
Optimal Expected-Time Algorithms for 
Closest Point Problems 
JON LOUIS BENTLEY 
Carnegie-Mellon University 
BRUCE W. WEIDE 
The Ohio State Univers)ty 
and 
ANDREW C YAO 
Stanford University 

Geometric closest potnt problems deal with the proxLmity relationships in k-dimensional point sets. 
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In this paper we extend thmr work by giving optimal expected.trine algorithms for solving a number 
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1. INTRODUCTION 

S h a m o s  a n d  H o e y  [17] have  col lected and  s tud ied  a group  of p r o b l e m s  in  

c o m p u t a t i o n a l  geome t ry  t h a t  t hey  refer to as closest  p o i n t  problems .  P r o b l e m s  in  
this  set  are  usua l ly  def ined  on  po in t  sets  in E u c l i d e a n  space a n d  inc lude  such  
c o m p u t a t i o n a l  tasks  as nea r e s t  ne ighbo r  searching,  f ind ing  all n e a r e s t  n e i g h b o r  
pairs,  and  cons t ruc t i ng  Voronoi  d iagrams.  T h e  mer i t s  of s t u d y i n g  these  p r o b l e m s  
as a set  have  b e e n  p roved  r epea t ed ly  s ince the  class was f irst  def ined.  N o t  on ly  
do the  var ious  p r o b l e m s  of ten  arise in  the  same  app l i ca t ion  areas,  b u t  t i m e  a n d  
aga in  we have  seen  t h a t  advances  m a d e  in  the  c o m p u t a t i o n a l  eff iciency of a n  
a lgo r i t hm for one of the  p r o b l e m s  can  be appl ied  to increase  the  c o m p u t a t i o n a l  
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efficiency of others. In this paper we continue in this spirit by showing how the 
technique of "cells" can be used to produce optimal expected-time algorithms for 
many closest point problems. 

All of the closest point problems that we will study in this paper have as input 
a set S of n points in Euclidean k-space. The nearest neighbor searching problem 
calls for organizing the set S into a data structure such that subsequent queries 
asking for the nearest point in S to a new point can be answered quickly. The all 
nearest neighbors problem is similar: it calls for finding for each point in S its 
nearest neighbor among the other points of S. Both of these problems arise in 
statistics, data analysis, and information retrieval. A problem similar to the 
nearest neighbor problems is that of finding the closest pair in a point set: that 
pair of points realizing the minimum interpoint distance in the set. The minimum 
spanning tree (or MST) problem calls for finding a tree connecting the points of 
the set with minimum total edge length. This problem arises in statistics, image 
processing, and communication and transport networks. The most complicated 
closest point problem that we will investigate in this paper is the problem of 
constructing the Voronoi diagram of a point set. This problem, along with its 
applications, is described in Section 3. All of the problems that we have just 
mentioned are described in great detail by Shamos [16]; he also discusses many 
of their applications. 

Much previous work has been done on closest point problems. The seminal 
paper in this field is the classic work of Shamos and Hoey [17] in which the 
problems are defined and a number of optimal worst case algorithms for planar 
point sets are given. Algorithms for closest point problems in higher dimensional 
spaces have been given by Bentley [2], A. Yao [20], and Yuval [21]. Randomized 
algorithms for the closest pair problem have been given by Rabin [14] and Weide 
[18]; Fortune and Hopcroft [7] have recently shown that  the speedup of the fast 
closest pair algorithms was not due to their randomized nature alone, but also to 
the model of computation employed (which allowed floor functions). Additional 
results on closest point problems are given by Preparata and Hong [13] and 
Lipton and Tarjan [11]. 

In this paper we study closest point problems from a viewpoint not taken in 
any of the above papers. We assume that the point sets are randomly drawn from 
some "bounded" underlying distribution, and then use the cell technique I to give 
fast expected-time algorithms for many closest point problems. In Sections 2 and 
3 we illustrate this idea by applying it to two fundamental closest point problems 
(nearest neighbor searching and Voronoi diagram construction) under the very 
restrictive assumption that the points are drawn uniformly from the unit square. 
In Section 4 we extend these results to other planar closest point problems and 
to point sets drawn from a wide class of distributions. In Section 5 we extend our 
algorithms to problems in Euclidean k-space. Most of the algorithms we present 
solve a problem on n inputs in expected time proportional to n, and all searching 
structures we give have constant expected retrieval time; these results are 
therefore optimal by the trivial lower bounds. Having thus resolved the primary 

1 A discussion of the application of the cell techmque to other geometric problems can be found in 
Bentley and Friedman [4, Section 1.3]. 
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theoretical issues, we turn to implementation considerations in Section 6. Con- 
clusions and directions for further research are then offered in Section 7. 

Before proceeding to the body of the paper, it is important to state its goals 
clearly. The primary aim of the algorithms we will see is to establish theoretical 
results, displaying a number of best known (and many optimal) algorithms. The 
secondary aim, however, is to exhibit a general method for solving closest point 
problems that is quite practical. We therefore discuss the algorithms at a theo- 
retical level in Sections 2 through 5, and then turn to implementation issues in 
Section 6. 

2. NEAREST NEIGHBOR SEARCHING 

The problem that  is easiest to state and most clearly illustrates the cell method 
is nearest neighbor searching, sometimes called the post office problem. Given 
n points in Euclidean space, we are asked to preprocess the points in time P (n) 
in such a way that for a new query point we can determine in time Q (n) which 
point of the original set is closest to it. Lipton and Tarjan [11] describe a 
{complicated) structure for solving the planar problem with P(n) -~ O(n log n) 
and Q (n) = O (log n) in the worst case, but one might expect that  on the average 
we can do better. In fact, we will see that for a large class of distributions of 
points, the expected values of P(n) and Q(n) can be made to be O(n) and O(1), 
respectively. Although we initially restrict our attention to this apparently simple 
problem (and the planar case at that), the techniques used also apply to other 
closest point problems, which we investigate in later sections. 

We first consider the problem of nearest neighbor searching in the plane, where 
the points (both the original n points and the query point) are chosen indepen- 
dently from a uniform distribution over the unit square. The idea of the prepro- 
cessing step is to assign each point to a small square (bin or cell) of area C/n, so 
that the expected number of points in each bin is C; we refer to C as the cell 
density. This step is easily done by creating an array of size (n/C) 1/2 by (n/C) 1/2 
that holds pointers to the lists of points in each bin. 

To process a query point, we search the cell to which it would be assigned. If 
that  cell is empty, then we start searching the cells surrounding it in an expanding 
pattern until a point is found. Once we have one point, we are guaranteed that 
there is no need to search any bin that does not intersect the circle of radius 
equal to the distance to the first point found and centered at the query point. 
Figure 1 shows how one spirallike search might proceed for the query point in the 
middle of the circle. Once the point in the northeast neighbor is found, only bins 
intersecting the circle must be searched. Each of these is marked in Figure 1 with 
an integer denoting the order in which it was visited. In order to make this test 
easy, we suppose that all bins that lie within that distance of the query point in 
either coordinate are examined, making the number of cell accesses slightly larger 
than necessary but simplifying the specification of how the appropriate bins are 
to be found. 

It is clear that preprocessing, which consists of assigning each point to the 
appropriate bin, can be accomplished in linear time if computation of the floor 
function in constant time is allowed. This assumption is necessary to solve most 
of the closest point problems in o(n log n) time because lower bounds propor- 
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Fig. 1 Spiral neares t  ne ighbor  search  us ing cells. 

tional to n log n are known for many of them in the "decision tree with linear 
functions" model of computation. The  following theorem shows tha t  spiral search 
is indeed a constant- t ime solution to the nearest  neighbor searching problem. 

THEOREM 1. I f  n points are chosen independently from a uniform distribu- 
tion on the unit square, then spiral search finds the nearest neighbor of a query 
point in constant expected time. 

PROOF. Certain notat ion is required in this proof. We first define the concept  
of layers of cells surrounding the query point. We say tha t  the cell containing the 
query point  is in layer 1, the 8 cells surrounding tha t  are in layer 2, the 16 cells 
surrounding those are in layer 3, and so on. In general, for any k _ 1, the k th  
layer contains exactly 8(k - 1) cells and there  are (2k - 1) 2 _ 4k 2 cells on or 
within layer  k. We will also use in our proof  the constant  

q = C/n. 

Since the number  of cells in the s t ructure  is n/C, q is the probabil i ty of a point  
being placed in a certain fixed cell. The  probabil i ty tha t  any part icular  point  does 
not  go into a certain fixed cell is (1 - q), and the probabil i ty tha t  a part icular  cell 
is empty  is 

( 1  - q ) "  = ( 1  - C/n)" < e -C 

because it is empty  if and only if all n points go elsewhere. (We use here the 
inequali ty (1 + x/n)" < eX.) By similar arguments,  the probabili ty tha t  k given 
cells are all empty  is bounded above by e-Ck. We are now equipped to proceed to 
the probabilistic arguments  required to prove T h eo rem  1. 

Let  P(i)  denote  the expected number  of points examined by the spiral search 
when the first i - i cells examined are empty  and a point  is found in the i th  cell. 
Because the i th  cell examined is in at  most  the k = (i ~/2 + 1)st layer, one need 
search a total  of a t  most  4k 2 _ 12i + 4 cells, or 11i + 4 beyond the original i 
visited. We will now decompose P ( i )  into P ( i )  -- PF(i)  + PR(i),  where PF(i) is 
the expected number  of points in the first nonempty  cell (the i th  searched), and 
Pa(i) is the  expected number  of points in the remaining (at most) 11i + 4 cells; 
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recall tha t  these definitions assume tha t  cell i is the first nonempty  cell. Let t ing 
j denote  the number  of points found in cell i, we have 

(11i + 4 ) ( n - j )  I --J--- PR(i)  -- max n/~---- i 1 n 
I 

(11i + 4)(n - 1) 

n / c  - i 

because the probabil i ty of any one of the n - j remaining points being placed into 
any part icular  one of the 1 l i  + 4 remaining cells is independent ly  1 / ( n / c  - i ) .  To 
evaluate PF (i), we let rj denote  the probabil i ty of observing j points in a part icular  
cell if n points are placed randomly in n / c  - (i - 1) cells; the expected number  of 
points in the i th  cell given tha t  it is nonempty  is 

PF(/) -- ~l~-J~-nJrl 
~l_<j_<n rj 

_ Y o  ~_j ~_. j r j  

1 - ro 

= n / [ n / C  - ( z  - 1)] 
1 - r o  

n / [ n / C -  ( i -  1)] 

1 - [ ( n / C -  i ) / ( n / C -  i + 1)] ~" 

For  i <_ ( n / 2 C )  - 2 the denominator  is bounded below by ],  so we have 

P ( i )  = PF(i) + P R ( i )  

3n  
< - -  t- PR(i) 
- -  n / C  - i 

(11i + 7 .n)  

- ( n / C -  i )  

_ 2C(11i  + 7). 

We can therefore  bound P ( i )  by the expression 

~(11i + 7).2C, for t _< ( n / 2 C )  - 2 
P ( i ) < _ [ n ,  for t > ( n / 2 C ) - 2 .  

We can now use the above probabilities to describe the expected cost of  the 
spiral search. We count  first the cost contr ibuted to the search if the first point 
is found in cell i. Notice tha t  the probabili ty of this occurring is at  most  e -c~'-~), 
because the first i - i cells must  be empty.  If the first point  is in the i th  cell, then  
at most  12 i + 4 cells must  be searched altogether; the expected number  of points 
in those cells was defined above as P ( i ) .  The  expected cost contr ibuted by the 
i th  cell is the probabil i ty of its being the first in which a point  is found t imes the 
sum of the number  of cells searched and the expected number  of points in those 
cells, which is bounded above by 

e -c"-1~ • [12t + 4 + P( t ) ] .  
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The total expected cost of the nearest neighbor search, denoted by T(n), is just 
this product summed over all values of i from 1 to n/C (the number of cells). 
Using the previous upper bound on P (by cases), we have 

T(n) <_ ~ e-C"-l).[12i + 4 + (11i + 7).2C] + ~ e -c(' - 1).n. 
1 ~ ,  ~: (n/2 C) - 2  (n/2 C) - 2 <  ,<_ n / C  

Simple techniques can now be applied to achieve an upper bound on T(n). We 
first use "big ohs" (regarding C as a fixed constant) and conservatively rewrite 
the indices of summation to yield 

T(n) <_ O(1) ~ (eC)-'.O(i) + O(1) ~ e-C'.n. 
, ~ 1 ( n / 2 C ) - 2  ~ _ , ~ _ n / C  

The first term is bounded above by a constant (which can be proved by consid- 
ering the convergence of the integral of the function xa-X), so we have 

T(n) <_ O(1) + O(1) ~ e-C'.n. 
( n / 2 C ) - 2 - : t < _ n / C  

Because i is always at least (n /2C)-2  in the above sum, we have 

T(n) <_ 0(1) + 0(1) ~ e-C[(n/2C)-2].n, 
( n / 2 C ) - 2 < _ t ~ : n / C  

which is bounded above by 

T(n) <_ O(1) + O(1) 

This sum reduces to 

e • n .  
~n~2 

l ' < ~ n / C  

T(n) <_ 0(1) + O(n2.e -n/2) = 0(1) 

and establishes the theorem. [] 

Note that  this proof is valid for any given query point in the unit square. The 
programming of the spiral search, however, must behave properly when cells on 
the boundary of the unit square are examined. 

Although the proof of Theorem 1 is rather tedious, the theorem itself can be 
easily understood on an intuitive level. Phrased very briefly, nearest neighbors 
are a local phenomenon, and so are cells. The following is a lengthier but more 
graphic illustration. Suppose you were standing in the middle of a large hall that 
is covered with tiles that are 1 foot by 1 foot square; suppose furthermore that  
the hall has been sprinkled uniformly with pennies, so that there are a dozen 
pennies per tile, on the average. How many feet out will you have to look before 
you find the penny nearest you? Your answer will be independent of the size of 
the hall, because the density of pennies is the critical issue, and not their absolute 
number; whether the hall is 100 feet square or 1 mile square is immaterial. This 
is exactly the phenomenon we exploit in nearest neighbor searching by ensuring 
that  there are a constant number of points per cell on the average. 

We will now apply the cell method to a number of other closest point problems. 
Although the formal proofs of the algorithms will all have the rather complicated 
structure of the proof of Theorem 1, the reasons why the algorithms perform 
efficiently all come back to the same principle: closest point problems investigate 
local phenomena, and cells capture locality. 
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Fig. 2 A point set and its Voronol diagram 

3. THE VORONOI DIAGRAM 

The Voronoi diagram of a point set is a device that captures many of the 
closeness properties necessary for solving closest point problems. For any point 
P in a set S the Vorono~ polygon of P is defined to be the locus of all points that  
are nearer P than any other point in S. Notice that the Voronoi polygon of point 
P is a convex polygon with the property that any point lying in that  polygon has 
P as its nearest neighbor. The union of the edges of all the Voronoi polygons in 
a set forms the Voronoi diagram of the set. A planar point set and its Voronoi 
diagram are illustrated in Figure 2. The Voronoi diagram has many fascinating 
properties that are quite useful computationalty. We already mentioned the fact 
that the nearest neighbor to a new point is that point whose Voronoi polygon 
contains the new point. This fact can be used to give a fast worst case algorithm 
for nearest neighbor searching. Another interesting property of the Voronoi 
diagram is the fact that the dual of the diagram {that is, the graph obtained by 
connecting all pairs of points that share an edge in their respective Voronoi 
polygons) is a supergraph of the minimum spanning tree of the set and, further- 
more, the dual contains at most 3n - 6 edges. These and many other properties 
of the Voronoi diagram are discussed by Shamos [16] and Kirkpatrick [10]; these 
authors also describe computational representations of and manipulations on 
Voronoi diagrams. For instance, the Voronoi diagram of a set of n points can be 
found in worst case O (n log n) time, and the Voronoi diagrams of m-point and n- 
point sets can be merged to form the Voronoi diagram of the entire (m + n)-point 
set in worst case time of O (m + n). Horspool [9] describes a computer program 
that implements the O (n log n) Voronoi diagram algorithm. 

In this section we will see how the Voronoi diagram of n points distributed 
uniformly on the unit square can be constructed in linear expected time. We now 
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Fig 3 Constructmn of Voronol polygon. 

briefly sketch the algorithm before examining it in detail. Its first step is to place 
the points into the cells, which we divide into inner and outer sets, the outer 
containing all cells "near" the periphery of the square. The next two steps of the 
algorithm build separately the Voronoi diagrams of the points in the inner and 
outer cells. A cell-based method using constant expected time per point is used 
for the inner cells, and an O (n log n) worst case algorithm is applied to the (small) 
set of points in the outer cells. (This distinction is necessary because the periphery 
of a Voronoi diagram does not exhibit locality.) The expected running time of 
both of these steps is at most linear. The total expected running time of this 
algorithm is therefore linear in the number of input points. 

Before studying the algorithm, we must specify precisely our representation of 
Voronoi diagrams. For each point P in the set we will give a linked list Lp that  
contains all of P's  Voronoi neighbors (in counterclockwise order), along with a 
representation of the line segment that  is the Voronoi edge separating the two 
points. This representation is fairly standard; furthermore, one can convert from 
this representation of a Voronoi diagram to any other proposed representation in 
linear worst case time. We are now equipped to examine the details of the 
algorithm. 

Step 1. Divide the unit square into n cells, each with edge length n-1/~. (Notice 
that  we are just setting the cell density C of Section 2 to 1; the expected number 
of points per cell is therefore unity.) We then define all cells no further than C~ 
log n cells from the boundary of the square to be outer cells; all the rest are inner 
cells. Note that the number of outer cells is less than 4 Cln 1/2 log n, which is also 
an upper bound on the expected number of points in those cells. 

Step 2. The goal of this step is to give the true Voronoi polygon of every inner 
point in linear expected time; we accomplish this by constructing the Voronoi 
polygon (in the representation described above) of each inner point in constant 
expected time. To find the Voronoi polygon for inner point P, we search all cells 
in a relatively small neighborhood of P in a spirallike fashion until at least one 
point is found in each of the eight 2 octants shown in Figure 3, or we give up 

2 Values less than 8 will also work, the choice of 8 is for didactic purposes only. 
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having searched out  C1 log n layers (approximately (C1 log n}2/2 cells) in each 
octant.  The  tentative Voronoi polygon of the point  P is tha t  de termined by 
considering just  those eight points. (In Figure 3, the nearest  points are dots and 
o ther  points are circles.) Let  d be the distance from point  A to the far thes t  point  
of its tenta t ive  Voronoi polygon. T h e n  no point  far ther  than  2d from point  A can 
have any effect on the actual Voronoi polygon of tha t  point, which means  tha t  
the Voronoi polygon of A can be constructed by considering only the small 
(expected constant) number  of points tha t  are in the circle of Figure 3. 

In the case where there  is at  least one point  found in each octant  before the log 
n layers are searched, the point  is called a closed point. A spiral search can be 
used to determine whether  or not  a given inner point  is closed in constant  
expected time, and for a closed point its Voronoi polygon can then  be computed  
in constant  expected time. This  can be proved by slightly modifying the  proof  of 
Theo rem 1. 3 Performing the above operations on all inner  points allows us to 
identify all closed points and compute  their  Voronoi polygons in linear expected 
time. 

If  all inner points were indeed closed, we would have the t rue Voronoi diagram 
of every point  in the inner set. We now determine the probabil i ty tha t  this is in 
fact the case. Note  tha t  any given octant  of a point  remains open after  the spiral 
search iff (C1 log n)2/2 cells were empty  (for ease of writing, let  C~/2 be C2). By 
the analysis of Sect ion 2, the probabil i ty of this is bounded above by 

e-C2(logn) 2 ~ n-C310g n 

where C3 = C2/ln 2. The  probabil i ty of any given point  being open is therefore  
bounded above by 

8 n - C31°g n 

because a point  is open iff any of its eight octants  are open. Since there  are fewer 
than  n inner points, the probabil i ty tha t  one or more of them is open is at  most  

8n. n -C31°gn -~ 8 n  1-C31°gn, 

which goes to zero very  quickly as n increases. 

The  goal of step 2 is to construct  in linear expected t ime the Voronoi polygon 
of every inner point. By the above analysis, the cell approach accomplishes this 
with high probability. If  it does not  ( that  is, if one of the inner points remains 
open), then  we construct  the Voronoi diagram of the ent ire  point  set in worst 
case O (n log n) t ime by one of the algorithms ment ioned previously. T h e  expected 
cost contr ibuted by this is the product  of the probabil i ty of its occurring t imes 
the cost incurred if it does, which is bounded above by 

8nt-C31°gn.O(n log n) = O(1) ffi O(n). 

3 The modifications to the proof of Theorem 1 can be sketched as follows. We let m be the maxi- 
mum of the number of cells searched in any of the eight octants before a point was found in them. 
The probability that rn -- t is an exponentially decreasing function of i, and the expected work 
required if m --- t Is proportional to t The details of tfus method are then quite similar to the proof of 
Theorem I. 
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Thus we see that  step 2 correctly computes the Voronoi polygons of the inner 
points in linear expected timeJ 

Step 3. The goal of this step is to compute the Voronoi polygon of every outer 
point. To accomplish this, we further divide the inner cells into two types: the 
middle cells are those cells within 2Cl log n layers of the outer cells, and the 
innermost cells are those inner cells that are not middle cells. The middle points 
are those points in middle cells, and likewise for the innermost points. The middle 
and innermost points thus form a partition of the inner points. 

Let A be the union of the outer points and the middle points. Since A is 
contained in 3C1 log n layers of cells, the expected number of points in A is 
bounded above by 12C~n ~/2 log n. The algorithm now uses an O(m log m) worst 
case algorithm to compute the Voronoi diagram of all points in A, which requires 
O(n ~/2 (log n) 2) expected time. We now show that  with very high probability we 
have correctly computed the Voronoi polygon of every outer point, and that  if we 
have not, then that  situation can be quickly detected and remedied. 

Our first task is to show that  with high probability we have correctly computed 
the Voronoi polygon of every outer point. Note that  if we do not yet have the 
true polygons, this must be because some outer point has an innermost point as 
a Voronoi neighbor. But this is true only if an octant of the given point is open 
(with respect to the middle points), which the analysis of step 2 shows occurs 
with exponentially decreasing probability. Because there are only a polynomial 
number of outer points, the probability of one or more of them having an 
innermost point as a Voronoi neighbor is exponentially decreasing. 

We must, however, properly handle the rare event when an outer point has an 
innermost point as a neighbor. It is easy to check in linear time whether or not 
this is the case: we merely examine the set of all innermost polygons (which we 
correctly computed in step 2), and see if any have an outer point as a neighbor; 
this requires O (n) time. If such a neighbor is found, then we merely compute the 
Voronoi diagram of the entire set in O (n log n) time. The expected contribution 
of this computation is the probability of its occurring times its cost, which is still 
exponentially decreasing. End of Algorithm. 

Step 1 of the above algorithm has a linear worst case running time, while steps 
2 and 3 have linear expected running time. It therefore follows that the Voronoi 
diagram of n points uniformly distributed on the unit square can be found in 
linear expected time. 

4. EXTENSIONS OF PLANAR ALGORITHMS 

The algorithms of Sections 2 and 3 can be used to solve a number of planar 
closest point problems. Given the fast nearest neighbor searching algorithm, we 
can easily solve the all nearest neighbors problem (which calls for finding the 
nearest neighbor of each point) in linear expected time, for point sets drawn from 
uniform distributions. This is accomplished by preprocessing the n points in 
linear time and then doing n searches, each of expected constant cost. Once we 

4 We note that  we did not really require an O(n log n) time Voronol diagram algorithm; any 
polynommal-time algorithm suffices to show that the expected contribution of the "fix-up" part of 
step 2 is exponentially decreasing. 
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have found all nearest neighbors, we can easily find the closest pair  in the set by 
taking the minimum of the n distances. Shamos and Hoey [17] have shown that  
once we have constructed the Voronoi diagram of a point set, we can solve many 
other problems in linear worst case time. Together with the Voronoi diagram 
algorithm of Section 3, this allows us to solve both the minimum spanning tree 
and Delaunay triangulation problems in linear expected time. The details of 
these algorithms, together with some of the applications areas in which they 
arise, are discussed by Shamos [16]. 

All of the results that we have described so far are valid only for point sets 
drawn uniformly on the unit square; the algorithms can easily be adapted to work 
for many known distributions of points. The extension of these results to unknown 
distributions is a bit tricky. If we proceed for such a distribution as though it 
were uniform over some bounded region, a query can still be answered in constant 
expected time under certain conditions. The cells are chosen by first finding the 
minimum and maximum values in both x and y and then partitioning the 
rectangle defined by those four values into a number of squares proportional to 
n. The resulting cells can be represented by a two-dimensional array and our 
previous algorithms can operate as before. The only restriction on the underlying 
distribution required to achieve constant expected time is that  it satisfy a 
condition similar to but more restrictive than a Lipschitz condition on its 
cumulative distribution function. 

THEOREM 2. Let n points be chosen independently from the distribution 
F(x, y) over a bounded, convex open region in the plane, where F satisfies the 
condition that there exist constants 0 < C1 <- C~ such that for any region of area 
A, the probability assigned to the region by F hes between CIA and C2A. 
(Alternatively, F has a density with respect to Lebesgue measure that is bounded 
above and bounded below away from zero.) Then the same algorithm that was 
used for nearest neighbor searching in the uniform case answers a query in 
constant expected time. 

SKETCH OF PROOF. We first give the intuition behind the proof, and then 
sketch how the proof of Theorem 1 can be modified to prove this theorem. The 
requirement that the distribution be over some bounded convex region of the 
plane ensures that some constant proportion of the cells will be used to contain 
points of the distribution, and the expected number of points per cell will therefore 
be boanded above and below by constants. The lower bound on density, C1, 
guarantees that the expected number of layers that need be examined before a 
point is found is small, and the upper bound C2 guarantees that not many points 
will be in the neighboring cells when they are investigated. 

We now formalize the above arguments. The critical observation is that there 
exist positive constants D1 and D2 such that the expected number of points in any 
of the cells is greater than D1 and less than/)2.~ The exact values of D1 and/)2 
depend on a number of parameters, including the size, shape, and orientation of 

Actually,  there  are some  cells t ha t  in tersect  the  regmn bu t  are not  conta ined entirely wi th in  it. For  
these  cells, the  upper  bound  D2 remains  in effect, bu t  the  lower bound  D~ migh t  not  hold. T h e  fact  
t ha t  the  region Is open and  convex is sufficient to show tha t  there  are at  mos t  O(n ~/2) such  cells, and  
they  are all on the  boundary  of the  set. For this  reason,  thei r  effect m a y  be ignored in the  res t  of  th is  
analysis.  
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the convex region and the exact values of C1 and C2. The important point, 
however, is that such constants do exist. 

Armed with these constants, it is easy to modify the proof of Theorem 1 to 
apply to the present theorem. We consider the case that the spiral search found 
its first nonempty cell in the ith cell visited. By the arguments in Theorem 1, the 
probability of this occurring is less than e -D1~'-1~. If this does occur, then the 
number of cells examined is at most 12i + 4. Likewise the expected number of 
points in the cells is less than 

(11i + 4). (n - 1) 

(n/ D2 - i -  1) 

At this point, the rest of the argument in Theorem i follows immediately, because 
the "big oh" analysis performed there can be used here without change, assuming 
that D1 and D2 are constants. [] 

Similar arguments show how the above methods can be applied to give linear 
expected-time algorithms for all of the closest point problems mentioned above, 
when the point sets satisfy the "boundedness" conditions of Theorem 2. 

5. EXTENSIONS TO HIGHER DIMENSIONS 

In the previous section we showed how the algorithms of Sections 2 and 3 can be 
used to solve a number of problems with inputs drawn from a wide variety of 
planar distributions; in this section we see how the basic results can be extended 
to solve closest point problems in k-dimensional space. If the point sets are drawn 
independently and uniformly from the unit hypercube (that is, [0, 1]k), then we 
can use the cell technique by dividing the hypercube into n/C cells, each of side 
(C/n) 1/k. 

The first closest point problem in k-space that we examine is that of nearest 
neighbor searching. Dobkin and Lipton [6] showed that a nearest neighbor to a 
new point can be found in worst case time proportional to k log n; their method 
requires preprocessing and storage prohibitive for any practical application, 
however. Friedman, Bentley, and Finkel [8] have described an algorithm that 
exhibits search time proportional to log a and has very modest preprocessing and 
storage costs. We will now examine a cell-based method for nearest neighbor 
searching that yields constant expected retrieval time. The preprocessing phase 
of the algorithm consists of placing the points into cells in k-space as described 
above. To perform a nearest neighbor search, we generalize the spiral search 
(searching out layer-by-layer) of Section 2, starting at the cell holding the query 
point and searching outward until we find a nonempty cell. At that point we must 
search all cells that intersect the ball centered at the query point with radius 
equal to the distance to the nearest neighbor found so far. The analysis of this 
algorithm is given in the following theorem. 

THEOREM 3. I f  n points are chosen independently from a uniform distribu- 
tion on the k-dimensional unit hypercube, then spiral search finds the nearest 
neighbor of a query point in constant expected time. 

SKETCH OF PROOF. As before, the expected number of points in a given cell 
is exactly C. We again consider the case of finding the first point in the ith cell 
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examined; the probability of this is at most e -c('-~). If the first point is found in 
the ith cell, then the total number of cells examined is O(i), and the expected 
number of points in those cells is O (Ci). At this point, the analysis of Theorem 
i holds. [] 

Once we have the above result, we can solve both the all nearest neighbors and 
closest pair problems in linear expected time. The k-dimensional minimum 
spanning tree problem calls for finding a spanning tree of the point set of 
minimum total edge length. Straightforward algorithms for this task require 
O(n 2) time. A. Yao [20] has shown that there is a subquadratic worst case 
algorithm for solving this problem, but his algorithm is probably slower than the 
straightforward method for most practical applications. Practical algorithms for 
this task have been proposed by Bentley and Friedman [3] and Rohlf [15], but  
the analysis of those algorithms remains primarily empirical. We now investigate 
the use of the cell technique to solve this problem in fast expected time. We use 
the method of Yao [20], which calls for finding the nearest neighbor of each of 
the n points in each of some critical number of generalized orthants. Yao has 
shown that the resulting graph is a supergraph of the minimum spanning tree of 
the point set. Since that graph contains a number of edges linear in n (for any 
fixed dimension k), the minimum spanning tree can be found in O (n log log n) 
time (see Yao [19] or Cheriton and Tarjan [5]). Slight modification of the proof 
of Theorem 3 shows that the "nearest neighbor in orthant" searching can be 
accomplished in constant expected time for each point, and the total expected 
running time of this algorithm is therefore O (n log log n). 

Using the cell method to construct k-dimensional Voronoi diagrams in fast 
expected time appears to be a very difficult task. Generalizing the method of 
Section 3 allows us to find the Voronoi polytopes of all closed points in linear 
expected time, but at that point there still remain O((n log n) 1-1/k) open points. 
Since no fast algorithms are known for constructing Voronoi diagrams in k-space, 
it is not clear how to find the true Voronoi diagram. Notice, however, that we 
have found the Voronoi polytopes of an increasing fraction of the points (that is, 
the ratio of open points to n approaches zero as n grows). This technique can be 
used for "Voronoi polytope searching," which asks for the actual Voronoi polytope 
containing the query point; our method will succeed in constant time with 
probability approaching 1. 

The algorithms we have described above have all been for points drawn 
uniformly in [0, 1] h. Methods analogous to those used in Section 4 can be used to 
show that the algorithms can be modified to work for point sets drawn from any 
distribution over some open bounded convex region with density bounded above 
and away from zero. 

6. IMPLEMENTATION CONSIDERATIONS 

In this section we discuss the implementation of the algorithms described in the 
preceding sections. It is important to mention one caveat that will be inherent in 
any application of the cell technique: the constant of linearity of most algorithms 
based on this method will increase exponentially with the dimension of the space 
k. This is true simply because a cell in k-space has 3 k - i neighbor cells. It seems, 
though, that this complexity might be inherent in any algorithm for solving 
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Fig 4. Adapting cell sizes by samphng margmals. 

closest point problems because a point in a high-dimensionl space can have many 
"close" neighbors. (More precisely, the maximum "adjacency" of point sets in k- 
space can be equated with the number of sphere touchings, which grows rapidly 
with k.) The practical outgrowth of this observation is that  the methods we have 
described will prove impractical for large k; we estimate this will happen some- 
where for k between 4 and 6 for data sets of less than 10,000 points. 

Weide [18] has described how the empirical cumulative distribution function 
can be used to decrease the constants of the running times of programs based on 
cell techniques. We now briefly discuss the application of his techniques to the 
case of planar nearest neighbor searching. If the points to be stored for nearest 
neighbor searching indeed come from a uniform distribution on [0, 1] 2, then the 
cell technique performs very well. If the points come from a distribution that is 
not uniform (but still "smooth" enough to satisfy the requirements of Theorem 
2), then the cells might perform poorly because they are at once both too large 
(in dense regions of the plane) and too small (in sparse regions). We would 
therefore like the cells to adapt their size in different regions of the space. One 
approximation to this "adaptive" behavior can be achieved with the cell method 
by incorporating a "conditioning pass" that examines the distribution before the 
points are placed in cells. This pass might work by finding the 10th, 20th, . . . ,  
90th percentile points in both the x and y marginal distributions. Each set of 9 
points partitions its dimension into 10 "slabs," and the cross product partitions 
space into 100 rectangles. Figure 4 illustrates such a partition of a heavily central 
distribution, such as a bivariate normal truncated at three standard deviations 
(where 6 points are sampled in each marginal, creating 49 rectangles). For many 
distributions satisfying the conditions of Theorem 2, the distribution of points 
within each rectangle will be much smoother than the distribution over the entire 
space. Because we sampled only a constant number of points in each dimension, 
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we can locate which rectangle to examine in a nearest neighbor search in constant 
time. The exact number of rectangles to be used depends critically on the 
"roughness" of the underlying distribution--the more bounded the distribution, 
the fewer sample points required. These and other adaptation techniques are 
discussed in detail by Weide [18]. 

Although the searching structures that we have described in this paper are 
inherently static, they can be modified to become dynamic. We first consider the 
case in which the nearest neighbor structure is initially empty and must support 
a series of Insert and Search operations. To convert our cell structure from static 
to dynamic, we use a method that is similar to a method described by Aho, 
Hopcroft, and Ullman [1, p. 113] for converting a static hash table into a dynamic 
one. The nearest neighbor structure is initially defined to have a maximum 
allowable size of (say) eight; we will call this size max. When a new point is 
inserted into the structure, it is merely appended to the list of points currently in 
its cell. Whenever an insertion causes the number of points currently in the 
structure to exceed max, we perform the following operations: max is set to twice 
its current value, a new structure of max/C is created, and the points currently 
stored in the structure are "reinserted" into the new structure. Note 
that for any distribution satisfying the conditions of Theorem 2, the expected 
number of points per cell is always bounded above and below by constants. 
Furthermore, analysis shows that the total amount of computation required to 
insert n elements into this structure is proportional to n. (Whenever a structure 
of size m is rebuilt, it is because m/2 points were inserted, so the "amortized" cost 
per point is constant; for a more formal analysis, see Aho, Hopcroft, and Ullman 
[1].) Monier [12] has described a related technique that allows a hash table to 
support both insertions and deletions intermixed with queries. We can use his 
idea to give dynamic structures for all of the searching problems discussed in this 
paper with the following properties: a sequence of n insertions and deletions can 
be performed in time proportional to n, at any point in this sequence it is possible 
to perform a search in constant expected time, and the storage used by the 
structure is always proportional to the number of elements currently stored. 

In the above discussion we have described a number of rather exotic extensions 
to the basic structures of this paper. For many applications, however, the basic 
structure is all that is needed. We will therefore briefly describe our experience in 
implementing the nearest neighbor searching algorithm s for point sets drawn 
uniformly on the unit square. The PASCAL implementation required 11 lines of 
executable code to place the points in cells and 34 lines to perform the search. 
The optimal number of points per cell {that is, the expected density, which we 
called C in Section 2) was 3; densities ranging from 1 to 9, however, decreased the 
running time by only 10 percent. The average running time for nearest neighbor 
searching (including preprocessing) was the constant 2765 microseconds per 
search, on a PDP-KL10. (This compares with 52n microseconds required by the 

G Since one of the mare points of thin paper is that  the algorithms described are of practical interest 
(m additmn to theoretmal), the authors feel obhgated to explain that  they unplemented only this 
simple case because the code required to implement the more comphcated algorithms is complex. 
(For example, the Fortran code available to the authors for constructing planar Voronoi dmgrams was 
1000 lines long ) Thin will be less of an obstacle for Lmplementors of real programs who are already 
using complex "underlying" routines. 
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straightforward linear search; the break-even point is at n = 53.) In using this 
code to find all nearest neighbors in a 1000-point planar set, the cell method 
required less than 2.8 seconds while the quadratic algorithm required 52 seconds. 

To learn more about the performance of the algorithm in real applications, we 
ran the program on two sets of real geographic data. Both data sets consisted of 
points representing the population centroids of political areas; the original lati- 
tudes and longitudes in seconds were scaled to be in [0, 1]. The first data set 
represented the 318 census tracts in San Diego County, California, and the second 
data set represented the 1122 precincts in the state of New Mexico. The points in 
the first data set were fairly uniform over approximately half of the unit square, 
while the points in the second were very clustered (in the few large cities in New 
Mexico). We used the programs described above to find the nearest neighbors in 
each set, with the results shown in Table I. 

Table I 

San New 
Diego Mexmo 

Number of points 318 1122 
Quadratm algonthm 

Predmted time 5 25 65 5 
Observed tune 5.35 66.5 

Cell algorithm 
Predicted time 0.88 3.11 
Observed time 1.40 7.56 
Optimum cell density 1.7 3.0 

All times are noted in seconds; the predicted run times are 2765n microseconds 
for the cell algorithm and 52n 2 microseconds for the quadratic algorithm. 

Table I merits interpretation. Note first that  the predictions of run time for the 
quadratic algorithm were extremely accurate. The predictors for the cell method 
did not fare as well: the ratio of observed run time to predicted is approximately 
1.6 for San Diego and 2.4 for New Mexico. This is due to the nonuniformity of the 
data; the greater clustering in New Mexico led to a greater degradation of 
performance. Even so, though, note that  the ratio of observed quadratic run time 
to observed cell run time is 3.9 for San Diego and 8.8 for New Mexico. Thus we 
may conclude that although our algorithms will experience a slight degradation 
when used on "real" data, they can still lead to a substantial savings in run time. 

In this section we have discussed the implementation of the algorithms de- 
scribed in the preceding sections. Those algorithms share a common two-phase 
structure: in the first phase the points are stored in cells and in the second phase 
additional processing is done on the points. The implementation of the first phase 
is trivial; points can be placed in cells by first finding the cell number (accom- 
plished by a multiplication for scaling and a floor function to find the integer cell 
index) and then performing an array index. The difficulty of the second phase of 
processing will depend on the particular problem being solved. In the case of 
nearest neighbor searching, all that is required is a "spiral search" and some 
distance calculations; the above discussion shows that both of these are easy to 
implement very efficiently. For the Voronoi diagram, however, the second phase 
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of processing is very complicated. One advantage of the locality inherent in 
closest point problems is that very slow algorithms may be used to perform the 
operations that take place in a local area; this will increase the constant of 
linearity, but will not slow the asymptotic running time of the algorithms. This 
implies that a practitioner may be able to improve the performance of existing 
programs by dividing the points into cells in a first phase. 

7. CONCLUSIONS 

In this paper we have seen a number of algorithms for solving multidimensional 
closest point problems. The algorithms were all based on the simple idea of cells, 
and were analyzed under the assumption that the points were drawn from some 
underlying "bounded" distribution. All of the searching methods we described 
have linear preprocessing costs and constant expected searching costs; all of the 
algorithms {with the exception of k-dimensional minimum spanning trees) have 
linear expected running time. It is clear that these algorithms achieve the trivial 
lower bounds and are therefore optimal. Although we have described the algo- 
rithms primarily as theoretical devices (sacrificing efficiency for ease of analysis), 
the discussion in Section 6 described how many can be efficiently implemented 
on a random-access computer. 

Much further work remains to be done in developing fast expected-time 
algorithms for closest point problems. Can the expected complexity of computing 
minimum spanning trees in k-space be reduced from O(n log log n) to O(n)? A 
particularly important problem is to extend our results from the bounded distri- 
butions of Theorem 2 to unbounded distributions (the multivariate normal, for 
example). It appears that new algorithms will have to be developed for this 
problem, taking special care of "outliers." Another very interesting open problem 
is to describe precisely how much of the efficiency of our algorithms is gained 
from probabilistic assumptions and how much is gained by use of the floor 
function. (The recent paper of Fortune and Hopcroft [7] shows that floor can be 
used to speed up the computation of closest pair without making the randomi- 
zation assumptions of Rabin [14] and Weide [18].} 
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