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What line maximizes the separation between two sets of data?

The general hyperplane separation problem

Given m items of n-dimensional data x, some of which belong to set P , find the coefficients w of a
hyperplane

y(xi) = w0 +

n∑
j=1

wjxi,j

so that y(xi) indicates whether xi belongs in set P .

In the logistic regression problem, we have seen a similar attempt to compute a separator for two sets of
data. In that problem, the solution is determined by finding weights w that minimize the cost:

J(w) =
1

m

m∑
i=1

−yi log(y(xi)) + (1− yi) log(1− y(xi))

Now we are going to look at two other classification methods which construct a hyperplane by different
procedures.
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The perceptron problem

Given m items (xi, yi) of n-dimensional data, each either in class 0 or class 1, find a hyperplane

y(xi) = w0 +

n∑
j=1

wjxi,j

so that {
y(xi) < 0 if xi ∈ class 0

y(xi) > 0 if xi ∈ class 1

1 The perceptron problem

A set of data, consisting of two classes, is linearly separable if we can find a line (or plane or hyperplane)
that correctly splits the data. If we can find such a line, it allows us to easily determine where data belongs,
possibly to guess why the two classes are different, and to predict the class of a new data item.

The perceptron problem assumes we have been given such a set of data, including the labels indicating which
class each item belongs to, and asks us to find a suitable division line.

Suppose that we have m sets of data, with the i-th set denoted by (xi, yi). While yi is a single number (a
class that is either 0 or 1), the quantity xi is an n-vector, with j-th component xi,j . In the usual way, we
will insert into x an extra, initial value xi,0 which is always 1. Hence we can write our desired formula as

y(xi) =

n∑
j=0

wjxi,j = w′xi ≈ yi

For the i-th data item (xi, yi), we have an error ei:

ei = (yi − y(xi))

and our sum-of-squares error is

E =

m∑
i=1

e2i

To use gradient descent, we need the n + 1 component gradient vector:

∇(E) =
[

∂E
∂w0

, ∂E
∂w1

, · · · ∂E
∂wn

]
and we can see that, for every index j, we have:

∂E

∂wj
= −2 ∗

m∑
i=1

(y − yi) ∗ xi,j

We can ignore the factor of -2, and now use gradient descent to try to find values w which make the gradient
zero, and hence minimize the sum-of-squares error E.

Once we have our weights w, we can classify any data item x. Of course, since all negative values of y(x)
will map to class 0 and all positives to class 1, we can assign a data item x based on the sign of y(x):

class(x) =

{
1, if 0 ≤ y(x)

0, otherwise
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2 A gradient descent code for the perceptron problem

Our program will continue as long as any classification is wrong. (We are assuming that a perfect separating
line exists. Otherwise, our program will never stop!)

We use a learning rate alpha to slow down our descent. We should probably also normalize columns 1
through n of the x data before starting. We can set an initial guess for the weights as 1

n+1 .

1 def pe r c ep t r on g rad i en t ( x data , y data , alpha , stepmax , w0 ) :
2
3 import numpy as np
4
5 m = len ( y data )
6
7 w = np . copy ( w0 )
8 e = 0
9 step = 0

10
11 while ( s tep < stepmax ) :
12
13 e = 0
14 step = step + 1
15
16 for i in range ( 0 , m ) :
17 y = np . dot ( w [ : ] , x data [ i , : ] )
18 f = ( 0 < y )
19 e = e + ( y data [ i ] != f )
20 w = w + alpha ∗ np . dot ( ( y data [ i ] − f ) , x data [ i , : ] )
21
22 w = w / np . l i n a l g . norm ( w )
23 i f ( e == 0 ) :
24 break
25
26 return w, e , s tep

Listing 1: Gradient descent for a perceptron problem.

3 Example: The perceptron algorithm for generator data

The Stark Industries data center relies for backup power on an array of 56 generators. During a recent black-
out, the generators were turned on, and some of them were found to be defective. The main console measured
the RPM and vibration rate of each generator. The file generator data.txt contains these measurements, as
n = 56 rows of 4 items of data:

1. id: the generator ID;

2. rpm: the rotational rate;

3. vib: the vibrational rate;

4. ok: the generator status: 0 = “failed”, 1 = “working”

We want to determine the weights w0, w1 and w2 for a formula:

y = w0 ∗ 1 + w1 ∗ rpm + w2 ∗ vib

so that

ok(x) =

{
1, (working) if 0 ≤ y(x)

0, (failed) otherwise

that will allow us to predict, in the future, whether a generator will fail, based on the rpm and vib measure-
ments.
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To simplify our notation, we will create an extra variable,

1. one: a vector of 1’s;

We create a 3-column data matrix x = |one|rpm|vib|.
1 import numpy as np
2
3 data = np . l oadtx t ( ’ g ene ra to r da ta . txt ’ )
4 rpm = data [ : , 1 ]
5 vib = data [ : , 2 ]
6 act = data [ : , 3 ]
7 m = len ( rpm )
8
9 r = ( rpm − np .min ( rpm ) ) / ( np .max ( rpm ) − np .min ( rpm ) )

10 v = ( vib − np .min ( vib ) ) / ( np .max ( vib ) − np .min ( vib ) )
11
12 alpha = 0.01
13 w0 = np . ones ( 3 ) / 3 .0
14 x = np . z e r o s ( [ m, 3 ] )
15 x [ : , 0 ] = 1 .0
16 x [ : , 1 ] = r
17 x [ : , 2 ] = v
18
19 w = per c ep t r on g rad i en t ( x , y , alpha , stepmax , w0 )

Listing 2: Solving the perceptron problem for generator data.

If we plot our generator data and the perceptron line, we see that we have successfully classified our data.
On the other hand, the line could surely have been chosen more carefully, so that it ran down the middle
of the empty space between the two classes. However, to be guaranteed of such a result, we must turn to
support vector machines.

The dividing line produced by the perceptron algorithm

4 Solving a quadratic program with cvxopt

The support vector machine approach improves on the perceptron by producing the separating line that
runs exactly halfway down the space that separates the two classes of data (assuming there is such space!).
Naturally, an SVM problem is somewhat more complicated. One way to solve an SVM problem results in a
formulation known as a quadratic program (like a linear program, but with a quadratic objective function).
To solve such problems, we can use a quadratic programming package such as cvxopt.
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The Python package cvxopt can be downloaded and installed by the command pip3 install cvxopt.

cvxopt() assumes that we are trying to solve a general quadratic problem of the form:

minimize: f(x) =
1

2
x′Qx + p′x

subject to: Gx ≤ h

Ax = b

As an example, consider a problem in which x is a vector of length 2, and we want to solve:

minimize: f(x) = 2x2
0 + x2

1 + x0x1 + x0 + x1

subject to: x0 ≥ 0, x1 ≥ 0

x0 + x1 = 1

With some thought, we can set up the corresponding arrays that cvxopt expects:

f(x) =
1

2

[
x0

x1

]′
2 ∗
[

2 0.5
0.5 1

] [
x0

x1

]
+
[

1 1
] [ x0

x1

]
[
−1 0

0 −1

] [
x0

x1

]
≤
[

0
0

]
[

1 1
] [ x0

x1

]
=
[

1
]

We can now set up our problem to be solved. Note that cvxopt uses a matrix() command to set up vectors
and matrices. Once our solution vector x is computed, we can easily convert it into our familiar np.array()
data type:

1 from cvxopt import matrix
2 from cvxopt import s o l v e r s
3
4 Q = 2∗matrix ( [ [ 2 , . 5 ] , [ . 5 , 1 ] ] )
5 p = matrix ( [ 1 . 0 , 1 . 0 ] )
6
7 G = matrix ( [ [ − 1 . 0 , 0 . 0 ] , [ 0 . 0 , − 1 . 0 ] ] )
8 h = matrix ( [ 0 . 0 , 0 . 0 ] )
9

10 A = matrix ( [ 1 . 0 , 1 . 0 ] , ( 1 , 2 ) ) # Makes t h i s a (1 ,2) matrix in s t ead o f a vec to r
11 b = matrix ( 1 . 0 )
12
13 s o l = s o l v e r s . qp ( Q, p , G, h , A, b )
14
15 import numpy as np
16
17 x = np . array ( s o l [ ’ x ’ ] )
18 x = np . squeeze ( x )
19
20 print ( ’ ’ )
21 print ( ’ Cost i s minimized at x = [ ’ , x [ 0 ] , ’ , ’ , x [ 1 ] , ’ ] ’ )
22 co s t = 2 .0 ∗ x [ 0 ]∗∗2 + x [ 1 ]∗∗2 + x [ 0 ] ∗ x [ 1 ] + x [ 0 ] + x [ 1 ]
23 print ( ’ Minimized co s t i s ’ , c o s t )

Running this program produces the output:

1 Cost i s minimized at x = [ 0.2500000952702475 , 0.7499999047297524 ]
2 Minimized co s t i s 1.8750000000000178
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We will be able to describe the support vector machine problem as a similar example of quadratic program-
ming, so that we can use cvxopt() to get a solution.

The Support Vector Machine problem

Given m items of data x with each item having dimension n, some of which belong to a set P , find
weights w of a function so that for each item x, we can compute

y(xi) =

n∑
j=0

wjxi,j

so that {
yi <= −1 if xi /∈ P

yi => +1 if xi ∈ P
(1)

and for which the hyperplane y = 0 creates the widest possible margin between the two sets of data.

5 The support vector machine problem

We are given m sets of data {xi, yi}, where each xi is an n vector, and yi is a classification, which, by SVM
convention, will have the value -1 or +1. (Note that, for the perceptron, we used classifications of 0 and 1.)

We assume our data is linearly separable, that is, that at least one straight line can be drawn that splits the
data into its two groups. If so, there will be many such lines. The SVM approach seeks the best such line,
which maximizes the separation margin between the two data sets.

In general, the equation of a hyperplane can be represented as

f(x) = b +

n∑
j=1

wjxj = b + w′ ∗ x = 0

but, as in the perceptron problem, we want to simplify our notation by inserting a variable x0 which is
identically 1, so we can write:

f(x) = w0 1 +

n∑
j=1

wjxj =

n∑
j=0

wjxj = w′ ∗ x = 0

Given data, our goal is to find weights w which produce the best separating line. The function f(x) can be
used to measure how far any data item is. These values will always be -1 or less, for points on the negative
side of the line, and +1 or greater on the positive side.

If our dataset has spatial dimension 2, we can easily visualize the results as a highway separating the two
sets of data, chosen in such a way that the highway is as wide as possible.

The SVM problem is similar to the Perceptron problem, but there are two changes. First, we require that y
not just be on the right side of zero for each data value, but actually be at least 1 unit away from zero. It
turns out that the second requirement can be rephrased as follows:

find the weights w0, ...wn of which minimize
1

2

n∑
j=1

w2
j and satisfy inequality (1)

How can we find the appropriate weights w for a given set of data?
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The SVM system can be rewritten as seeking weights w which:

minimize:
1

2

n∑
j=1

w2
j

subject to: yi ∗ (w′xi) ≥ 1 for each data i

In other words, the sign of w′xi must always match the sign of our data label yi.

Recall that cvxopt() assumes that we are trying to solve a general quadratic problem of the form:

minimize: f(x) =
1

2
x′Qx + p′x

subject to: Gx ≤ h

Ax = b

In order to make our problem fit the pattern expected by cvxopt, we have to set up the following objects.
Recall that we have m data items. We will let n indicate the dimension of our original data, and N = n+ 1
is the dimension of the data after we insert the extra “1” variable.

x→w

Q→
(

0 0
0 In×n

)
p→

(
0N×1

)
G→− diag(y) ∗

(
1m×1 | X

)
h→

(
−1m×1

)
A→not used!

b→not used!

Here, diag(y) is the m×m diagonal matrix whose diagonal entries are the values of the y data (the classifi-
cations), and X is the m× n matrix of data values before we insert the initial column of 1’s.

We begin in the usual way, reading our data, but we won’t need to normalize the data because our solver
is well-written. We simply call a function w = fit(rpm, vib, grade) which will handle the cvxopt()

solution procedure as a black box.

1 import numpy as np
2
3 data = np . l oadtx t ( ’ j e t d a t a . txt ’ )
4
5 rpm = data [ : , 1 ]
6 vib = data [ : , 2 ]
7 grade = data [ : , 3 ]
8 m = len ( rpm )
9

10 w = f i t ( rpm , vib , grade )

The fit function has to set up the arrays we need, convert them to the matrix format, and call the
appropriate solver:

1 def f i t ( rpm , vib , grade ) :
2 from cvxopt import matrix , s o l v e r s
3 import numpy as np
4
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5 m = len ( rpm )
6
7 Q = 0.5 ∗ np . array ( [ \
8 [ 0 . 0 , 0 . 0 , 0 . 0 ] , \
9 [ 0 . 0 , 1 . 0 , 0 . 0 ] , \

10 [ 0 . 0 , 0 . 0 , 1 . 0 ] ] )
11
12 p = np . z e r o s ( 3 )
13
14 G = np . z e r o s ( [ m, 3 ] )
15 G[ : , 0 ] = 1
16 G[ : , 1 ] = rpm
17 G[ : , 2 ] = vib
18 G = − np . dot ( np . diag ( grade ) , G )
19
20 h = −1.0 ∗ np . ones ( m )
21
22 Q = matrix ( Q )
23 p = matrix ( p )
24 G = matrix ( G )
25 h = matrix ( h )
26
27 s o l = s o l v e r s . qp ( Q, p , G, h )
28 w = np . array ( s o l [ ’ x ’ ] )
29
30 return w

To make a plot of the hyperline and its two margins, we simply want to use the weights w to plot y(x) =
−1, 0, 1 as red, black, and blue lines. It takes a little work to figure out how to specify the portion of these
lines to display:

The -1, 0, and +1 lines for the jet SVM.

6 Computing Assignment #8

The file gopher data.txt contains 50 records; each record lists the skull width and skull length in centimeters,
and a species label, which is either -1 (Golden Gopher) or +1 (Hopping Gopher).

Write a program hw8.py which computes the weight vector w for an SVM for this data.

Email a copy of your program to Dr Schneier mhs64@pitt.edu by Wednesday, 6 November.
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