
Optimal Expected-Time Algorithms for
Closest Point Problems
JON LOUIS BENTLEY
Carnegie-Mellon University
BRUCE W. WEIDE
The Ohio State Univers)ty
and
ANDREW C YAO
Stanford University

Geometric closest potnt problems deal with the proxLmity relationships in k-dimensional point sets.
Examples of closest point problems include building minimum spanning trees, nearest neighbor
searching, and triangulation constructmn Shamos and Hoey [17] have shown how the Voronoi
dtagram can be used to solve a number of planar closest point problems in optimal worst case tune.
In this paper we extend thmr work by giving optimal expected.trine algorithms for solving a number
of closest point problems in k-space, including nearest neighbor searching, finding all nearest
neighbors, and computing planar minimum spanning trees. In addition to establishing theoretical
bounds, the algorithms in this paper can be implemented to solve practical problems very efficiently.

Key Words and Phrases' computational geometry, closest point problems, minunum spanning trees,
nearest neighbor searching, optimal algorithms, probabfllstm analysis of algorithms, Voronoi diagrams
CR Categories: 3.74, 5 25, 5.31, 5.32

1. INTRODUCTION

S h a m o s a n d H o e y [17] have col lected and s tud ied a group of p r o b l e m s in

c o m p u t a t i o n a l geome t ry t h a t t hey refer to as closest p o i n t problems . P r o b l e m s in
this set are usua l ly def ined on po in t sets in E u c l i d e a n space a n d inc lude such
c o m p u t a t i o n a l tasks as nea r e s t ne ighbo r searching, f ind ing all n e a r e s t n e i g h b o r
pairs, and cons t ruc t i ng Voronoi d iagrams. T h e mer i t s of s t u d y i n g these p r o b l e m s
as a set have b e e n p roved r epea t ed ly s ince the class was f irst def ined. N o t on ly
do the var ious p r o b l e m s of ten arise in the same app l i ca t ion areas, b u t t i m e a n d
aga in we have seen t h a t advances m a d e in the c o m p u t a t i o n a l eff iciency of a n
a lgo r i t hm for one of the p r o b l e m s can be appl ied to increase the c o m p u t a t i o n a l

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notme is given that copying is by permission of the Association
for Computing Machmery. To copy otherwise, or to repubhsh, requires a fee and/or specific
permission.
This work was supported m part by the Office of Naval Research under Contract N00014-76-C-0370
and in part by the National Science Foundation under Grants MCS-77-05313 and MCS-79-12688.
Author's addresses: J. L. Bentley, Departments of Computer Science and Mathematics, Carnegie-
Mellon Umverslty, Pittsburgh, PA 15213, B. W. Welde, Department of Computer and Information
Scmnce, The Ohio State University, Columbus, OH 43210; A. C. Yao, Computer Science Department,
Stanford University, Stanford, CA 94305.
© 1980 ACM 0098-3500/80/1200-0563 $00.75

ACM Transactions on Mathematical Software, Vol 6, No 4, December 1980, Pages 563-580

564 J.L. Bentley, B. W. We=de, and A. C Yao

efficiency of others. In this paper we continue in this spirit by showing how the
technique of "cells" can be used to produce optimal expected-time algorithms for
many closest point problems.

All of the closest point problems that we will study in this paper have as input
a set S of n points in Euclidean k-space. The nearest neighbor searching problem
calls for organizing the set S into a data structure such that subsequent queries
asking for the nearest point in S to a new point can be answered quickly. The all
nearest neighbors problem is similar: it calls for finding for each point in S its
nearest neighbor among the other points of S. Both of these problems arise in
statistics, data analysis, and information retrieval. A problem similar to the
nearest neighbor problems is that of finding the closest pair in a point set: that
pair of points realizing the minimum interpoint distance in the set. The minimum
spanning tree (or MST) problem calls for finding a tree connecting the points of
the set with minimum total edge length. This problem arises in statistics, image
processing, and communication and transport networks. The most complicated
closest point problem that we will investigate in this paper is the problem of
constructing the Voronoi diagram of a point set. This problem, along with its
applications, is described in Section 3. All of the problems that we have just
mentioned are described in great detail by Shamos [16]; he also discusses many
of their applications.

Much previous work has been done on closest point problems. The seminal
paper in this field is the classic work of Shamos and Hoey [17] in which the
problems are defined and a number of optimal worst case algorithms for planar
point sets are given. Algorithms for closest point problems in higher dimensional
spaces have been given by Bentley [2], A. Yao [20], and Yuval [21]. Randomized
algorithms for the closest pair problem have been given by Rabin [14] and Weide
[18]; Fortune and Hopcroft [7] have recently shown that the speedup of the fast
closest pair algorithms was not due to their randomized nature alone, but also to
the model of computation employed (which allowed floor functions). Additional
results on closest point problems are given by Preparata and Hong [13] and
Lipton and Tarjan [11].

In this paper we study closest point problems from a viewpoint not taken in
any of the above papers. We assume that the point sets are randomly drawn from
some "bounded" underlying distribution, and then use the cell technique I to give
fast expected-time algorithms for many closest point problems. In Sections 2 and
3 we illustrate this idea by applying it to two fundamental closest point problems
(nearest neighbor searching and Voronoi diagram construction) under the very
restrictive assumption that the points are drawn uniformly from the unit square.
In Section 4 we extend these results to other planar closest point problems and
to point sets drawn from a wide class of distributions. In Section 5 we extend our
algorithms to problems in Euclidean k-space. Most of the algorithms we present
solve a problem on n inputs in expected time proportional to n, and all searching
structures we give have constant expected retrieval time; these results are
therefore optimal by the trivial lower bounds. Having thus resolved the primary

1 A discussion of the application of the cell techmque to other geometric problems can be found in
Bentley and Friedman [4, Section 1.3].

ACM Transactlona on Mathematical Software, Vol 6, No 4, December 1980

Optimal Expected-Ttme Algorithms for Closest Point Problems ° 565

theoretical issues, we turn to implementation considerations in Section 6. Con-
clusions and directions for further research are then offered in Section 7.

Before proceeding to the body of the paper, it is important to state its goals
clearly. The primary aim of the algorithms we will see is to establish theoretical
results, displaying a number of best known (and many optimal) algorithms. The
secondary aim, however, is to exhibit a general method for solving closest point
problems that is quite practical. We therefore discuss the algorithms at a theo-
retical level in Sections 2 through 5, and then turn to implementation issues in
Section 6.

2. NEAREST NEIGHBOR SEARCHING

The problem that is easiest to state and most clearly illustrates the cell method
is nearest neighbor searching, sometimes called the post office problem. Given
n points in Euclidean space, we are asked to preprocess the points in time P (n)
in such a way that for a new query point we can determine in time Q (n) which
point of the original set is closest to it. Lipton and Tarjan [11] describe a
{complicated) structure for solving the planar problem with P(n) -~ O(n log n)
and Q (n) = O (log n) in the worst case, but one might expect that on the average
we can do better. In fact, we will see that for a large class of distributions of
points, the expected values of P(n) and Q(n) can be made to be O(n) and O(1),
respectively. Although we initially restrict our attention to this apparently simple
problem (and the planar case at that), the techniques used also apply to other
closest point problems, which we investigate in later sections.

We first consider the problem of nearest neighbor searching in the plane, where
the points (both the original n points and the query point) are chosen indepen-
dently from a uniform distribution over the unit square. The idea of the prepro-
cessing step is to assign each point to a small square (bin or cell) of area C/n, so
that the expected number of points in each bin is C; we refer to C as the cell
density. This step is easily done by creating an array of size (n/C) 1/2 by (n/C) 1/2
that holds pointers to the lists of points in each bin.

To process a query point, we search the cell to which it would be assigned. If
that cell is empty, then we start searching the cells surrounding it in an expanding
pattern until a point is found. Once we have one point, we are guaranteed that
there is no need to search any bin that does not intersect the circle of radius
equal to the distance to the first point found and centered at the query point.
Figure 1 shows how one spirallike search might proceed for the query point in the
middle of the circle. Once the point in the northeast neighbor is found, only bins
intersecting the circle must be searched. Each of these is marked in Figure 1 with
an integer denoting the order in which it was visited. In order to make this test
easy, we suppose that all bins that lie within that distance of the query point in
either coordinate are examined, making the number of cell accesses slightly larger
than necessary but simplifying the specification of how the appropriate bins are
to be found.

It is clear that preprocessing, which consists of assigning each point to the
appropriate bin, can be accomplished in linear time if computation of the floor
function in constant time is allowed. This assumption is necessary to solve most
of the closest point problems in o(n log n) time because lower bounds propor-

ACM Transact ions on Mathematwal Software, Vol. 6, No 4, December 1980

566 J. L Bentley, B. W. Wezde, and A. C. Yao

12 6 ~ 2 11

13~7__ 8 9// 10

14 15 16

Fig. 1 Spiral neares t ne ighbor search us ing cells.

tional to n log n are known for many of them in the "decision tree with linear
functions" model of computation. The following theorem shows tha t spiral search
is indeed a constant- t ime solution to the nearest neighbor searching problem.

THEOREM 1. I f n points are chosen independently from a uniform distribu-
tion on the unit square, then spiral search finds the nearest neighbor of a query
point in constant expected time.

PROOF. Certain notat ion is required in this proof. We first define the concept
of layers of cells surrounding the query point. We say tha t the cell containing the
query point is in layer 1, the 8 cells surrounding tha t are in layer 2, the 16 cells
surrounding those are in layer 3, and so on. In general, for any k _ 1, the k th
layer contains exactly 8(k - 1) cells and there are (2k - 1) 2 _ 4k 2 cells on or
within layer k. We will also use in our proof the constant

q = C/n.

Since the number of cells in the s t ructure is n/C, q is the probabil i ty of a point
being placed in a certain fixed cell. The probabil i ty tha t any part icular point does
not go into a certain fixed cell is (1 - q), and the probabil i ty tha t a part icular cell
is empty is

(1 - q) " = (1 - C/n)" < e -C

because it is empty if and only if all n points go elsewhere. (We use here the
inequali ty (1 + x/n)" < eX.) By similar arguments, the probabili ty tha t k given
cells are all empty is bounded above by e-Ck. We are now equipped to proceed to
the probabilistic arguments required to prove T h eo rem 1.

Let P(i) denote the expected number of points examined by the spiral search
when the first i - i cells examined are empty and a point is found in the i th cell.
Because the i th cell examined is in at most the k = (i ~/2 + 1)st layer, one need
search a total of a t most 4k 2 _ 12i + 4 cells, or 11i + 4 beyond the original i
visited. We will now decompose P (i) into P (i) -- PF(i) + PR(i), where PF(i) is
the expected number of points in the first nonempty cell (the i th searched), and
Pa(i) is the expected number of points in the remaining (at most) 11i + 4 cells;

ACM Transactmns on Mathematical Software, Vol 6, No 4, December 1980

Opt,mal Expected-Time Algorithms for Closest Point Problems • 567

recall tha t these definitions assume tha t cell i is the first nonempty cell. Let t ing
j denote the number of points found in cell i, we have

(11i + 4) (n - j) I --J--- PR(i) -- max n/~---- i 1 n
I

(11i + 4)(n - 1)

n / c - i

because the probabil i ty of any one of the n - j remaining points being placed into
any part icular one of the 1 l i + 4 remaining cells is independent ly 1 / (n / c - i) . To
evaluate PF (i), we let rj denote the probabil i ty of observing j points in a part icular
cell if n points are placed randomly in n / c - (i - 1) cells; the expected number of
points in the i th cell given tha t it is nonempty is

PF(/) -- ~l~-J~-nJrl
~l_<j_<n rj

_ Y o ~_j ~_. j r j

1 - ro

= n / [n / C - (z - 1)]
1 - r o

n / [n / C - (i - 1)]

1 - [(n / C - i) / (n / C - i + 1)] ~"

For i <_ (n / 2 C) - 2 the denominator is bounded below by], so we have

P (i) = PF(i) + P R (i)

3n
< - - t- PR(i)
- - n / C - i

(11i + 7 .n)

- (n / C - i)

_ 2C(11i + 7).

We can therefore bound P (i) by the expression

~(11i + 7).2C, for t _< (n / 2 C) - 2
P (i) < _ [n , for t > (n / 2 C) - 2 .

We can now use the above probabilities to describe the expected cost of the
spiral search. We count first the cost contr ibuted to the search if the first point
is found in cell i. Notice tha t the probabili ty of this occurring is at most e -c~'-~),
because the first i - i cells must be empty. If the first point is in the i th cell, then
at most 12 i + 4 cells must be searched altogether; the expected number of points
in those cells was defined above as P (i) . The expected cost contr ibuted by the
i th cell is the probabil i ty of its being the first in which a point is found t imes the
sum of the number of cells searched and the expected number of points in those
cells, which is bounded above by

e -c"-1~ • [12t + 4 + P(t)] .

ACM Transactmns on Mathematical Software, Vol. 6, No 4, December 1980

568 J.L. Bentley, B. W. Weide, and A C. Yao

The total expected cost of the nearest neighbor search, denoted by T(n), is just
this product summed over all values of i from 1 to n/C (the number of cells).
Using the previous upper bound on P (by cases), we have

T(n) <_ ~ e-C"-l).[12i + 4 + (11i + 7).2C] + ~ e -c(' - 1).n.
1 ~ , ~: (n/2 C) - 2 (n/2 C) - 2 < ,<_ n / C

Simple techniques can now be applied to achieve an upper bound on T(n). We
first use "big ohs" (regarding C as a fixed constant) and conservatively rewrite
the indices of summation to yield

T(n) <_ O(1) ~ (eC)-'.O(i) + O(1) ~ e-C'.n.
, ~ 1 (n / 2 C) - 2 ~ _ , ~ _ n / C

The first term is bounded above by a constant (which can be proved by consid-
ering the convergence of the integral of the function xa-X), so we have

T(n) <_ O(1) + O(1) ~ e-C'.n.
(n / 2 C) - 2 - : t < _ n / C

Because i is always at least (n /2C)-2 in the above sum, we have

T(n) <_ 0(1) + 0(1) ~ e-C[(n/2C)-2].n,
(n / 2 C) - 2 < _ t ~ : n / C

which is bounded above by

T(n) <_ O(1) + O(1)

This sum reduces to

e • n .
~n~2

l ' < ~ n / C

T(n) <_ 0(1) + O(n2.e -n/2) = 0(1)

and establishes the theorem. []

Note that this proof is valid for any given query point in the unit square. The
programming of the spiral search, however, must behave properly when cells on
the boundary of the unit square are examined.

Although the proof of Theorem 1 is rather tedious, the theorem itself can be
easily understood on an intuitive level. Phrased very briefly, nearest neighbors
are a local phenomenon, and so are cells. The following is a lengthier but more
graphic illustration. Suppose you were standing in the middle of a large hall that
is covered with tiles that are 1 foot by 1 foot square; suppose furthermore that
the hall has been sprinkled uniformly with pennies, so that there are a dozen
pennies per tile, on the average. How many feet out will you have to look before
you find the penny nearest you? Your answer will be independent of the size of
the hall, because the density of pennies is the critical issue, and not their absolute
number; whether the hall is 100 feet square or 1 mile square is immaterial. This
is exactly the phenomenon we exploit in nearest neighbor searching by ensuring
that there are a constant number of points per cell on the average.

We will now apply the cell method to a number of other closest point problems.
Although the formal proofs of the algorithms will all have the rather complicated
structure of the proof of Theorem 1, the reasons why the algorithms perform
efficiently all come back to the same principle: closest point problems investigate
local phenomena, and cells capture locality.

ACM Transacttons on Mathematmal Software, Vol 6, No 4, December 1980

Optimal Expected-Time Algorithms for Closest Point Problems • 569

Fig. 2 A point set and its Voronol diagram

3. THE VORONOI DIAGRAM

The Voronoi diagram of a point set is a device that captures many of the
closeness properties necessary for solving closest point problems. For any point
P in a set S the Vorono~ polygon of P is defined to be the locus of all points that
are nearer P than any other point in S. Notice that the Voronoi polygon of point
P is a convex polygon with the property that any point lying in that polygon has
P as its nearest neighbor. The union of the edges of all the Voronoi polygons in
a set forms the Voronoi diagram of the set. A planar point set and its Voronoi
diagram are illustrated in Figure 2. The Voronoi diagram has many fascinating
properties that are quite useful computationalty. We already mentioned the fact
that the nearest neighbor to a new point is that point whose Voronoi polygon
contains the new point. This fact can be used to give a fast worst case algorithm
for nearest neighbor searching. Another interesting property of the Voronoi
diagram is the fact that the dual of the diagram {that is, the graph obtained by
connecting all pairs of points that share an edge in their respective Voronoi
polygons) is a supergraph of the minimum spanning tree of the set and, further-
more, the dual contains at most 3n - 6 edges. These and many other properties
of the Voronoi diagram are discussed by Shamos [16] and Kirkpatrick [10]; these
authors also describe computational representations of and manipulations on
Voronoi diagrams. For instance, the Voronoi diagram of a set of n points can be
found in worst case O (n log n) time, and the Voronoi diagrams of m-point and n-
point sets can be merged to form the Voronoi diagram of the entire (m + n)-point
set in worst case time of O (m + n). Horspool [9] describes a computer program
that implements the O (n log n) Voronoi diagram algorithm.

In this section we will see how the Voronoi diagram of n points distributed
uniformly on the unit square can be constructed in linear expected time. We now

ACM Transactions on Mathematmal Software, Vol. 6, No. 4, December 1980

570 J.L. Bentley, B. W. Wetde, and A. C. Yao

Fig 3 Constructmn of Voronol polygon.

briefly sketch the algorithm before examining it in detail. Its first step is to place
the points into the cells, which we divide into inner and outer sets, the outer
containing all cells "near" the periphery of the square. The next two steps of the
algorithm build separately the Voronoi diagrams of the points in the inner and
outer cells. A cell-based method using constant expected time per point is used
for the inner cells, and an O (n log n) worst case algorithm is applied to the (small)
set of points in the outer cells. (This distinction is necessary because the periphery
of a Voronoi diagram does not exhibit locality.) The expected running time of
both of these steps is at most linear. The total expected running time of this
algorithm is therefore linear in the number of input points.

Before studying the algorithm, we must specify precisely our representation of
Voronoi diagrams. For each point P in the set we will give a linked list Lp that
contains all of P's Voronoi neighbors (in counterclockwise order), along with a
representation of the line segment that is the Voronoi edge separating the two
points. This representation is fairly standard; furthermore, one can convert from
this representation of a Voronoi diagram to any other proposed representation in
linear worst case time. We are now equipped to examine the details of the
algorithm.

Step 1. Divide the unit square into n cells, each with edge length n-1/~. (Notice
that we are just setting the cell density C of Section 2 to 1; the expected number
of points per cell is therefore unity.) We then define all cells no further than C~
log n cells from the boundary of the square to be outer cells; all the rest are inner
cells. Note that the number of outer cells is less than 4 Cln 1/2 log n, which is also
an upper bound on the expected number of points in those cells.

Step 2. The goal of this step is to give the true Voronoi polygon of every inner
point in linear expected time; we accomplish this by constructing the Voronoi
polygon (in the representation described above) of each inner point in constant
expected time. To find the Voronoi polygon for inner point P, we search all cells
in a relatively small neighborhood of P in a spirallike fashion until at least one
point is found in each of the eight 2 octants shown in Figure 3, or we give up

2 Values less than 8 will also work, the choice of 8 is for didactic purposes only.
ACM Transactmns on Mathematical Software, Vol 6, No 4, December 1980.

Optimal Expected-Time Algorithms for Closest Point Problems • 571

having searched out C1 log n layers (approximately (C1 log n}2/2 cells) in each
octant. The tentative Voronoi polygon of the point P is tha t de termined by
considering just those eight points. (In Figure 3, the nearest points are dots and
o ther points are circles.) Let d be the distance from point A to the far thes t point
of its tenta t ive Voronoi polygon. T h e n no point far ther than 2d from point A can
have any effect on the actual Voronoi polygon of tha t point, which means tha t
the Voronoi polygon of A can be constructed by considering only the small
(expected constant) number of points tha t are in the circle of Figure 3.

In the case where there is at least one point found in each octant before the log
n layers are searched, the point is called a closed point. A spiral search can be
used to determine whether or not a given inner point is closed in constant
expected time, and for a closed point its Voronoi polygon can then be computed
in constant expected time. This can be proved by slightly modifying the proof of
Theo rem 1. 3 Performing the above operations on all inner points allows us to
identify all closed points and compute their Voronoi polygons in linear expected
time.

If all inner points were indeed closed, we would have the t rue Voronoi diagram
of every point in the inner set. We now determine the probabil i ty tha t this is in
fact the case. Note tha t any given octant of a point remains open after the spiral
search iff (C1 log n)2/2 cells were empty (for ease of writing, let C~/2 be C2). By
the analysis of Sect ion 2, the probabil i ty of this is bounded above by

e-C2(logn) 2 ~ n-C310g n

where C3 = C2/ln 2. The probabil i ty of any given point being open is therefore
bounded above by

8 n - C31°g n

because a point is open iff any of its eight octants are open. Since there are fewer
than n inner points, the probabil i ty tha t one or more of them is open is at most

8n. n -C31°gn -~ 8 n 1-C31°gn,

which goes to zero very quickly as n increases.

The goal of step 2 is to construct in linear expected t ime the Voronoi polygon
of every inner point. By the above analysis, the cell approach accomplishes this
with high probability. If it does not (that is, if one of the inner points remains
open), then we construct the Voronoi diagram of the ent ire point set in worst
case O (n log n) t ime by one of the algorithms ment ioned previously. T h e expected
cost contr ibuted by this is the product of the probabil i ty of its occurring t imes
the cost incurred if it does, which is bounded above by

8nt-C31°gn.O(n log n) = O(1) ffi O(n).

3 The modifications to the proof of Theorem 1 can be sketched as follows. We let m be the maxi-
mum of the number of cells searched in any of the eight octants before a point was found in them.
The probability that rn -- t is an exponentially decreasing function of i, and the expected work
required if m --- t Is proportional to t The details of tfus method are then quite similar to the proof of
Theorem I.

A C M Transac t ions on M a t h e m a U c a l Software, Vol. 6, No. 4, D e c e m b e r 1980

572 • J.L. Bentley, B W Weide, and A. C. Yao

Thus we see that step 2 correctly computes the Voronoi polygons of the inner
points in linear expected timeJ

Step 3. The goal of this step is to compute the Voronoi polygon of every outer
point. To accomplish this, we further divide the inner cells into two types: the
middle cells are those cells within 2Cl log n layers of the outer cells, and the
innermost cells are those inner cells that are not middle cells. The middle points
are those points in middle cells, and likewise for the innermost points. The middle
and innermost points thus form a partition of the inner points.

Let A be the union of the outer points and the middle points. Since A is
contained in 3C1 log n layers of cells, the expected number of points in A is
bounded above by 12C~n ~/2 log n. The algorithm now uses an O(m log m) worst
case algorithm to compute the Voronoi diagram of all points in A, which requires
O(n ~/2 (log n) 2) expected time. We now show that with very high probability we
have correctly computed the Voronoi polygon of every outer point, and that if we
have not, then that situation can be quickly detected and remedied.

Our first task is to show that with high probability we have correctly computed
the Voronoi polygon of every outer point. Note that if we do not yet have the
true polygons, this must be because some outer point has an innermost point as
a Voronoi neighbor. But this is true only if an octant of the given point is open
(with respect to the middle points), which the analysis of step 2 shows occurs
with exponentially decreasing probability. Because there are only a polynomial
number of outer points, the probability of one or more of them having an
innermost point as a Voronoi neighbor is exponentially decreasing.

We must, however, properly handle the rare event when an outer point has an
innermost point as a neighbor. It is easy to check in linear time whether or not
this is the case: we merely examine the set of all innermost polygons (which we
correctly computed in step 2), and see if any have an outer point as a neighbor;
this requires O (n) time. If such a neighbor is found, then we merely compute the
Voronoi diagram of the entire set in O (n log n) time. The expected contribution
of this computation is the probability of its occurring times its cost, which is still
exponentially decreasing. End of Algorithm.

Step 1 of the above algorithm has a linear worst case running time, while steps
2 and 3 have linear expected running time. It therefore follows that the Voronoi
diagram of n points uniformly distributed on the unit square can be found in
linear expected time.

4. EXTENSIONS OF PLANAR ALGORITHMS

The algorithms of Sections 2 and 3 can be used to solve a number of planar
closest point problems. Given the fast nearest neighbor searching algorithm, we
can easily solve the all nearest neighbors problem (which calls for finding the
nearest neighbor of each point) in linear expected time, for point sets drawn from
uniform distributions. This is accomplished by preprocessing the n points in
linear time and then doing n searches, each of expected constant cost. Once we

4 We note that we did not really require an O(n log n) time Voronol diagram algorithm; any
polynommal-time algorithm suffices to show that the expected contribution of the "fix-up" part of
step 2 is exponentially decreasing.

ACM Transactions on Mathematmal Software, Vol 6, No. 4, December 1980

Optimal Expected-Time Algorithms for Closest Point Problems • 573

have found all nearest neighbors, we can easily find the closest pair in the set by
taking the minimum of the n distances. Shamos and Hoey [17] have shown that
once we have constructed the Voronoi diagram of a point set, we can solve many
other problems in linear worst case time. Together with the Voronoi diagram
algorithm of Section 3, this allows us to solve both the minimum spanning tree
and Delaunay triangulation problems in linear expected time. The details of
these algorithms, together with some of the applications areas in which they
arise, are discussed by Shamos [16].

All of the results that we have described so far are valid only for point sets
drawn uniformly on the unit square; the algorithms can easily be adapted to work
for many known distributions of points. The extension of these results to unknown
distributions is a bit tricky. If we proceed for such a distribution as though it
were uniform over some bounded region, a query can still be answered in constant
expected time under certain conditions. The cells are chosen by first finding the
minimum and maximum values in both x and y and then partitioning the
rectangle defined by those four values into a number of squares proportional to
n. The resulting cells can be represented by a two-dimensional array and our
previous algorithms can operate as before. The only restriction on the underlying
distribution required to achieve constant expected time is that it satisfy a
condition similar to but more restrictive than a Lipschitz condition on its
cumulative distribution function.

THEOREM 2. Let n points be chosen independently from the distribution
F(x, y) over a bounded, convex open region in the plane, where F satisfies the
condition that there exist constants 0 < C1 <- C~ such that for any region of area
A, the probability assigned to the region by F hes between CIA and C2A.
(Alternatively, F has a density with respect to Lebesgue measure that is bounded
above and bounded below away from zero.) Then the same algorithm that was
used for nearest neighbor searching in the uniform case answers a query in
constant expected time.

SKETCH OF PROOF. We first give the intuition behind the proof, and then
sketch how the proof of Theorem 1 can be modified to prove this theorem. The
requirement that the distribution be over some bounded convex region of the
plane ensures that some constant proportion of the cells will be used to contain
points of the distribution, and the expected number of points per cell will therefore
be boanded above and below by constants. The lower bound on density, C1,
guarantees that the expected number of layers that need be examined before a
point is found is small, and the upper bound C2 guarantees that not many points
will be in the neighboring cells when they are investigated.

We now formalize the above arguments. The critical observation is that there
exist positive constants D1 and D2 such that the expected number of points in any
of the cells is greater than D1 and less than/)2.~ The exact values of D1 and/)2
depend on a number of parameters, including the size, shape, and orientation of

Actually, there are some cells t ha t in tersect the regmn bu t are not conta ined entirely wi th in it. For
these cells, the upper bound D2 remains in effect, bu t the lower bound D~ migh t not hold. T h e fact
t ha t the region Is open and convex is sufficient to show tha t there are at mos t O(n ~/2) such cells, and
they are all on the boundary of the set. For this reason, thei r effect m a y be ignored in the res t of th is
analysis.

ACM Transactmns on Mathematical Software, Vol. 6, No. 4, December 1980.

574 J L. Bentley, B. W. We~de, and A. C. Yao

the convex region and the exact values of C1 and C2. The important point,
however, is that such constants do exist.

Armed with these constants, it is easy to modify the proof of Theorem 1 to
apply to the present theorem. We consider the case that the spiral search found
its first nonempty cell in the ith cell visited. By the arguments in Theorem 1, the
probability of this occurring is less than e -D1~'-1~. If this does occur, then the
number of cells examined is at most 12i + 4. Likewise the expected number of
points in the cells is less than

(11i + 4). (n - 1)

(n/ D2 - i - 1)

At this point, the rest of the argument in Theorem i follows immediately, because
the "big oh" analysis performed there can be used here without change, assuming
that D1 and D2 are constants. []

Similar arguments show how the above methods can be applied to give linear
expected-time algorithms for all of the closest point problems mentioned above,
when the point sets satisfy the "boundedness" conditions of Theorem 2.

5. EXTENSIONS TO HIGHER DIMENSIONS

In the previous section we showed how the algorithms of Sections 2 and 3 can be
used to solve a number of problems with inputs drawn from a wide variety of
planar distributions; in this section we see how the basic results can be extended
to solve closest point problems in k-dimensional space. If the point sets are drawn
independently and uniformly from the unit hypercube (that is, [0, 1]k), then we
can use the cell technique by dividing the hypercube into n/C cells, each of side
(C/n) 1/k.

The first closest point problem in k-space that we examine is that of nearest
neighbor searching. Dobkin and Lipton [6] showed that a nearest neighbor to a
new point can be found in worst case time proportional to k log n; their method
requires preprocessing and storage prohibitive for any practical application,
however. Friedman, Bentley, and Finkel [8] have described an algorithm that
exhibits search time proportional to log a and has very modest preprocessing and
storage costs. We will now examine a cell-based method for nearest neighbor
searching that yields constant expected retrieval time. The preprocessing phase
of the algorithm consists of placing the points into cells in k-space as described
above. To perform a nearest neighbor search, we generalize the spiral search
(searching out layer-by-layer) of Section 2, starting at the cell holding the query
point and searching outward until we find a nonempty cell. At that point we must
search all cells that intersect the ball centered at the query point with radius
equal to the distance to the nearest neighbor found so far. The analysis of this
algorithm is given in the following theorem.

THEOREM 3. I f n points are chosen independently from a uniform distribu-
tion on the k-dimensional unit hypercube, then spiral search finds the nearest
neighbor of a query point in constant expected time.

SKETCH OF PROOF. As before, the expected number of points in a given cell
is exactly C. We again consider the case of finding the first point in the ith cell

ACM Transactions on MathemaUca] Software, Vol. 6, No 4, December 1980

Optumal Expected-Time Algorithms for Closest Point Problems • 575

examined; the probability of this is at most e -c('-~). If the first point is found in
the ith cell, then the total number of cells examined is O(i), and the expected
number of points in those cells is O (Ci). At this point, the analysis of Theorem
i holds. []

Once we have the above result, we can solve both the all nearest neighbors and
closest pair problems in linear expected time. The k-dimensional minimum
spanning tree problem calls for finding a spanning tree of the point set of
minimum total edge length. Straightforward algorithms for this task require
O(n 2) time. A. Yao [20] has shown that there is a subquadratic worst case
algorithm for solving this problem, but his algorithm is probably slower than the
straightforward method for most practical applications. Practical algorithms for
this task have been proposed by Bentley and Friedman [3] and Rohlf [15], but
the analysis of those algorithms remains primarily empirical. We now investigate
the use of the cell technique to solve this problem in fast expected time. We use
the method of Yao [20], which calls for finding the nearest neighbor of each of
the n points in each of some critical number of generalized orthants. Yao has
shown that the resulting graph is a supergraph of the minimum spanning tree of
the point set. Since that graph contains a number of edges linear in n (for any
fixed dimension k), the minimum spanning tree can be found in O (n log log n)
time (see Yao [19] or Cheriton and Tarjan [5]). Slight modification of the proof
of Theorem 3 shows that the "nearest neighbor in orthant" searching can be
accomplished in constant expected time for each point, and the total expected
running time of this algorithm is therefore O (n log log n).

Using the cell method to construct k-dimensional Voronoi diagrams in fast
expected time appears to be a very difficult task. Generalizing the method of
Section 3 allows us to find the Voronoi polytopes of all closed points in linear
expected time, but at that point there still remain O((n log n) 1-1/k) open points.
Since no fast algorithms are known for constructing Voronoi diagrams in k-space,
it is not clear how to find the true Voronoi diagram. Notice, however, that we
have found the Voronoi polytopes of an increasing fraction of the points (that is,
the ratio of open points to n approaches zero as n grows). This technique can be
used for "Voronoi polytope searching," which asks for the actual Voronoi polytope
containing the query point; our method will succeed in constant time with
probability approaching 1.

The algorithms we have described above have all been for points drawn
uniformly in [0, 1] h. Methods analogous to those used in Section 4 can be used to
show that the algorithms can be modified to work for point sets drawn from any
distribution over some open bounded convex region with density bounded above
and away from zero.

6. IMPLEMENTATION CONSIDERATIONS

In this section we discuss the implementation of the algorithms described in the
preceding sections. It is important to mention one caveat that will be inherent in
any application of the cell technique: the constant of linearity of most algorithms
based on this method will increase exponentially with the dimension of the space
k. This is true simply because a cell in k-space has 3 k - i neighbor cells. It seems,
though, that this complexity might be inherent in any algorithm for solving

ACM Transac tmns on Mathematmal Software, Vol. 6, No. 4, December 1980

576 J. L Bentley, B. W. Weide, and A. C. Yao

I I I I i I I
" '4 - - "t- - - I - - "F - - t - " - I - - 4"

I i i I I I /
-i-i i "i i" ' l F

I I t t I i I
-I- T --i-- -r - f" -?- T
I I I ~ I I I

Fig 4. Adapting cell sizes by samphng margmals.

closest point problems because a point in a high-dimensionl space can have many
"close" neighbors. (More precisely, the maximum "adjacency" of point sets in k-
space can be equated with the number of sphere touchings, which grows rapidly
with k.) The practical outgrowth of this observation is that the methods we have
described will prove impractical for large k; we estimate this will happen some-
where for k between 4 and 6 for data sets of less than 10,000 points.

Weide [18] has described how the empirical cumulative distribution function
can be used to decrease the constants of the running times of programs based on
cell techniques. We now briefly discuss the application of his techniques to the
case of planar nearest neighbor searching. If the points to be stored for nearest
neighbor searching indeed come from a uniform distribution on [0, 1] 2, then the
cell technique performs very well. If the points come from a distribution that is
not uniform (but still "smooth" enough to satisfy the requirements of Theorem
2), then the cells might perform poorly because they are at once both too large
(in dense regions of the plane) and too small (in sparse regions). We would
therefore like the cells to adapt their size in different regions of the space. One
approximation to this "adaptive" behavior can be achieved with the cell method
by incorporating a "conditioning pass" that examines the distribution before the
points are placed in cells. This pass might work by finding the 10th, 20th, . . . ,
90th percentile points in both the x and y marginal distributions. Each set of 9
points partitions its dimension into 10 "slabs," and the cross product partitions
space into 100 rectangles. Figure 4 illustrates such a partition of a heavily central
distribution, such as a bivariate normal truncated at three standard deviations
(where 6 points are sampled in each marginal, creating 49 rectangles). For many
distributions satisfying the conditions of Theorem 2, the distribution of points
within each rectangle will be much smoother than the distribution over the entire
space. Because we sampled only a constant number of points in each dimension,

ACM TransacUons on Mathematical Software, VoL 6, No 4, December 1980

Optimal Expected-Time Algorithms for Closest Point Problems 57"7

we can locate which rectangle to examine in a nearest neighbor search in constant
time. The exact number of rectangles to be used depends critically on the
"roughness" of the underlying distribution--the more bounded the distribution,
the fewer sample points required. These and other adaptation techniques are
discussed in detail by Weide [18].

Although the searching structures that we have described in this paper are
inherently static, they can be modified to become dynamic. We first consider the
case in which the nearest neighbor structure is initially empty and must support
a series of Insert and Search operations. To convert our cell structure from static
to dynamic, we use a method that is similar to a method described by Aho,
Hopcroft, and Ullman [1, p. 113] for converting a static hash table into a dynamic
one. The nearest neighbor structure is initially defined to have a maximum
allowable size of (say) eight; we will call this size max. When a new point is
inserted into the structure, it is merely appended to the list of points currently in
its cell. Whenever an insertion causes the number of points currently in the
structure to exceed max, we perform the following operations: max is set to twice
its current value, a new structure of max/C is created, and the points currently
stored in the structure are "reinserted" into the new structure. Note
that for any distribution satisfying the conditions of Theorem 2, the expected
number of points per cell is always bounded above and below by constants.
Furthermore, analysis shows that the total amount of computation required to
insert n elements into this structure is proportional to n. (Whenever a structure
of size m is rebuilt, it is because m/2 points were inserted, so the "amortized" cost
per point is constant; for a more formal analysis, see Aho, Hopcroft, and Ullman
[1].) Monier [12] has described a related technique that allows a hash table to
support both insertions and deletions intermixed with queries. We can use his
idea to give dynamic structures for all of the searching problems discussed in this
paper with the following properties: a sequence of n insertions and deletions can
be performed in time proportional to n, at any point in this sequence it is possible
to perform a search in constant expected time, and the storage used by the
structure is always proportional to the number of elements currently stored.

In the above discussion we have described a number of rather exotic extensions
to the basic structures of this paper. For many applications, however, the basic
structure is all that is needed. We will therefore briefly describe our experience in
implementing the nearest neighbor searching algorithm s for point sets drawn
uniformly on the unit square. The PASCAL implementation required 11 lines of
executable code to place the points in cells and 34 lines to perform the search.
The optimal number of points per cell {that is, the expected density, which we
called C in Section 2) was 3; densities ranging from 1 to 9, however, decreased the
running time by only 10 percent. The average running time for nearest neighbor
searching (including preprocessing) was the constant 2765 microseconds per
search, on a PDP-KL10. (This compares with 52n microseconds required by the

G Since one of the mare points of thin paper is that the algorithms described are of practical interest
(m additmn to theoretmal), the authors feel obhgated to explain that they unplemented only this
simple case because the code required to implement the more comphcated algorithms is complex.
(For example, the Fortran code available to the authors for constructing planar Voronoi dmgrams was
1000 lines long) Thin will be less of an obstacle for Lmplementors of real programs who are already
using complex "underlying" routines.

ACM Transactmns on Mathematical Software, Vol 6, No. 4, December 1980

578 • J .L. Bentley, B. W. Weide, and A. C. Yao

straightforward linear search; the break-even point is at n = 53.) In using this
code to find all nearest neighbors in a 1000-point planar set, the cell method
required less than 2.8 seconds while the quadratic algorithm required 52 seconds.

To learn more about the performance of the algorithm in real applications, we
ran the program on two sets of real geographic data. Both data sets consisted of
points representing the population centroids of political areas; the original lati-
tudes and longitudes in seconds were scaled to be in [0, 1]. The first data set
represented the 318 census tracts in San Diego County, California, and the second
data set represented the 1122 precincts in the state of New Mexico. The points in
the first data set were fairly uniform over approximately half of the unit square,
while the points in the second were very clustered (in the few large cities in New
Mexico). We used the programs described above to find the nearest neighbors in
each set, with the results shown in Table I.

Table I

San New
Diego Mexmo

Number of points 318 1122
Quadratm algonthm

Predmted time 5 25 65 5
Observed tune 5.35 66.5

Cell algorithm
Predicted time 0.88 3.11
Observed time 1.40 7.56
Optimum cell density 1.7 3.0

All times are noted in seconds; the predicted run times are 2765n microseconds
for the cell algorithm and 52n 2 microseconds for the quadratic algorithm.

Table I merits interpretation. Note first that the predictions of run time for the
quadratic algorithm were extremely accurate. The predictors for the cell method
did not fare as well: the ratio of observed run time to predicted is approximately
1.6 for San Diego and 2.4 for New Mexico. This is due to the nonuniformity of the
data; the greater clustering in New Mexico led to a greater degradation of
performance. Even so, though, note that the ratio of observed quadratic run time
to observed cell run time is 3.9 for San Diego and 8.8 for New Mexico. Thus we
may conclude that although our algorithms will experience a slight degradation
when used on "real" data, they can still lead to a substantial savings in run time.

In this section we have discussed the implementation of the algorithms de-
scribed in the preceding sections. Those algorithms share a common two-phase
structure: in the first phase the points are stored in cells and in the second phase
additional processing is done on the points. The implementation of the first phase
is trivial; points can be placed in cells by first finding the cell number (accom-
plished by a multiplication for scaling and a floor function to find the integer cell
index) and then performing an array index. The difficulty of the second phase of
processing will depend on the particular problem being solved. In the case of
nearest neighbor searching, all that is required is a "spiral search" and some
distance calculations; the above discussion shows that both of these are easy to
implement very efficiently. For the Voronoi diagram, however, the second phase

ACM Transactions on Mathematmal Software, Vol 6, No 4, December 1980

OptImal Expected-TIme Algor)thms for Closest Point Problems • 579

of processing is very complicated. One advantage of the locality inherent in
closest point problems is that very slow algorithms may be used to perform the
operations that take place in a local area; this will increase the constant of
linearity, but will not slow the asymptotic running time of the algorithms. This
implies that a practitioner may be able to improve the performance of existing
programs by dividing the points into cells in a first phase.

7. CONCLUSIONS

In this paper we have seen a number of algorithms for solving multidimensional
closest point problems. The algorithms were all based on the simple idea of cells,
and were analyzed under the assumption that the points were drawn from some
underlying "bounded" distribution. All of the searching methods we described
have linear preprocessing costs and constant expected searching costs; all of the
algorithms {with the exception of k-dimensional minimum spanning trees) have
linear expected running time. It is clear that these algorithms achieve the trivial
lower bounds and are therefore optimal. Although we have described the algo-
rithms primarily as theoretical devices (sacrificing efficiency for ease of analysis),
the discussion in Section 6 described how many can be efficiently implemented
on a random-access computer.

Much further work remains to be done in developing fast expected-time
algorithms for closest point problems. Can the expected complexity of computing
minimum spanning trees in k-space be reduced from O(n log log n) to O(n)? A
particularly important problem is to extend our results from the bounded distri-
butions of Theorem 2 to unbounded distributions (the multivariate normal, for
example). It appears that new algorithms will have to be developed for this
problem, taking special care of "outliers." Another very interesting open problem
is to describe precisely how much of the efficiency of our algorithms is gained
from probabilistic assumptions and how much is gained by use of the floor
function. (The recent paper of Fortune and Hopcroft [7] shows that floor can be
used to speed up the computation of closest pair without making the randomi-
zation assumptions of Rabin [14] and Weide [18].}

ACKNOWLEDGMENTS

The helpful comments of James B. Saxe, Professor Michael Ian Shamos, and the
two anonymous referees are gratefully acknowledged.

REFERENCES

1. AHO, A V, HOPCROFT, J.E., AND ULLMAN, J.D The Design and Analysts of Computer Algo-
rithms. Addison-Wesley, Reading, Mass, 1974.

2 BENTLEY, J.L. Multidimensional divide-and-conquer. Commun. ACM 23, 4 (April 1980}, 214-
229

3 BENTLEY, J L., AND FRIEDMAN, J.H. Fast algorithms for constructing mmtraal spannmg trees in
coordmate spaces IEEE Trans. Comput C-27, 2 (Feb. 1978), 97-105.

4. BENTLEY, J .L, AND FRIEDMAN, J.H. Data structures for range searching. Comput. Surv. 11, 4
(Dec. 1979), 398-409.

5. CHERITON, D, AND TARJAN, 1:~ E. Fmding minimum spanmng trees SIAMJ. Comput. 5, 4 (Dec
1976), 724-742

6. DOBKIN, D, AND LIPTON, R J Multidimensional searching problems. SIAM J. Comput 5, 2
(June 1976), 181-186.

ACM Transactions on Mathematical Software, Vol. 6, No. 4, December 1980.

580 J.L. Bentley, B W. We,de, and A C. Yao

7. FORTUNE, S., AND HOPCROFT, J E A note on Rabln's nearest-neighbor algorithm. Inf. Process.
Lett. 8, 1 (Jan. 1979), 20-23.

8. FRIEDMAN, J .H, BENTLEY, J.L., AND FINKEL, R.A. An algorithm for finding best matches m
logarithmic expected time. ACM Trans. Math. Soflw. 3, 3 (Sept. 1977), 209-226.

9. HORSPOOL, R N. Constructing the Voronol chagram in the p]hne Tech Rep SOCS-79.12,
Comput Sci School, McGill Umv, Montreal, Canada, July 1979.

10 KIRKPATRICK, D G Efficmnt computation of continuous skeletons. Proc. 20th IEEE Syrup
Foundatmns of Computer Sctence, Oct. 1979, pp 18-27.

11. LIPTON, R.J., AND TARJAN, R.E. Application of a planar separator theorem. Proc 18th IEEE
Symp. Foundatmns of Computer Science, Oct. 1977, pp. 162-170.

12. MONIER, L. Personal commumcatlon of Louis Morner of the Umversitd de Parls-Sud to J.L.
Bentley, June 1978.

13. PREPARATA, F.P., AND HONG, S.J. Convex hull of fimte sets of points m two and three
dimensions. Commun. ACM 20, 2 (Feb. 1977), 87-93.

14. RABIN, M O. Probabilistic algorithms, in Algorithms and Complexity: New Dwectmns and
Recent Results, J.F. Traub (Ed.), Academic Press, New York, 1976, pp. 21-39.

15. ROHLF, F J A probablhstlc mmnnum spanmng tree algorithm. Inf. Process. Lett. 7, 1 (Jan
1978), 44-48.

16. SHAMOS, M.I Computational geometry Ph.D. Dissertation, Yale Umv., New Haven, Conn.,
May 1978.

17. SHAMOS, M.I, AND HOEY, D. Closest-point problems Proc 16th IEEE Syrup. Foundatmns of
Computer Scwnce, Oct 1975, pp. 151-162.

18. WEIDE, B.W. Statistical methods m algorithm design and analysis. Ph.D. Dissertation, Carnegm-
Mellon Umv, Pittsburgh, Pa , Aug 1978 (Appeared as CMU Comput Sci. Rep. CMU-CS-78-
142)

19. YAO, A.C. An O([E [log log[V[) algorithm for findmg minLrnum spanning trees. Inf. Process.
Lett. 4, 1 (Sept 1975), 21-23

20 YAO, A C On constructing minimum spanning trees m k-dimensional space and related prob-
lems. Res. Rep STAN-CS-77-642, Dep. Comput. Sci., Stanford Univ., Calif., 1977.

21. YUVAL, G. Finding nearest neighbors. Inf. Process. Lett 5, 3 (Aug. 1976), 63-65

Received April 1979, revised March 1980; accepted July 1980

ACM Transactions on Mathematical Software, Vol 6, No 4, December 1980

