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How to separate the sheep from the goats

The Logistic Regression Problem

We need to make a Yes/No decision y based on the values of data x. We have n previous examples
of such decisions. We would also like to estimate how likely our decision is to be correct.

A doctor must decide whether a baby should have a regular deliver or Caesarian section. While every patient
is different, the doctor has many previous case histories and the decisions made there. The doctor wishes
to make a decision based on this data. If the patient has concerns, the doctor wants to be able to say how
strong the recommendation is.

This is an example of a classification problem. Our task is to look at a particular case, and decide which
class it belongs to. In the logistic regression problem, there are only 2 such classes, which might be Yes/No,
0/1, Admit/Reject, Pass/Fail. Since our action will be based on previous examples for which the decision
has already been made, this is an example of supervised learning.

1 A logistic function

To begin with, let us suppose that the output decision y is to made based on the value of just a single
input x. Our decision will be simplified if we can somehow come up with a function y(x) that automatically
returns a reasonable Yes or No value. The simplest such function might simply apply some cutoff value x∗:

y(x) =

{
No if x ≤ x∗

Yes if x∗ < x

However, this approach does not give us the additional information of how sure we are of our classification,
and it does not generalize easily to situations involving multiple input variables x.
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Consider the formula known as the logistic or sigmoid function:

y(x) =
l

1 + e−m(x−b)

which has parameters l (maximum value), m (slope) and b (cutoff). For our purposes, we will always set
l = 1.

The logistic curve for l = 1, b = 2,m = 3.

The function y(x) is near 0 for values to the left of the cutoff, hits 1
2 at the cutoff value, and then rises to 1

on the right. The location of the cutoff is controlled by the value of b. The sharpness of the rise, and the
width of the “uncertainty” region, depend on the slope m.

For a given problem, if we can determine good values of b and m, then we will have a way of classifying our
data, as well as reporting how sure we are of our decision:

y(x) =



No! (90% sure) if y(x) <= 0.10

No if 0.10 < y(x) < 1
2

50/50 if y(x) = 1
2

Yes if 1
2 < y(x) < 0.90

Yes! (90% sure) if 0.90 < y(x)

2 Exercise: Plot the logistic function

Download the file logistic.py. Consider the logistic function, with parameters l = 1, b = 2,m = 3, over the
range −2.0 ≤ x ≤ 8.0.

1 from l o g i s t i c import l o g i s t i c
2
3 l = 1 .0
4 b = 2 .0
5 m = 3.0
6 x = np . l i n s p a c e ( −2, 8 , 11 )
7 y = l o g i s t i c ( l , b , m, x )
8 print ( y )

Listing 1: Evaluate the logistic function.
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1 x y=l o g i s t i c ( 1 , 2 , 3 , x )
2
3 −2 0.000006
4 −1 0.000123
5 0 0.002472
6 1 0.047425
7 2 0.500000
8 3 0.952574
9 4 0.997527

10 5 0.999877
11 6 0.999994
12 7 1.000000
13 8 1.000000

Listing 2: Sample logistic function values.

The file logistic.py includes the function logistic(l,b,m,x1,x2), which plots the logistic function over the
interval [x1, x2]:

1 from l o g i s t i c import l o g i s t i c p l o t
2
3 # Vary the c u t o f f b
4 l o g i s t i c p l o t ( 1 . 0 , 1.0 , 3 . 0 , −2.0 , 8 . 0 )
5 l o g i s t i c p l o t ( 1 . 0 , 2.0 , 3 . 0 , −2.0 , 8 . 0 )
6 l o g i s t i c p l o t ( 1 . 0 , 3.0 , 3 . 0 , −2.0 , 8 . 0 )
7
8 # Vary the s l ope m
9 l o g i s t i c p l o t ( 1 . 0 , 2 . 0 , 1.0 , −2.0 , 8 . 0 )

10 l o g i s t i c p l o t ( 1 . 0 , 2 . 0 , 2.0 , −2.0 , 8 . 0 )
11 l o g i s t i c p l o t ( 1 . 0 , 2 . 0 , 3.0 , −2.0 , 8 . 0 )

Listing 3: Plot the logistic function over −2 < x < 8 with various values of b and m.

3 Example: Is this a counterfeit coin?

An American Eagle gold coin is expected to weigh on average 33.9 grams, worth something like $1,7000 (it
varies with the price of gold!); naturally, the weight may vary a small amount. But if the weight is off by
too much, we need to worry. Suppose a counterfeiter has been producing lightweight versions of the coin.
These also vary in weight, but on average weigh 33.8 grams.

Suppose that we have sent 20 gold coins to the Treasury Department, and they have returned a data file
gold data.txt which lists, for each coin, the weight, and a label of 0 for counterfeit and 1 for real. The Treasury
Department used many tests to make this determination. We are going to try to “explain” or model their
judgment using only the value of weight. We may get some false results this way, but we are interested in a
quick, simple formula.

Our formula will return a number between 0 and 1, representing how strongly it thinks a given coin is fake
or real. A value near 0.5 would be a coin where we can’t decide, but lower values mean a fake is more likely,
while higher values will indicate the coin is more likely to be real.

The logistic regression formula that will be used has the form:

y(x) =
1

1 + e−w′x

where x is the data for a given case. In our example, x will be a vector [1|g] where g is the (normalized)
weight of the coin. The vector w is a set of weights (2 in this example), to be determined by minimizing the
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classification error. This minimization can be done by first normalizing the data, and then calling a function
that uses gradient descent.

For our work, we will be calling a function called logistic regression(x,y,alpha,kmax), where

• x is our normalized input data, with an initial column of 1’s
• y is our output data, values of 0 or 1
• alpha is a learning rate, which might be 0.1 or 0.01
• kmax is the maximum number of iterations

The function uses the gradient descent method, and returns its best estimate for the weights w. Here is how
it would be used for our gold coin problem:

1 import numpy as np
2
3 data = np . l oadtx t ( ’ go ld data . txt ’ )
4
5 g = data [ : , 0 ]
6 y = data [ : , 1 ]
7 m = len ( g )
8
9 gmin = np .min( g )

10 gmax = np .max( g )
11 g = ( g − np .min ( g ) ) / ( np .max ( g ) − np .min ( g ) )
12
13 x = np . z e r o s ( [ m, 2 ] )
14 x [ : , 0 ] = 1
15 x [ : , 1 ] = g
16
17 alpha = 0.02
18 kmax = 100000
19
20 from l o g i s t i c r e g r e s s i o n import l o g i s t i c r e g r e s s i o n
21
22 w = l o g i s t i c r e g r e s s i o n ( x , y , alpha , kmax )

Listing 4: Linear regression for gold coin data.

The weights w = [−2.311, 4.092] are returned for the normalized data values. This means that, if we actually
want to compute the value of y for the first data value g[0], we need to do this by computing

1 gn = ( g [ 0 ] − gmin ) / ( gmax − gmin )
2 wtx = w[ 0 ] ∗ 1 .0 + w[ 1 ] ∗ gn
3 y1 = 1 .0 / ( 1 .0 + np . exp ( − wtx ) )

In the following graph, we display the logistic function for our gold data, using the raw (un-normalized)
values of the coin weights. This shows that the cutoff point is about 33.55 grams. Below this, a coin is more
than 50% likely to be fake.
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The logistic regression curve for the gold coin data.

4 Can we trust the logistic regression() function?

We will treat the logistic regression() function as a black box. It uses gradient descent, and we have
already said that it is best for a gradient descent function that the data is normalized. Otherwise, badly
scaled data can make it difficult to get convergence.

The variable alpha is a “learning rate”, a kind of step control variable that we saw in the gradient descent
lab. For our problems, using a value of around 0.01 to 0.1 may be reasonable.

The variable kmax controls the number of steps of gradient descent to be carried out. For our problems, a
value of 10,000 might be reasonable.

Because this function does not include any convergence tests, we have to guess whether or not it has done
its job. One way to check that kmax is about the right size is to compare the results when you double it or
cut it in half. If the results change significantly, this can indicate that more iterations would improve the
accuracy. Similarly, if double or halving alpha makes a noticeable change in the results, this may indicate
an issue with the convergence.

1 alpha = 0.02
2 kmax = 100000
3 w = l o g i s t i c r e g r e s s i o n ( x , y , alpha , kmax )
4 print ( w )
5
6 alpha = 0.02
7 kmax = 10000 # Try 1/10 the number o f i t e r a t i o n s
8 w = l o g i s t i c r e g r e s s i o n ( x , y , alpha , kmax )
9 print ( w )

10
11 alpha = 0.02
12 kmax = 200000 # Try twice the number o f i t e r a t i o n s
13 w = l o g i s t i c r e g r e s s i o n ( x , y , alpha , kmax )
14 print ( w )

Listing 5: Is kmax about right?
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5 Example: The comfort zone

The manager of an office complex has taken m = 44 measurements of humidity, h, and temperature t, and
asked the office workers if they find the environmental comfortable (y = 1) or uncomfortable (y = 0).

Rather than keeping all this data, the manage would like a plot, or formula, or some simplified model that
will generally suggest the comfortableness of any pair of humidity and temperature values.

Now we have two input variables to work with. We normalize the input values, create an m × 3 array x
containing [1|h|t] and call logistic regression().

The logistic regression dividing line for the comfort data.

Instead of a cutoff value, we now have a cutoff line, of the form w′x = 0 or w0 1 +w1 ĥ+w2 t̂ = 0. Values to
the left of this line represent comfortable mixtures of humidity and temperature. This plot was made using
the normalized data ĥ, t̂.

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3 from l o g i s t i c r e g r e s s i o n import l o g i s t i c r e g r e s s i o n
4
5 data = np . l oadtx t ( ’ comfort data . txt ’ )
6
7 h = data [ : , 0 ]
8 t = data [ : , 1 ]
9 y = data [ : , 2 ]

10 m = len ( h )
11
12 h = ( h − np .min ( h ) ) / ( np .max ( h ) − np .min ( h ) )
13 t = ( t − np .min ( t ) ) / ( np .max ( t ) − np .min ( t ) )
14
15 x = np . z e r o s ( [ m, 3 ] )
16 x [ : , 0 ] = 1
17 x [ : , 1 ] = h
18 x [ : , 2 ] = t
19
20 alpha = 1 .0
21 kmax = 10000
22
23 w = l o g i s t i c r e g r e s s i o n ( x , y , alpha , kmax )
24
25 print ( ’ ’ )
26 print ( ’ Estimated weights W = (%g,%g,%g ) ’ % ( w[ 0 ] , w[ 1 ] , w [ 2 ] ) )
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Listing 6: Linear regression for comfort data

6 Exercise: Admission Statistics

The file admit data.txt contains 100 records relating to college admission applications. Each record contains
a student’s scores on an English exam (eng), on a math exam, (mat), and an admissions decision y, which
is 0 (not admitted) or 1 (admitted). Our task is to find a logistic formula which, given eng and mat, can
give a y value between 0 and 1, estimating the probability that the student will be admitted.

We will read the data, normalize it, pack the input values into an x array containing [1|eng|mat], and call
logistic regression() to get weights w.

1 import numpy as np
2 from l o g i s t i c r e g r e s s i o n import l o g i s t i c r e g r e s s i o n
3 data = np . l oadtx t ( ’ admit data . txt ’ )
4 eng = data [ : , 0 ]
5 mat = data [ : , 1 ]
6 admit = data [ : , 2 ]
7 m = len ( eng )
8
9 eng = ( eng − np .min ( eng ) ) / ( np .max ( eng ) − np .min ( eng ) )

10 mat = ( mat − np .min ( mat ) ) / ( np .max ( mat ) − np .min ( mat ) )
11
12 x = np . z e r o s ( [ m, 3 ] )
13 x [ : , 0 ] = 1
14 x [ : , 1 ] = eng [ : ]
15 x [ : , 2 ] = mat [ : ]
16
17 y = admit [ : ]
18
19 alpha = 0.01
20 kmax = 10000
21
22 w = l o g i s t i c r e g r e s s i o n ( x , y , alpha , kmax )

Listing 7: Linear regression for admissions data.

Three students apply late. We will use the weights w to decide whether to admit them. The raw data is:

1 eng mat
2 46 81
3 26 75
4 30 66

We need to use the normalized versions of these values, which are

1 eng mat
2 0 .66 0 .88
3 0 .22 0 .74
4 0 .31 0 .55

We evaluate the exponent of the logistic function, and then the logistic function itself:

1 x1 = np . array ( [ 1 . 0 , 0 . 66 , 0 .88 ] )
2 wx = np . dot ( w, x1 )
3 y1 = 1 .0 / ( 1 .0 + np . exp ( − wx ) )
4 print ( ’ Student 1 : wx = ’ , wx , ’ Y = ’ , y1 )

Listing 8: Evaluate formula for student #1

A y value near 0.5 is hard to decide, but values above that will signify admission, and lower values rejection.
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7 Computing Assignment #7

The file caesarian data.txt contains 80 records; each record lists 6 values used by a doctor to determine
whether or not to recommend that a baby be delivered by Caesarian section:

1. age, patient’s age in years;

2. num, number of previous deliveries by patient;

3. tim, delivery date (0=timely, 1 = premature, 2 = late);

4. pre: blood pressure (0=low, 1=normal, 2=high);

5. hrt: heart (0=healthy, 1=unhealthy);

6. cae: decision (0=normal delivery, 1=use Caesarian);

Write a program hw7.py which:

1): Reads the caesarian data file, normalizes the first 5 data items, creates an 80×6 data matrix x containing
[1|age|num|tim|pre|hrt], calls logistic regression() to estimate the weights w, and prints w.

2): Uses the weights w to evaluate three new cases. The raw values are:

1 age num tim pre hrt
2 29 2 2 0 1
3 33 2 0 2 0
4 22 0 1 1 0

but when you evaluate the formula, you must use the normalized data values:

1 age num tim pre hrt
2 0 .52 0 .5 1 .0 0 .0 1 .0
3 0 .70 0 .5 0 .0 1 .0 0 .0
4 0 .22 0 .0 0 .5 0 .5 0 .0

For new cases #1, 2, 3, return the values of w′ x (the exponent in the logistic function), y(x) (a num-
ber between 0 and 1), and your judgement of whether the patient should undergo a Caesarian operation:
’probably’, ’unsure’, ’probably not’.

Email a copy of your program, your results, and your decisions to Dr Schneier mhs64@pitt.edu by Wednes-
day, 30 October.
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