
Introduction to Computing on an HPC System
MATH1900: Machine Learning

Location: http://people.sc.fsu.edu/∼jburkardt/classes/ml 2019/hpc intro/hpc intro.pdf

BRIDGES is the main system at the Pittsburgh Supercomputing Center (PSC).

HPC Basics

How do I create an account at the Pittsburgh Supercomputing Center, log in, transfer files, and do
some simple tasks?

1 Overview

Around 1985, the National Science Foundation (NSF) set up several supercomputing centers across the
country. Individual universities could no longer afford the cost of buying, installing, running, and upgrading
such systems. These new centers were meant to offer, at no cost, the best computing facilities for researchers
and students. There are now four such centers, NCSA (Urbana, Illinois), PSC (Pittsburgh), SDSC (San
Diego), and TACC (Austin, Texas).

To do some interesting exercises with neural networks, we will want to use the keras library on the graphical
processing units (GPUs) that are available at the PSC. The GPUs are one part of a large computer cluster
of more than 800 separate machines, known as Bridges.

Professor Schneier has been authorized to create accounts on Bridges for every student in this class. In
this lab, we will go over the steps necessary to get permission from XSEDE, to set up your PSC account,
to connect from your computer to Bridges, to transfer a file from your personal computer to Bridges, to
understand the Unix operating system used on Bridges, to run some small, simple jobs as tests, and to
transfer a result file back to your personal computer.

Parts or all of this lab exercise may fail for you. Today, that’s OK. I will try to get through all the activities
on my own; we will try to identify the problems people are having and work them out before our later lab,
where we will try to do the GPU computing.

The PSC web page is

https://www.psc.edu/

1

and you will find information about Bridges under

RESOURCES / Computing / Bridges

2 Create an XSEDE account

The NSF supercomputing centers are administered by an agency called XSEDE. In order to get access to
any NSF center, you must first set up an XSEDE account. This is done by going to the website

portal.xsede.org

Under the menu item MY XSEDE there is an option accounts. On the accounts page, there is an
option create account. Choosing that option takes you to the new account form, which will gather some
information from you and then allow you to set up your account. For your XSEDE identifier or username,
you should specify your Pitt email ID, such as joeuser25. You will also need to specify an XSEDE password.

Once you have created an XSEDE account, you need to notify professor Schneier, so that he can create a
PSC account for you, using the same XSEDE identifier as your username.

3 Your PSC Account

Access to your PSC account requires specifying a username and password. The username will be the same
as your XSEDE identifier (that is, probably your Pitt email ID). The PSC password must be created by
going to the PSC password change utility at:

apr.psc.edu

although you might have to specify the full address:

https://apr.psc.edu/autopwdreset/autopwdreset.html

Shortly after your password is set up, you will be able to access your PSC account. You will typically do
this from your laptop machine, running a program that allows you to issue commands interactively to a PSC
system, or to transfer files back and forth.

Everyone in this class belongs to the same group. The group name is

ac5pibp

For some activities on Bridges, it may be necessary to specify this group name.

4 Interactive access to Bridges

From a Mac or Linux system, you can use the ssh program to connect to your PSC account:

ssh joeuse r25@br idges . psc . xsede . org

−−− I n t e r a c t i v e s e s s i o n with Br idges −−−

l ogout

If we are doing anything involving graphics on Bridges, then the command should be slightly modified:

ssh −X joeuse r25@br idges . psc . xsede . org

2

On a Windows 10 system, if you have set up WSL (Windows Subsystem for Linux), then you can essentially
open a Linux environment from the Start menu, and you will have access to the ssh command and other
Linux commands to be discussed later.

Otherwise, your best option may be to install the putty program, available from

https://www.chiark.greenend.org.uk/~sgtatham/putty/

In that case, here is a version of the settings that would be useful:

PUTTY configuration and SSH settings for PSC.

You will have to type bridges.psc.edu in the Host name field, and you should make sure that the Port

field is set to 22.

Try to connect to your account on Bridges now! I assume some, or many, of you will have some
trouble doing this.

5 Unix commands:

Bridges uses a version of the Unix operating system called Linux.

If you are unfamiliar with Unix or Linux systems, there are a few things to know that will make life bearable.
When you log in, you are placed in your home directory. Your directory will contain files. To organize your
work, you can create subdirectories that contain all the files associated with a particular task.

Some useful commands include:

• ls: lists the files in the current directory;
• mkdir name creates a subdirectory called name;
• cd name moves to the subdirectory called name;
• cd .. (two dots) moves “up” to the directory above this one;
• cd moves back to your home directory;
• pwd prints the name of your current directory;

3

• more name prints out the file name;
• rm name deletes the file name;
• cp current new makes a copy of a file;
• mv current new moves a file from one place to another;
• display filename displays a graphic file;
• logout logs you off the system;

Right now, if you type ls, you should probably see nothing - you have no files. That will soon change.

6 Exercise: Use the nano editor

To create, modify, or view a file on Bridges, you need an editor. We will look at using the nano editor to
modify a file that customizes your environment. The file has the peculiar name .bashrc - note the initial
period! - and it is a “hidden file” (because of that initial period) in your home directory.

Invoke the editor with the command:

nano . bashrc

You should see something like this, the text of your file, and a few lines at the bottom that are a menu of
commands. Each command involves the control key and a letter. The symbol ˆG for Get Help indicates
that the CTRL (”Control”) key should be pressed down along with the letter G

¯
.

. bashrc

Source g l o b a l d e f i n i t i o n s
i f [−f / e t c / bashrc] ; then

. / e t c / bashrc
f i

Uncomment the f o l l ow i n g l i n e i f you don ’ t l i k e s y s t emc t l ’ s auto−paging f e a t u r e
:
expor t SYSTEMDPAGER=

User s p e c i f i c a l i a s e s and func t i ons

ˆG Get Help ˆO WriteOut ˆR Read F i l e ˆY Prev Page ˆK Cut Text ˆC Cur Pos
ˆX Exit ˆJ Ju s t i f y Ŵ Where I s ˆV Next Page ˆU Uncut Test ˆT To Spe l l

Use the arrow keys to navigate to just after the last line of text and insert this line:

User s p e c i f i c a l i a s e s and func t i ons
PS1=”PSC \h : ”

Then invoke the ^O command to write the file out, and the ^X command to exit from nano.

In order to make the change effective immediately, type

source . bashrc

Now your prompt string should be something like

PSC br018 :

which will let you know you’re talking to the PSC, and which PSC node you are currently logged in on.

You can use nano to view or modify any text file on the PSC system.

4

7 Exercise: Create and run hello.py

Now we will create a new file. Start nano and you will see a blank screen. Type the following text:

print (”Hel lo , Br idges ! ”)

Then invoke the ^O command to write the file out as hello.py, and the ^X command to exit from nano.

You should now be able to run your 1-line program by typing

python h e l l o . py

You can save the output of the program using the > symbol:

python h e l l o . py > h e l l o . txt

Typing the ls command should now display at least these two files in your directory.

We have just run a very small program on the front end or login node. In general, you should not run
programs here! The login nodes are shared by many users, who will be disrupted if you run a big program.
After this first small test, your class programs should be run on a dedicated node, using the interact

command.

Users who run large jobs on the front end may have their account frozen by system admin-
istrators. All the remaining tasks for this class will be done on computational nodes, using the interact

command, or else, possibly, through the non-interactive batch system.

8 The module command

PSC has many libraries of software, whose availability is controlled by the module command, which you
can think of as “checking out” copies of the software you specify. When you log in, just a bare minimum of
this software is automatically checked out and available to you. To see the current list, type:

module l i s t

To see a list of all the available software (there is a lot!) type

module a v a i l

To see a list of the available versions of python:

module a v a i l python

To actually make a software library available, use the load option. Usually, the only library we will ask for
is keras, but we will get it as part of the anaconda release:

module load anaconda3 /2019.03

When you load anaconda, you actually get a bunch of libraries To see what you’ve just checked out, try
again:

module l i s t

If, for some reason, you don’t want to have a particular software library loaded anymore, you can unload it:

module unload anaconda3 /2019.03

5

9 File transfers to and from Bridges

From a Mac or Linux system, you can use the sftp program to transfer files to and from Bridges. This
command may also be available to Windows users via the PowerShell. If you are already using ssh to connect
to Bridges, you will need to open a separate terminal window on your home system in which to start sftp.

Note that sftp will require a different address than that used by ssh. Once you start sftp, you can use put

and get commands to move files.

−−− Star t t h i s command on your home system ! −−−

s f t p joeuser25@data . b r idge s . psc . edu
put montana . py <−− cop i e s montana . py FROM your system TO Bridges
get h e l l o . txt <−− cop i e s h e l l o . txt FROM Bridges TO your system
qu i t

• sftp user@address connects your local machine to the remote machine, starting in the user’s remote
home directory;

• put filename will transfer a copy of the local file to the remote directory;
• get filename will transfer a copy of the remote file to the local directory;
• quit terminates the sftp session;

You can also use a limited number of unix commands. The following commands refer to the remote system,
which in this example would be Bridges:

• ls to list the files in the remote directory;
• pwd to report the remote directory;
• cd directoryname, to change to a new directory;

Using an l prefix, (for “local”), you can also issue commands that refer to your own system:

• lls to list the files in the local directory;
• lpwd to report the local directory;
• lcd directoryname, to change to a new directory;

For putty users, I don’t know the details of file transfer. I believe that putty comes with a program psftp

which may run from the command line similarly to sftp.

Alternatively, there is a Windows program called WinSCP which gives you a visual interface showing your
local and remote directories

WinSCP configuration for PSC.

6

WinSCP interface for PSC.

10 Creating and viewing graphics files

If you are hoping to view graphics directly on the PSC Bridges system, you will probably need to login with
the extra -X switch, as in

ssh −X joeuse r25@br idges . psc . xsede . org

This should be enough for Linux and Mac systems, but I have not heard whether it will take care of Windows
as well.

A common way to create graphics in a Python program is to issue the command

import matp lo t l i b . pyplot as p l t

and then build a plot starting with the basic command:

p l t . p l o t (x , y)

To actually display the plot, we might then issue the command

p l t . show ()

I can demonstrate this procedure by running, on my laptop, the program bulgaria interactive.py.

7

Interactive graphics display is NOT a good idea when using an HPC system; it presumes that the user is
available to interactively hit RETURN so that the program can proceed. Also, you need to have logged in
with the ssh -X switch in order to set up graphics transmission.

If you’re having trouble getting PSC graphics to appear on your home system, there is a way to separate
your program execution and your graphics viewing.

Replace the show() command with the savefig() command, which saves the plot to a file:

p l t . s a v e f i g (’ bu l ga r i a . jpg ’)

Once your program has executed, your graphics is saved in a file and we can try at least two ways to view it:

1. directly: on Bridges, try typing:

d i sp l ay bu l ga r i a . jpg

2. indirectly: from your laptop, use an sftp command like

s f t p get bu l ga r i a . jpg

to copy the file from Bridges, and then view it using some display program on your home system;

On the web page for this lab, you can find bulgaria.py, mario.py and montana.py, which all create graphics
files in this way.

You can copy any of the graphics files from my directory and see if you can view them with display:

cp ˜ jburkard / bu l ga r i a . jpg bu l ga r i a . jpg
cp ˜ jburkard /mario . png mario . png
cp ˜ jburkard /montana . png montana . png

11 Exercise: Using keras with the interact command

Our goal in a later lab will be to do some interesting neural network computations on a GPU using keras.
Today, it will be “interesting” just to do a little sample calculation this way.

Copy the files montana.py and montana psc.sh into your home directory at PSC. There are two ways to do
this:

• Download the files from the lab webpage to your own system. Then transfer them to PSC;
• OR...;
• Log in to your PSC account, and copy my version, by typing

cp ˜ jburkard /montana . py montana . py <−− ” twidd le ” or ” t i l d e ” charac t e r
cp ˜ jburkard /montana psc . sh montana psc . sh

Try interactive execution. You may have to wait some time to get it:

i n t e r a c t −gpu
module load anaconda3 /2019.03
source a c t i v a t e keras−gpu <−− This l o g s you onto a gpu .
python montana . py

(Now repeat the command , but save your output to a f i l e .)

python montana . py > montana . txt

e x i t <−− Control−D or ” e x i t ” l o g s you o f f the gpu

8

12 Exercise: Using keras with the sbatch command

As it turns out, it’s usually not easy or quick to get access to a GPU using the interact command. There
are only a few GPU nodes available this way, and we are sharing these resources with many other people.
(To get an idea of how many people are logged in right now, type who to see a list.)

Most computing on the PSC Bridges system is done by creating a shell script that lists all the commands
you would normally type interactively. These commands are preceded by some special lines that explain
how much time you are asking for, what kind of machine you want to use, and some other information.

The system that accepts all these job requests is called SLURM and so the job request file is often called a
“SLURM script”. We will give you a SLURM script to work with, so that you don’t have to worry about
creating one. However, it can be useful to take a quick look at such a script, and see whether anything makes
sense.

#! / bin /bash
#
#SBATCH −−gres=gpu : k80 :4
#SBATCH −J montana psc
#SBATCH −N 1
#SBATCH −−ntasks−per−node 4
#SBATCH −−output=montana psc . l o g
#SBATCH −p GPU
#SBATCH −t 0 :01 :00
#
set −x
#
Set up the environment .
#
module load anaconda3 /2019.03
source a c t i v a t e keras−gpu
#
Run the program .
#
python3 montana . py > montana psc . txt
#
echo ”Normal end o f execut ion . ”

Listing 1: montana psc.sh the SLURM script for the montana job.

You can see the section that corresponds to the commands we could have given interactively. The lines that
begin with #SBATCH are messages to the job scheduler. For now, note that:

• -J montana psc means that while our job is running, it can be identified by that name;
• --output=montana psc.log means that any “comments” or error messages from the system will appear

in this “log” file;
• -p GPU means our job should run on the GPU partition;
• --gres=gpu:k80:4 means our job wants 4 Kepler GPU’s;
• -t 0:01:00 means our job wants 1 minute of time;

To submit our job to be run, we type

sbatch montana psc . sh
Submitted batch job 6761295 <−− The system g i v e s your r eque s t a number

To check what jobs I have in the queue, I specify my username jburkard in the squeue command:

squeue −u jburkard

which might result in the report:

9

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
6761295 GPU bu lga r i a jburkard PD 0:00 1 (P r i o r i t y)

If for some reason I want to cancel my job, I need the number:

s c anc e l 6761295

Eventually, my job will run. I expect three output files:

• montana psc.log, system messages, warnings, errors;
• montana psc.txt, created by my program;
• montana.png, a graphics file my program created.

While I cannot guarantee when my job will run, the good thing is that I can log out at any time, and come
back later and check to see if my job has completed.

13 Computing Assignment #9

Place a copy of hw9.py into your Bridges directory, either by:

• downloading hw9.py from today’s lab web page and then transferring that file from your computer to
your Bridges account;

• OR
• copying the file from my Bridges account, via the command

cp ˜ jburkard /hw9 . py hw9 . py <−− That ’ s a ” twidd le ” or ” t i l d e ” cha rac t e r

Then execute this script with python:

python hw9 . py > hw9 . txt

Then transfer the file hw9.txt back to your home directory and email it to Dr Schneier mhs64@pitt.edu
before Wednesday, 13 November.

14 Computing Assignment #10

Get a copy of the file montana.py into your PSC Bridges directory, either from my PSC Bridges directory,
or by downloading a copy from the lab web page to your home system, and then using sftp.

Run the montana.py program on the PSC Bridges system, either:

• with the interact -gpu command;
• OR by submitting a batch job (for which you will also need to copy the file montana psc.sh);

The graphics file montana.png will be created by your program. Use an sftp command to copy it back to
your home system. Then email it to Dr Schneier mhs64@pitt.edu before Wednesday, 20 November.

10

