations of (10). The simplest such one is

em+1
x j

= em
x j

+ rm+1
j − rm

j .

This discretization is consistent with the governing equations,1 but, experimentally, SDC converges only if a very small time 
step is used. To allow for larger time steps, we can include the implicit term in the discretization

em+1
x j

= em
x j

+ rm+1
j − rm

j + 	tm

M∑
k=1

(v(x̃m
j ; x̃m+1

k + em+1
xk

) − v(x̃m
j ; x̃m+1

k )), (12)

where we use a slight abuse of notation by defining

v(x̃m
j ; x̃m+1

k + em+1
xk

) = S(x̃m
j , x̃m

k )(−B(x̃m
k )(x̃m+1

k + em+1
xk

) + T (x̃m
k )(σm+1

k + em+1
σk

)).

(Note how none of the operators depend on the error e.) Appendix A presents this same discretization without the abuse 
of notation. While this discretization allows larger time steps, it does not converge to the solution of the fully-implicit 
discretization of (8) and is incompatible with the inextensibility constraint (see Appendix A). As an alternative to (12), an 
appropriate discretization of the error equation is

em+1
x j

= em
x j

+ rm+1
j − rm

j + 	tm

M∑
k=1

(v(x̃m+1
j ; x̃m+1

k + em+1
xk

) − v(x̃m+1
j ; x̃m+1

k )), (13)

where we are using the same abuse of notation. Note that (13) only requires evaluating the velocity field due to the vesicle 
configuration given by x̃m+1

j . Since these velocity fields are required to form residual r, no additional velocity fields need to 
be formed.

To summarize, the main steps for using SDC to solve (8) are

1. Find a first-order provisional solution x̃ at the Gauss–Lobatto quadrature points using (11).
2. Compute the residual r by approximating the integral in (9) with the Gauss–Lobatto quadrature rule.
3. Use (13) to approximate the error ẽ.
4. Define the new provisional solution to be x̃ + ẽ .
5. Repeat steps 2–5 nsdc times.

3.5. Preconditioning

Equations (11) and (13) are ill-conditioned and require a large number of GMRES iterations [55]. To reduce the cost of 
the linear solves, we used a block-diagonal preconditioner in [42] which is formed and factorized in matrix form at each 
time step. Using this preconditioner, the number of preconditioned GMRES iterations depends only on the magnitude of 
the inter-vesicle interactions, which in turn is a function of the proximity of the vesicles. For further savings, we freeze 

1 If em
x converges to 0, then rm+1

j = rm
j , and by (9), SDC has converged to the solution of the fully-implicit collocation discretization of (8).
j
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and factorize the preconditioner at the first Gauss–Lobatto point, and this preconditioner is used for all the subsequent 
Gauss–Lobatto points and SDC iterates. By freezing the preconditioner, there is a slight increase in the number of GMRES 
iterations as the solution is formed at the each subsequent Gauss–Lobatto substep. However, the savings is significant 
when compared to constructing and factorizing the preconditioner at each substep. Moreover, we only require one matrix 
factorization per time step, which is the number of factorizations required in the preconditioner we introduced in [42].

3.6. Complexity estimates

Here we summarize the cost of the most expensive algorithms required in our formulation.

• Matrix-vector multiplication: For unbounded flows, if M vesicles are each discretized with N points, the bending and 
tension calculations require O(MN log N) operations using the FFT, and the single-layer potential requires O(MN) op-
erations using the fast multipole method (FMM). If the solid wall is discretized with Nwall points, using the FMM, the 
matrix-vector multiplication requires O(MN log N + Nwall) operations.

• Computing the residual: Given a provisional solution x̃, its velocity v satisfies (7) and can be formed with a single 
matrix-vector multiplication. Therefore, computing the residual r requires p matrix-vector multiplications, one for each 
Gauss–Lobatto substep, and computing the residual requires O(p(MN log N + Nwall)) operations.

• Forming the provisional solution and SDC iterations: Equations (11) and (13) require solving the same linear system (only 
the right-hand sides are different), and our preconditioner results in a mesh-independent number of GMRES itera-
tions. Therefore, if ngmres total iterations are required to find the provisional solution, then nsdc SDC iterations require
O(ngmres p(nsdc + 1)(MN log N + Nwall)) operations.

• Forming the preconditioner: The preconditioner is computed and stored in matrix form and requires O(MN2 log N) oper-
ations per time step by using Fourier differentiation and the FFT. The preconditioner must be factorized which requires 
O(MN3) operations. This is computed only once per time step and is reused at all the additional Gauss–Lobatto quadra-
ture points. In two dimensions, this cost is acceptable since the number of unknowns on each vesicle is sufficiently 
small. However, in three dimensions, this cost is unacceptable and different preconditioners will need to be constructed.

4. Adaptive time stepping

During the course of a simulation, vesicles come close to each other and to confining walls. For instance, as a vesicle 
passes through a constriction (see Fig. 6), it can come very close to the solid wall and small time steps should be taken. 
Resolving multiple time scales is an important step towards a robust solver for vesicle suspensions for two reasons. First, 
the simulation is sped up since the largest possible time step is always taken, and second, we eliminate a trial-and-error 
procedure for finding a time step size that results in the desired tolerance.

A common strategy of an adaptive time step method is to control an estimate of the local truncation error [14,24,25]. 
One estimate is the difference of two numerical solutions x1 and x2. One choice for x1 and x2 is the numerical solution 
formed from a single time step of size 	t and one formed from two time steps of size 	t/2 (step-doubling). Another 
choice is to use solutions formed by two different numerical methods of different orders. For vesicle suspensions, we can 
instead use two invariants to estimate the local truncation error. We use the errors in area and length, which are invariant 
by the incompressibility and inextensibility conditions, to estimate the local truncation error. This estimate does not require 
forming multiple numerical solutions, and it can be computed with spectral accuracy since we use a Fourier representation 
for the vesicle boundary. Since a small error in area and length does not imply that the true error is small, we also perform 
a convergence study for the vesicle position in one of the numerical examples in Section 5. We will see that the error in 
position decays at the same rate as the error in area and length, and, therefore, they are justified as an estimate for the 
local truncation error.

We now outline how this estimate is used to accept or reject a time step, and how it selects a new time step size. Here 
we assume that 	t is sufficiently small that we are in the asymptotic regime described in Proposition 2.1. We will see that 
this is not always the case, and for this reason, we build safety factors, which we define at the end of this section, into the 
algorithm. Suppose we have a single vesicle2 at time t with area A(t), length L(t), and the desired tolerance for the global 
error is ε at the time horizon T = 1. We compute the solution at time t +	t using a kth-order time stepping scheme which 
results in a new area A(t + 	t) and length L(t + 	t). First, we check if the solution at time t + 	t satisfies

|A(t + 	t) − A(t)| ≤ A(t)	tε, and |L(t + 	t) − L(t)| ≤ L(t)	tε. (14)

If condition (14) is satisfied, we accept this solution and we increase the time step size so that we are taking the largest 
possible 	t such that (14) is satisfied for future time steps. If condition (14) is not satisfied, we reject this solution and we 
compute a new solution using a smaller time step size. Given a rejected time step size, one option would be to form a new 
provisional solution by interpolating the rejected solution to the new nodes. However, in our current implementation, we 
simply form the new provisional solution using (11).

2 If there are multiple vesicles, we choose the minimum requested time step size over all of the vesicles.
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Regardless of the acceptance or rejection of the solution at time t + 	t , a new time step size must be chosen. We first 
require estimates of the asymptotic constants of proportionality for the errors in area and length

C A = |A(t + 	t) − A(t)|
A(t)	tk+1

, and CL = |L(t + 	t) − L(t)|
L(t)	tk+1

.

We only consider the error in the area since the same argument can be applied to the error in length. The optimal time 
step size 	topt satisfies

|A(t + 	topt) − A(t)| = A(t)	toptε, (15)

and we also have the estimate

|A(t + 	topt) − A(t)| = C A A(t)	tk+1
opt . (16)

Equating (15) and (16), 	topt satisfies

C A	tk+1
opt = 	toptε.

Finally, using our estimate for C A , we have

|A(t + 	t) − A(t)|
A(t)	tk+1

	tk+1
opt = 	toptε,

which implies that our next time step size should be

	topt =
(

A(t)ε	t

|A(t + 	t) − A(t)|
)1/k

	t. (17)

A similar optimal time step size is computed based on the length and the smaller of these two time steps is selected for the 
next time step. We have also experimented with using the residual (9) to choose the optimal time step size. Unfortunately, 
due to the ill-conditioning of the governing equations, we found that the residual is an unreliable estimate of the truncation 
error. However, the residual can be used to observe if the SDC iteration is converging, and we observe this convergence in 
the reported examples.

When computing the optimal time step size (17), we assumed that asymptotic estimates could be used. However, we 
will see that the desired order of accuracy is often not achieved and the time step size (17) will not provide tight bounds 
for (14). Therefore, we place restrictions on the new time step size to increase the probability of the next time step being 
accepted. Using this strategy, we will see that for most simulations, the number of rejected time steps is acceptable and 
the desired tolerance is always achieved. First, we restrict the new time step size scaling to the interval [βdown, βup], where 
βdown < 1 and βup > 1. Next, we multiply the new time step size by a safety factor α1/k < 1 to increase the likelihood 
of the next time step size being accepted. Finally, we never increase the time step size if the previous time step size is 
rejected [25]. In summary, if the previous time step is accepted, the new time step size is

	tnew = α1/k min(βup	t,max(	topt, βdown	t)),

and if the previous time step is rejected, the new time step size is

	tnew = α1/k min(	t,max(	topt, βdown	t)).

The scaling factor α1/k is chosen so that

max

( |A(t + 	t) − A(t)|
A(t)

,
|L(t + 	t) − L(t)|

L(t)

)
≈ α	tε,

regardless of the order k. That is, with this scaling of α, the method tries to commit the same amount of error per time 
step, independent of the time stepping order.

The parameters α, βup, and βdown affect the overall efficiency of the method. For instance, if α is too large, then 	tnew
may be too large and the time steps will be rejected too often. However, if it is too small, the bounds in (14) will not be 
tight which will increase the total number of time steps. We have experimented with different values and have had success 
with α = 0.9, βup = 1.5 and βdown = 0.6. These values are used for all the numerical examples. We point out that if a 
sufficiently small tolerance ε is requested, the estimate (16) will be much more accurate, and βup and βdown will not play 
a role since only small changes to the time step size will be made. However, when larger tolerances are requested, (16) is 
less accurate, and without βup and βdown, the algorithm may choose unreasonable time step sizes.
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5. Results

We discuss the behavior of our different constant and adaptive time step size integrators for confined and unconfined 
flows. We are particularly interested in comparing our two second-order time integrators: BDF and nsdc = 1. However, it is 
important to note that only nsdc = 1 is compatible with an adaptive time step size. We are interested in problems whose 
dynamics exhibit multiple time scales, and problems with long time horizons. For such problems, it is beneficial that the 
largest possible time step is taken and that no trial-and-error procedure to achieve a desired tolerance is required. The main 
parameters are the number of points per vesicle, N , the number of points on the solid walls, Nwall, the number of constant 
size time steps, Nt , the number of SDC iterations, nsdc, the number of Gauss–Lobatto quadrature points, p, and the safety 
parameters, βup, βdown, and α defined in Section 4.

The simulations are performed in Matlab on a six-core 2.67 GHz Intel Xeon processor with 24 GB of memory. We use 
the following four numerical examples of increasing complexity.

• Relaxation flow (Tables 2–4 and Figs. 2–3): We consider stiffness due to self-interactions by simulating a single vesicle 
in a Stokes fluid with no background velocity. Motivated by Proposition 2.1, we would like each additional SDC iteration 
to result in an additional order of accuracy. The errors in area, length, and position are all reported. This example 
highlights the behavior of the scheme in the case of single-vesicle dynamics.

• Extensional flow (Tables 5–9 and Figs. 4–5): We consider stiffness due to vesicle–vesicle interactions by simulating two 
vesicles approaching each other in an extensional flow. We check the convergence of different time integrators and 
compare constant time step sizes and adaptive time step sizes. This example highlights the behavior of the scheme in 
the presence of vesicle–vesicle interactions.

• Stenosis flow (Table 10 and Figs. 6–8): We consider stiffness due to vesicle–wall interactions by simulating a single 
vesicle in a confined tube with a parabolic-profile flow at the intake and outtake. The vesicle passes through a nar-
row region where a smaller time step should be taken. We compare BDF with our new adaptive second-order time 
integrator. This example highlights the effect of different flow regimes on the time-stepper.

• Couette (Tables 11–14 and Figs. 9–12): We consider two different vesicle suspensions in a Couette apparatus, one with 
42 vesicles and the other with 150 vesicles. These examples involve all the stiff terms in the evolution equations.

We again emphasize that when using adaptive time stepping, no trial-and-error procedure is required to guarantee that 
the desired tolerance is achieved. Moreover, by using the area and length as estimates for the local truncation error, multiple 
numerical solutions do not need to be formed. We report results using our previously introduced time integrators [42], 
nsdc = 0 (first-order) and BDF (second-order), as well as results from our new time integrators, nsdc > 0 (order nsdc + 1). In 
our new time integrators, we use the fewest number of substeps so that the accuracy of the quadrature is at least as large 
as the expected accuracy of the time integrator. The BDF time-stepping scheme is incompatible with an adaptive time step 
size since it can become unstable if the time step size changes too rapidly [22]. Therefore, all the BDF runs are done with a 
constant time step size, which has been selected by trial-and-error.

In our results we report the number of calls to the FMM (the #fmm column in the tables), which are used in the 
computation of the hydrodynamic interactions (vesicle–vesicle and vesicle–wall) and are the most expensive part of our 
calculation. The second most expensive part is the factorization of the block-diagonal preconditioner. This part is amortized 
over the SDC iteration as it is computed exactly once per time step and used at all Gauss–Lobatto substeps.

All linear systems are solved with GMRES without restarts to a tolerance of 1E−10. We have experimented with smaller 
tolerances, but found that the condition number of the linear system is too large to justify using a smaller tolerance. We 
choose N and Nwall large enough so that the aliasing errors and quadrature error from the layer potentials are negligible. 
In this manner, as long as the error is not less than 1E−10, the error due to the time integrator dominates, which is the 
focus of this work. Finally, as described in Section 4, we set βup = 1.5, βdown = 0.6, and α = 0.9 in all of the experiments. 
Following [25], we never increase the time step size right after a rejected time step.

5.1. Relaxation flow

We consider a single vesicle, initialized as a three-to-one ellipse, in a Stokes fluid with no background velocity. We 
discretize the vesicle with N = 96 points and the time horizon is T = 2 which is large enough that the vesicle comes within 
10% of its steady state solution. In order to do a convergence study of the vesicle shape, we also ran the simulation with 
four SDC iterations and 4000 time steps. The difference in position at the time horizon of each run with this “exact” solution 
is reported as eP . For this example, there are no calls to the FMM because the self-interactions are evaluated directly. We 
report the errors and CPU timings in Tables 2–4.

We see that SDC quickly converges for a fixed 	t . However, the convergence stagnates after two SDC iterations, and 
this is due to other sources of error, such as the GMRES tolerance. As mentioned earlier, reducing the GMRES tolerance 
does not improve the results because the linear system that needs to be solved has a condition number around 1E+6. We 
have run the same simulation, but with a larger time horizon, larger time step sizes, and we used the LU decomposition of 
the system matrix rather than GMRES. In Fig. 2, we observe first-, second-, and third-order convergence. We first attempt 
to achieve fourth-order convergence using p = 3 Gauss–Lobatto points and 3 SDC iterations, but we cannot conclusively 
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Table 2
The errors in position, area, and length and the CPU time for a single vesicle in a relaxation flow with a constant time step size using nsdc = 0 (left) and
BDF (right). In both runs, p = 2 meaning that there are no substeps. The CPU times for Tables 2–4 are relative to the cheapest simulation (Nt = 125 and 
nsdc = 0) which took approximately 9.3 seconds. Both methods converge at the expected rate.

Nt nsdc = 0 BDF

eP e A eL CPU eP e A eL CPU

125 1.05E−4 3.43E−6 3.40E−5 1.0 1.11E−6 2.52E−8 9.49E−7 1.1
250 5.29E−5 1.74E−6 1.74E−5 1.9 2.10E−7 3.17E−9 1.74E−7 2.2
500 2.67E−5 8.75E−7 8.83E−6 3.6 4.18E−8 3.52E−10 2.84E−8 4.1

1000 1.34E−5 4.39E−7 4.44E−6 7.3 9.13E−9 8.59E−10 4.18E−9 8.3

Table 3
The errors in position, area, and length and the CPU time for a single vesicle in a relaxation flow with a constant time step size using nsdc = 1, p = 2
(left) and nsdc = 2, p = 3 (right). We achieve second-order convergence with one SDC iteration, but third-order convergence is only observed for the error 
in length with two SDC iterations. However, the errors in area and position have plateaued close to the GMRES tolerance. We observe that with nsdc = 2
and Nt = 125, we get 6E−9 error with 4.2 CPU cost whereas the BDF scheme (Table 2) with Nt = 1000 time steps gets a slightly larger error (9E−9) at 
8.3 CPU cost, about two times more expensive.

Nt nsdc = 1 nsdc = 2

eP e A eL CPU eP e A eL CPU

125 9.55E−7 1.61E−7 1.27E−7 1.7 6.26E−9 8.02E−10 2.91E−10 4.2
250 2.40E−7 4.21E−8 2.64E−8 2.7 9.44E−10 1.22E−9 3.89E−11 7.7
500 5.89E−8 1.02E−8 4.83E−9 5.7 1.41E−10 1.11E−9 4.12E−12 14.3

1000 1.43E−8 1.86E−9 7.93E−10 11.2 2.49E−11 1.04E−9 3.42E−13 29.2

Table 4
The errors in position, area, and length and the CPU time for a single vesicle in a relaxation flow with a constant time step size using nsdc = 3, p = 3
(left) and nsdc = 4, p = 4 (right). For this example, additional SDC iterations do not offer significant advantage as we have reached accuracy limits related 
to the conditioning of the system.

Nt nsdc = 3 nsdc = 4

eP e A eL CPU eP e A eL CPU

125 5.66E−10 1.71E−9 1.22E−11 5.1 1.36E−10 7.82E−10 1.05E−13 9.1
250 1.59E−10 1.25E−9 6.22E−13 10.0 3.39E−11 9.52E−10 4.89E−15 17.8
500 4.18E−11 1.08E−9 2.93E−13 19.4 8.43E−12 9.95E−10 4.11E−15 39.2

1000 1.08E−11 1.03E−9 1.11E−16 37.6 2.02E−12 1.01E−9 9.99E−15 71.6

Fig. 2. The maximum error in area and length for a single vesicle in a relaxation flow. We use p = 2 Gauss–Lobatto points for nsdc = 0 (first-order) and 
nsdc = 1 (second-order), and p = 3 Gauss–Lobatto points for nsdc = 2 (third-order), nsdc = 3 (fourth-order), and nsdc = 10 (fourth-order). We see that first-,
second-, and third-order convergence are achieved.

observe fourth-order convergence. Therefore, we also try using p = 3 Gauss–Lobatto points and 10 SDC iterations. In this 
manner, SDC has converged to the fully-implicit Gauss–Lobatto fourth-order collocation scheme of (8). We see that there is 
no improvement compared to the 3 SDC iterations, and, therefore, we expect that order reduction is limiting the convergence 
rate.

Achieving high-order convergence for stiff systems, such as those that govern vesicle suspensions, can be quite challeng-
ing. Several groups have developed methods to reduce the effect of order reduction [31,37,51,52,57]. These methods may 
result in asymptotic convergence rates for larger time step sizes, but they come at an expense of a larger memory footprint. 
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Fig. 3. The maximum error in area and length, and in position for a single vesicle in a relaxation flow with an adaptive time step size. In all the runs, the 
maximum error in area and length are achieved, and the error in position decays at the same rate.

Fig. 4. Two vesicles discretized with N = 96 points. The vesicles are initially placed symmetrically around the origin and the background velocity is 
v∞ = (−x, y).

Therefore, at this point, we only use one or two SDC iterations, and, therefore, will not achieve more than third-order con-
vergence. However, we are able to compare our two second-order methods: BDF and nsdc = 1 with and without a variable 
time step size. For this particular example, we see that our new time integrator (nsdc = 1) is slightly faster than our old 
time integrator (BDF). In addition, we see that the error in position converges at the same asymptotic rate as the error in 
area and length. This is also tested for an adaptive time step size in Fig. 3. This justifies our use of the error in area and 
length to choose an adaptive time step size.

5.2. Extensional flow

We consider two vesicles placed symmetrically around the origin with the background velocity v∞ = (−x, y) (Fig. 4). 
We discretize both vesicles with N = 96 points and the time horizon is T = 24 which is long enough that the distance 
between the vesicles at the time horizon is 0.4

√
	s, where 	s is the arclength spacing. We report results using zero, one, 

and two SDC iterations, and BDF in Tables 5 and 6. Similar to the previous example, for some of the results, the expected 
convergence rates are not observed. Other groups (see, for example, [37,57]) have observed that for stiff systems, very small 
time steps must be taken before the asymptotic convergence rates are achieved. As before, we expect that other sources of 
error will dominate once the temporal asymptotic regime is achieved.

As the vesicles approach one another, their shape is nearly static since their velocities decrease, and we expect that 
larger time step sizes can be taken. Therefore, we test our adaptive time stepping strategy using zero, one, and two SDC 
iterations. The errors in area and length, the number of accepted and rejected time steps, the number of FMM calls, and the 
CPU times are reported in Table 7 (nsdc = 0), Table 8 (nsdc = 1), and Table 9 (nsdc = 2). The adaptive time stepping strategy 
does a good job of attaining the desired tolerance while not having too many rejected time steps. In Fig. 5, we plot the time 
step size with the location of the rejected time steps (top left), and the errors in area and length for a constant time step 
size and for an adaptive time step size (top right). While the constant time step size commits a negligible amount of error 
shortly after the initial condition, too much error is accumulated at the beginning of the simulation. This indicates that a 
smaller time step should be taken near the start of the simulation and then it can be increased later in the simulation, 
which is exactly what we observe.

In Tables 5–9 and the bottom plot of Fig. 5, we compare the results of the different constant and adaptive time step size 
integrators. We see that our new second-order method, nsdc = 1, slightly outperforms our previous second-order method, 
BDF. Moreover, by using an adaptive time step size, there is a further reduction in the required CPU time. For example, to 
achieve a tolerance of 1E−6 with nsdc = 1, a constant time step size requires about 10 times more CPU time than if an 
adaptive time step size is used. Finally, we see that with our current implementation, taking two SDC iterations does not 
result in a computational speedup compared to nsdc = 1. Therefore, we only use one SDC iteration from this point onwards.
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Table 5
The errors in area and length and the CPU time for two vesicles in an extensional flow with a constant time step size using nsdc = 0 (left) and BDF
(right). The CPU times for Tables 5–9 are relative to the cheapest simulation (Nt = 300 and nsdc = 0) which took approximately 453 seconds. We achieve 
the desired first-order results, but second-order results are not yet achieved. With additional time steps, second-order convergence is achieved (see Table 7
in [42]).

Nt nsdc = 0 BDF

e A eL # fmm CPU e A eL # fmm CPU

300 2.47E−4 1.27E−3 4.21E3 1.0 3.80E−5 3.90E−4 4.53E3 1.2
600 1.24E−4 6.64E−4 8.31E3 2.1 9.84E−6 1.37E−4 8.90E3 2.0

1200 6.29E−5 3.46E−4 1.63E4 3.8 2.80E−6 4.45E−5 1.75E4 4.0
2400 3.20E−5 1.79E−4 3.17E4 7.8 1.04E−6 1.27E−5 3.45E4 7.6

Table 6
The errors in area and length and the CPU time for two vesicles in an extensional flow with a constant time step size using nsdc = 1, p = 2 (left) and 
nsdc = 2, p = 3 (right). While each SDC iteration reduces the error, the desired asymptotic rates of convergence are not achieved. As the ratios of successive 
errors are approaching the expected values, we expect that we have not taken enough time steps to observe the asymptotic rate of convergence. Also, we 
observe that our new time integrator, nsdc = 1, slightly outperforms BDF, even with a constant time step size (see Fig. 5).

Nt nsdc = 1 nsdc = 2

e A eL # fmm CPU e A eL # fmm CPU

300 4.99E−5 2.91E−5 1.04E4 2.5 2.01E−6 4.84E−7 2.93E4 7.2
600 1.63E−5 1.04E−5 1.96E4 4.9 7.35E−7 8.14E−8 5.58E4 13.3

1200 5.35E−6 3.61E−6 3.76E4 9.2 5.24E−7 1.45E−8 1.07E5 26.0
2400 1.94E−6 1.13E−6 7.22E4 16.0 5.04E−7 2.89E−9 2.10E5 51.2
4800 9.15E−7 3.07E−7 1.40E5 34.9 5.08E−7 6.11E−10 4.12E5 99.1

Table 7
The errors in area and length, the CPU time, and the number of accepted and rejected time steps for two vesicles in an extensional flow with an adaptive
time step size using nsdc = 0. For the larger tolerances, the desired tolerance is achieved in an acceptable CPU time. However, first-order methods require 
too small of time steps to achieve four digits of accuracy. With these smaller tolerances, higher-order methods should be used.

Tolerance e A eL Accepts Rejects # fmm CPU

1E−2 1.56E−4 9.97E−4 79 16 1.06E3 0.3
1E−3 3.95E−5 2.46E−4 549 25 5.11E3 1.3
1E−4 6.50E−6 3.60E−5 5068 25 4.19E4 11.2

Table 8
The errors in area and length, the CPU time, and the number of accepted and rejected time steps for two vesicles in an extensional flow with an adaptive
time step size and nsdc = 1, p = 2. This second-order method is able to achieve much smaller tolerances than nsdc = 0.

Tolerance e A eL Accepts Rejects # fmm CPU

1E−2 3.63E−4 3.81E−3 53 21 2.67E3 0.6
1E−3 2.93E−5 4.81E−4 60 26 2.97E3 0.7
1E−4 1.70E−5 4.83E−5 94 25 3.66E3 0.9
1E−5 3.91E−6 3.89E−6 210 36 6.20E3 1.4
1E−6 5.69E−7 2.95E−7 562 73 1.43E4 3.4

Table 9
The errors in area and length, the CPU time, and the number of accepted and rejected time steps for two vesicles in an extensional flow with an adaptive
time step size using nsdc = 2, p = 3. We see that there is no use to use more than one SDC iteration with our current implementation.

Tolerance e A eL Accepts Rejects # fmm CPU

1E−4 1.92E−5 2.36E−5 59 19 8.72E3 2.0
1E−5 4.23E−6 1.92E−6 87 13 9.77E3 2.3
1E−6 4.82E−7 1.12E−7 194 11 1.60E4 4.0

5.3. Stenosis flow

We consider a single vesicle discretized with N = 128 points in a constricted tube discretized with Nwall = 768 points 
(Fig. 6). The time horizon, T = 80, is chosen so that the vesicle is forced to pass through the constriction. In Fig. 7, we plot 
the errors in area and length using BDF with a constant time step size. Unsurprisingly, the errors increase when the vesicle 
passes through the constriction. In this interval, a smaller time step should be taken. Therefore, we test our second-order 
adaptive time stepper, nsdc = 1. The results are summarized in Table 10. In Fig. 8, we plot the time step size and compare 
the two second-order time integrators. As expected, we see that a small time step is taken as the vesicle passes through the 
constriction. In fact, the time step size varies over more than three orders of magnitude which indicates that this example 
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Fig. 5. Results for the extensional flow. Top left: The time step size using 4800 constant time step sizes (dashed) and an adaptive time step size (solid) 
with a tolerance of 1E−6 and nsdc = 1, p = 2. The open circles indicate the times when a time step is rejected. Top right: The errors in area and length 
using constant (dashed) and adaptive (solid) time steps, and the desired error (black) of the adaptive time step. Bottom: The error versus the required CPU 
time for the three different second-order time integrators.

Fig. 6. A single vesicle discretized with N = 128 points passing through a constricted tube (stenosis) discretized with Nwall = 768 points. The boundary 
condition at the intake and outtake has a parabolic-profile and on the rest of the solid wall is zero. On the right are magnifications of the vesicle as it 
passes through the constriction.

benefits greatly from an adaptive time step size. This is verified in right plot of Fig. 8 where we see that our new time 
integrator outperforms BDF. In particular, we see that adaptive nsdc = 1 achieves close to an extra digit of accuracy for a 
fixed CPU time.

5.4. Couette flow

As a final example, we consider two suspensions in a Couette apparatus, a test case we also considered in our previous 
work [42]. We first consider a suspension of 42 vesicles where the inner and outer boundaries are not aligned. This results 
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Fig. 7. The errors in area and length for a single vesicle in a constricted tube (stenosis) with a constant time step size using BDF. Notice that the error 
increases sharply as the vesicle passes through the constriction for both time step sizes. This indicates that a smaller time step size should be taken as the 
vesicle passes through the constriction.

Table 10
The errors in area and length, the CPU time, and the number of accepted and rejected time steps for a single vesicle in a constricted tube (stenosis) with 
an adaptive time step size using nsdc = 1 and p = 2 Gauss–Lobatto points. The CPU times are relative to the cheapest simulation (Nt = 800 and BDF) which 
took approximately 61 minutes.

Tolerance e A eL Accepts Rejects # fmm CPU

1E−1 6.29E−3 5.11E−3 95 37 3.33E3 0.5
1E−2 2.59E−3 1.37E−3 235 54 7.55E3 0.9
1E−3 7.11E−4 4.55E−4 697 46 1.83E4 2.3
1E−4 6.49E−5 5.62E−5 2289 93 5.62E4 7.2

Fig. 8. Results for the stenosis flow. Left: The time step size using adaptive nsdc = 1, p = 2 with a tolerance of 1E−3. Notice that the time step size 
decreases as the vesicle passes through the constriction. The open circles indicate the times when the time step size is rejected. Right: The error versus 
the required CPU time for BDF and adaptive nsdc = 1, p = 2. We see that with our adaptive time integrator, we are able to achieve close to an extra digit 
of accuracy for a fixed CPU time.

in a narrow region that vesicles must pass through. We take a time horizon of T = 10 corresponding to one full rotation of 
the inner boundary (Fig. 9). In Tables 11 and 12, we report convergence results for BDF and adaptive nsdc = 1. We can see 
in Fig. 10 that if the time step size is too large, then the method is either unstable or the error grows sharply and results in 
the error tolerance being exceeded. In particular, there is an interaction near t = 1 that needs to be resolved3 with a time 
size smaller than 	t = 3E−2. However, at later times, a larger time step size can be chosen. By taking an adaptive time 
step size, all the interactions are resolved appropriately, no trial-and-error procedure to find the required time step size is 
used, and the total error committed per time step is controlled. The time step size is illustrated in the left plot of Fig. 10.

Finally, we consider 150 vesicles in a Couette apparatus with a longer time horizon (Fig. 11); the inner boundary makes 
five full revolutions. In Tables 13 and 14, we report the convergence results for BDF and adaptive nsdc = 1. Similar to the 
42 vesicle simulation, in Fig. 12, we see that the errors exceed the tolerance or have sharp jumps if the time step size is 

3 This interaction is due to the blue vesicle with its neighboring vesicles and the solid wall.
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Fig. 9. 42 vesicles in a Couette apparatus. The outer boundary is stationary and the inner boundary has constant angular velocity and has completed one 
full rotation at T = 10. A single vesicle is colored in blue to help with the visualization. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Table 11
The errors in area and length and the CPU time for 42 vesicles in a Couette apparatus 
with a constant time step size using BDF. The CPU times for Tables 11 and 12 are 
relative to the cheapest simulation which took approximately 4 hours and 45 min-
utes. We demonstrate how a user often has to do several runs with different time 
step sizes before a desired tolerance (for this example, 1E−1) is achieved.

Nt e A eL # fmm CPU

160 tolerance exceeded at t = 0.8 7.76E4 0.1
240 tolerance exceeded at t = 0.8 1.13E4 0.2
280 tolerance exceeded at t = 1.1 1.39E4 0.2
286 tolerance exceeded at t = 2.0 1.79E4 0.3
288 5.10E−4 9.94E−2 4.01E4 1.0
320 3.76E−3 7.92E−2 4.34E4 1.1
640 9.48E−5 8.60E−4 8.34E4 2.1

1144 2.80E−4 2.17E−5 1.71E5 4.4

Table 12
The errors in area and length, the CPU time, and the number of accepted and rejected time steps for 42 vesicles in a Couette apparatus with an adaptive
time step size using nsdc = 1. Our new time integrator commits slightly less error for a fixed CPU time, but, more importantly, only a single simulation is 
required to achieve the desired tolerance.

Tolerance e A eL Accepts Rejects # fmm CPU

1E−1 1.24E−2 2.53E−2 69 23 3.07E4 0.7
1E−2 3.51E−3 2.15E−3 155 42 7.07E4 1.7

constant,4 and this shortcoming is removed by using an adaptive time step size. The time step size is illustrated in the 
right plot of Fig. 12. Notice that the time step size is small near t = 6, indicating that there is at least one vesicle that is 
committing a large error if too large of a time step is taken. The left plot of Fig. 12 indicates that this is exactly the case. 
Also notice that the BDF scheme is sensitive on the time step size. If we select Nt = 900 (Table 13), we fail at almost the 
cost of a successful simulation which is Nt = 920. Of course one can take much larger number of time steps, but the cost 
may be too expensive and the accuracy achieved may be unnecessary on an actual science run. On the other hand, the 
adaptive SDC behaves in a controlled way and delivers the desired accuracy.

In these simulations, if we could guess the right time step size a priori, a constant time step BDF scheme will be slightly 
faster than the adaptive SDC scheme. The main reason is that these flows do not have multiple time scales, two vesicles 
are always nearby or near the wall, thus dictating the same time step across the simulation. Indeed, in the adaptive time 
stepping results, the local truncation error is estimated by taking the maximum error committed over all the vesicles. 
Therefore, the time step size is set by the vesicle that commits the most error. We could easily change the setup (e.g., 
by making the rotation velocity of the Couette apparatus to be time dependent with large variation) to introduce multiple 
time scales, but we think our point of robustness is clear and has been demonstrated in the stenosis and extensional flow 
examples. Perhaps a faster method can be developed by allowing each vesicle to have its own time step size, that is, using 
a multirate time integrator, but this is beyond the scope of this paper.

6. Conclusions

We have developed and tested an adaptive time stepping method for an integro-differential equation formulation for 
the numerical simulation of vesicle suspensions. Adaptive time stepping alleviates the need for time step size selection 
which increases robustness, increases the performance in the presence of time scales that vary significantly throughout the 
simulation, and can be used to deliver any final-time accuracy in a controlled way.

4 The sharp jump near t = 6 is due to the interaction of the blue vesicle with its neighboring vesicles and the solid wall.
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Fig. 10. Left: The time step size using adaptive nsdc = 1, p = 2 with a tolerance of 1E−2. The open circles indicate the locations where a time step size is 
rejected. Right: The error of BDF and adaptive nsdc = 1 for 42 vesicles in a Couette apparatus. If a user specifies too large of a time step, then the error 
exceeds the tolerance of 1E−1. By using an adaptive time step size, the error committed per time step is controlled.

Fig. 11. 150 vesicles in a Couette apparatus. The outer boundary is stationary and the inner boundary has constant angular velocity and has completed five 
full rotations at T = 50. A single vesicle is colored in blue to help with the visualization. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Table 13
The errors in area and length and the CPU time for 150 vesicles in a Couette appara-
tus with a constant time step size using BDF. The CPU times for Tables 13 and 14 are 
relative to the cheapest successful simulation (Nt = 920) which took approximately 
71.7 hours. We demonstrate how a user often has to do several runs with different 
time step sizes before a desired tolerance (for this example, 1E−1) is achieved.

Nt e A eL # fmm CPU

500 tolerance exceeded at t = 1.2 7.35E4 0.01
750 tolerance exceeded at t = 5.7 1.76E5 0.19
850 tolerance exceeded at t = 7.5 2.29E5 0.24
900 tolerance exceeded at t = 38.1 6.94E5 0.78
920 1.55E−2 7.15E−2 8.91E5 1.0

1000 8.21E−3 4.42E−2 8.71E5 1.1

Table 14
The errors in area and length, the CPU time, and the number of accepted and rejected time steps for 150 vesicles in a Couette apparatus with an adaptive
time step size using nsdc = 1.

Tolerance e A eL Accepts Rejects # fmm CPU

3E−1 3.77E−2 5.13E−2 469 135 1.25E6 1.5
1E−1 1.65E−2 1.50E−2 803 153 2.00E6 2.1

To select the time step size, we followed the standard strategy of estimating the local truncation error and then adjusting 
the time step size so that the same amount of error is committed per time step. Standard methods require the computation 
of more accurate provisional solutions, which can be very expensive in our context. Instead, we introduced a technique 
where the error in area and length of the vesicles, which are invariant for vesicles, are used to estimate the local truncation 
error—basically for free. We justified the use of these invariants by (empirically) showing that the error in position decays at 
the same rate as the errors in area and length. While this method proved to be reliable, it can only be applied to problems 
with measurable invariants. But many other particulate flows share similar properties; for example, any non-permeable 
capsule filled with an incompressible fluid must preserve its volume.

To allow for larger time steps and longer time horizons, we introduced new high-order time integrators based on spec-
tral deferred corrections (SDC). An advantage of these integrators is that, in contrast to our previous second-order integrator, 
BDF, they are compatible with an adaptive time step size. This time integrator is accelerated using the fast multipole method 
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Fig. 12. Left: The time step size as a function of time for the adaptive nsdc = 1 with a tolerance of 3E−1. The open circles indicate the locations where a 
time step size is rejected. Right: The error of BDF and adaptive nsdc = 1 for 150 vesicles in a Couette apparatus. If a user specifies too large of a time step, 
then the error exceeds the tolerance of 1E−1. Moreover, even if the tolerance is not exceeded, there still are instances when the error quickly grows. For 
instance, near times t = 2 and t = 6. By using an adaptive time step size, the amount of error committed per time step is controlled.

and a preconditioner that is factored once per time step, and then frozen for all the Gauss–Lobatto substeps and SDC iter-
ations. To the best of our knowledge, this work is the first to apply IMEX methods coupled with SDC to a two-dimensional 
integro-differential equation.

These contributions are a major step towards the development of a robust solver for vesicle suspensions, but several 
other features need to be introduced.

• Theoretical results, in particular the convergence rates of SDC, need to be developed. This will allow us to take the 
largest possible time step size given the user specified tolerance. Since the governing equations for vesicle suspen-
sion are very stiff, order reduction is expected and observed. There are methods to remove order reduction such as 
Krylov deferred correction [11,12,28,30,31] and multilevel SDC [21,36,51]. Another possible direction to accelerate the 
method is to use inexact SDC [36,51,52]. To the best of our knowledge, none of these methods have been applied to 
integro-differential equations, such as those that govern vesicle suspensions.

• Many vesicle suspensions could benefit from a time integrator that treats each vesicle with its own time step size, or 
a multirate time integrator. This is apparent in the Couette example where the actual error was not very tight to the 
desired tolerance.

• All of our results are two-dimensional. However, none of the methods that we have introduced in this paper are re-
stricted to two dimensions. In particular, the volume and a surface area of a three-dimensional vesicle can be accurately 
computed using its spherical harmonic representation [56]. Performing three-dimensional simulations only requires a 
careful implementation of the methods and the development of suitable preconditioners.
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Appendix A. Complete SDC formulation

Here we write our SDC formulation for the unbounded vesicle formulation that includes the tension σ j . We do not use 
the notation v(x j; xk) to help clarify the discretization of the prediction and SDC equations. Given the solution at time tm , 
let x̃ and σ̃ be a provisional solution of

x j(t) = x j(tm) +
t∫

tm

(
v∞(x j) +

M∑
k=1

S(x j,xk)(−B(xk)(xk) + T (xk)(σk))

)
dτ , t ∈ [tm, tm+1], (18)

which can be formed by a time stepping method followed by an interpolation step. Then, the residual for t ∈ [tm, tm+1] is
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r j(t; x̃, σ̃) = x̃ j(tm) − x̃ j(t) +
t∫

tm

(
v∞(x̃ j) +

M∑
k=1

S(x̃ j, x̃k)(−B(x̃k)(x̃k) + T (x̃k)(σ̃k))

)
dτ .

As before, the residual is approximated with a quadrature rule, and, therefore, the interpolation step is not required in 
practice. The error in the position is ex j = x j − x̃ j , and the error in tension is eσ j = σ j − σ̃ j . Substituting the errors into (18), 
for t ∈ [tm, tm+1],

ex j (t) = r j(tm; x̃ j, σ̃ j) +
t∫

tm

(v∞(x̃ j + ex j ) − v∞(x̃ j))dτ

−
t∫

tm

M∑
k=1

(
S(x̃ j + ex j , x̃k + exk )B(x̃k + exk ) − S(x̃ j, x̃k)B(x̃k)

)
(x̃k)dτ

+
t∫

tm

M∑
k=1

(
S(x̃ j + ex j , x̃k + exk )T (x̃k + exk ) − S(x̃ j, x̃k)T (x̃k)

)
(σ̃k)dτ

+
t∫

tm

M∑
k=1

S(x̃ j + ex j , x̃k + exk )(−B(x̃k + exk )(exk ) + T (x̃k + exk )(eσk ))dτ . (19)

For confined flows, v∞ depends on yet another variable, a density function defined on the solid walls �, which we denote 
by η. The dependence is through a double-layer potential D(x̃ j, �). In this case, the term involving v∞ in (19) becomes

t∫
tm

(D(x̃ j + ex j ,�) −D(x̃ j,�))(η)dτ , t ∈ [tm, tm+1],

and the final term in (19) includes the term D(x̃ j + ex j , �)(eηk
). The additional equation required, since we have introduced 

the new variable η, is a no-slip boundary condition on the solid walls.
The inextensibility constraint (6) is

0 = Div(x j)

(
v∞(x j) +

M∑
k=1

S(x j,xk)(−B(xk)(xk) + T (xk)(σk))

)

= dx j

ds
· d

ds

(
v∞(x j) +

M∑
k=1

S(x j,xk)(−B(xk)(xk) + T (xk)(σk))

)
, (20)

and the errors satisfy

0 = Div(x̃ j + ex j )

(
v∞(x j) +

M∑
k=1

S(x̃ j + ex j , x̃k + exk )
(−B(x̃k + exk )(x̃k + exk ) + T (x̃k + exk )(σ̃k + eσk )

))
. (21)

A.1. Discretization

Using first-order IMEX time stepping [42], the provisional solution is found at the Gauss–Lobatto quadrature points 
tm = t1 < · · · < tp = tm+1 by discretizing (18) and (20) as

xm+1
j = xm

j + 	tm

(
v∞(xm

j ) +
M∑

k=1

S(xm
j ,xm

k )(−B(xm
k )(xm+1

k ) + T (xm
k )(σm+1

k ))

)
, m = 1, . . . , p − 1,

where 	tm = tm+1 − tm , and

Div(xm
j )

(
M∑

k=1

S(xm
j ,xm

k )(−B(xm
k )(xm+1

k ) + T (xm
k )(σm+1

k ))

)
= 0, m = 1, . . . , p − 1.

For m = 1, . . . , p − 1, the SDC updates (19) and (21) are discretized as
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em+1
x j

= em
x j

+ rm+1
j − rm

j + 	tm

(
M∑

k=1

S(x̃m+1
j , x̃m+1

k )
(
−B(x̃m+1

k )(em+1
xk

) + T (x̃m+1
k )(em+1

σk
)
))

,

and

Div(x̃m+1
j )

(
M∑

k=1

S(x̃m+1
j , x̃m+1

k )
(
−B(x̃m+1

k )(em+1
xk

) + T (x̃m+1
k )(em+1

σk
)
))

= −Div(x̃m+1
j )

(
v∞(x̃m+1

j ) +
M∑

k=1

S(x̃m+1
j , x̃m+1

k )
(
−B(x̃m+1

k )(x̃m+1
k ) + T (x̃m+1

k )(σ̃m+1
k )

))
.

With this discretization of (21), we see that if em
xk

= 0 and em
σk

= 0, then

Div(x̃m+1
j )

(
v∞(x̃m+1

j ) +
M∑

k=1

S(x̃m+1
j , x̃m+1

k )
(
−B(x̃m+1

k )(x̃m+1
k ) + T (x̃m+1

k )(σ̃m+1
k )

))
= 0,

which means that

Div(x̃m
j )

(
M∑

k=1

v(x̃m
j ; x̃m

k )

)
= 0, m = 1, . . . , p.

In other words, by using the discretization (13), the fixed point of the SDC iteration exactly satisfies the inextensibility 
condition, in addition to converging to the solution of the fully-implicit collocation scheme of (18).
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