
Image Processing

http://people.sc.fsu.edu/∼jburkardt/isc/week12
lecture 22.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 26 July 2011

1 / 1

Image Processing

Introduction

Working with Files

Example Images

The Portable Gray Map Format

The Noise Problem

The Edge Problem

Lab Exercise #11

2 / 1

INTRO: Schedule

Next Class:

Detection and Disabling of Explosive Devices

Assignment:

Today: in-class lab exercise #11

Evaluation:

Go to http://campus.fsu.edu/esussai and log in. The
evaluation is anonymous.

3 / 1

INTRO: One Week Left For Projects!

Please remember that your project is due on Tuesday, August 2nd,
at class time, 11am! This includes:

a 5 minute oral presentation;

a 3-5 page report to be turned in;

a C++ program, to be turned in.

If you do not present your talk and turn in your report and
programs on time, you will not receive a grade for the course.

4 / 1

INTRO: Images are Scientific Data

In the same way that linear algebra was developed to deal with
scientific data stored in vectors and matrices, the new field of
digital image analysis and processing is appearing, to help us to
convert the data stored in images into information we can use.

In this class, I have already referred to some simple image
processing tasks, such as reading in an image of the Mona Lisa,
lightening the image, and drawing a few lines on it. This was
intended to convince you that an image is simply an array of
numbers that your C++ program can modify.

Today, we will look at some simple versions of useful operations on
images. Professional image processing uses much more
sophisticated techniques. But we will be able to see how to turn
statements about images into operations on numbers, so that
C++ can carry out the operations or analysis that we desire.

5 / 1

Image Processing

Introduction

Working with Files

Example Images

The Portable Gray Map Format

The Noise Problem

The Edge Problem

Lab Exercise #11

6 / 1

FILES: C++ Input/Output Channels

A C++ program communicates with the user through three
special channels:

standard input, which is normally the keyboard. Statements
such as cin receive their data here;

standard output, which is normally the terminal screen.
Statements such as cout send their output here;

standard error, which is the terminal screen. Statements such
as cerr send their output here.

7 / 1

FILES: Unix Redirection

On Unix systems, it is possible to use redirection symbols so that
standard input comes from a file instead of the keyboard:

sort < my_albums.txt

or to have the standard output redirected to a file

fortune > my_future.txt

or even both:

calculator < my_grades.txt > my_average.txt

8 / 1

FILES: Disadvantages

Redirection is not always the best way to work with files:

In particular, a system like NetBeans might not offer you the
option of running the program from a command line, so you
can’t specify alternative input or output channels;

On an operating system like Microsoft Windows, programs are
usually run by double clicking on an icon, or from some
interactive development environment, and the file redirection
option is not available.

If your program should read from several files, or create
several files, you can’t do that with redirection;

If you want to have input from a file, but you also want to
type some input interactively, redirection is the wrong choice.

9 / 1

FILES: Creating Your Own Output File

Let’s say that we have a program table redirect.cpp which
computes the squares of the numbers up to 10 to make a table:

include <cstdlib>

include <iostream>

using namespace std;

int main ()

{

int i;

for (i = 0; i<= 10; i++)

{

cout << " " << i << " " << i * i << "\n";

}

return 0;

}

We could save this table to a file by the commands:

g++ table_redirect.cpp
mv a.out table_redirect
table_redirect > table.txt

10 / 1

FILES: Creating Your Own Output File

We can create the table file without redirection, using tools from
C++. This requires us to:

include <fstream>;

create a variable of type ofstream called table;

use the open statement so that table points to the file
table.txt;

replace “cout <<” by “table <<”, sending information
directly to the file;

use the close statement to close the file.

11 / 1

FILES: Creating Your Own Output File

table direct.cpp:

include <cstdlib>

include <iostream>

include <fstream> <-- required include statement

using namespace std;

int main ()

{

int i;

ofstream table; <-- Lets us refer to the file.

table.open ("table.txt"); <-- Creates the file.

for (i = 0; i<= 10; i++)

{

table << " " << i << " " << i * i << "\n"; <-- Sends data to file.

}

table.close (); <-- Closes the file.

return 0;

}

When we run this program, it creates the file table.txt
automatically, and stores the data there. It will work the same way
from the command line, from NetBeans, or on a Windows
machine.

12 / 1

FILES: Creating Your Own Input File

If we wanted to average football attendances, we might write
average redirect.cpp to read the data from input:
include <cstdlib>

include <iostream>

using namespace std;

int main ()

{

int attendance, average = 0, i, n = 0;

while (true)

{

cin >> attendance;

if (cin.eof ())

{

break;

}

n = n + 1;

average = average + attendance;

}

cout << " Average = " << average / n << "\n";

return 0;

}

And this program could read the data by

g++ average_redirect.cpp
mv a.out average_redirect
average_redirect < fsu_football_2010.txt 13 / 1

FILES: Creating Your Own Output File

We can read the football attendances file without redirection:

include <fstream>;

create a variable of type ifstream called attend;

use the open statement so that attend points to the file
fsu football 2010.txt;

replace “cin >>” by “attend >>”, reading information
directly from the file;

use the close statement to close the file.

14 / 1

FILES: Creating Your Own Input File

include <cstdlib>

include <iostream>

include <fstream> <-- The include file

using namespace std;

int main ()

{

int attendance, average = 0, i, n = 0;

ifstream attend; <-- How we refer to the file

attend.open ("fsu_football_2010.txt"); <-- Open the file

while (true)

{

attend >> attendance; <-- Read from the file

if (attend.eof ()) <-- Did we run out of input?

{

break;

}

n = n + 1;

average = average + attendance;

}

attend.close (); <-- Close the file

cout << " Average = " << average / n << "\n";

return 0;

}

average direct.cpp accesses the input file directly.
15 / 1

FILES: Summary of Files

If you are able to use Unix redirection, you can put off learning
about direct access to files for a while, but eventually it becomes
necessary.

You can have several files open at the same time, whether for
reading or writing.

It is also possible to open an existing file, and add more
information to the end of it.

The files we have considered are text files, which means you could
create them with an editor, or print them out. Many computer files
are not printable; they are called binary files, and use a compressed
format for storing information. Many graphics files, for instance,
are binary files. C++ includes the ability to read and write binary
files, but we will not go into this topic!

16 / 1

Image Processing

Introduction

Working with Files

Example Images

The Portable Gray Map Format

The Noise Problem

The Edge Problem

Lab Exercise #11

17 / 1

EXAMPLE: Images are Scientific Data

While beautiful images hang in museums, it’s important to
realize that images also represent a primary form of scientific data.

Images are used to store

astronomical observations;

medical examinations (X-rays, MRI’s, CAT scans);

particle physics experiments;

satellite imagery (Google Maps, military observation,
agricultural monitoring);

facial recognition, airport scanners

18 / 1

EXAMPLE: Sample Images

19 / 1

EXAMPLE: Sample Images

These images suggest the variety of objects for which some kind
of image enhancement or analysis is desired:

1 Can we count the stars in the image?

2 What size are the 3D “blobs” in the MRI;

3 A satellite reconnaissance photo;

4 Can we remove the speckles from the photo?

5 Can we detect the kind of particle decay in this collider ?

The particle collider, in particular, can generate millions of images,
which must somehow be analyzed automatically.

20 / 1

EXAMPLE: Sample Images

21 / 1

EXAMPLE: Sample Images

The previous pair of images show a prayerbook under normal
illumination, and the same prayerbook after images were made at
multiple wavelengths, including X-rays, and combined.

The processed image reveals that under the text of the prayerbook
are the traces of a lost manuscript of Archimedes.

For more information, go to “The Archimedes Palimpsest Project”
at http://www.archimedespalimpsest.org

22 / 1

Image Processing

Introduction

Working with Files

Example Images

The Portable Gray Map Format

The Noise Problem

The Edge Problem

Lab Exercise #11

23 / 1

PGM: Common Image Formats

Image data is typically stored in a file. The file extension often
indicates the particular format being used:

bmp, Microsoft Bit Map;

gif, once popular for web graphics;

jpg, what comes out of your digital camera;

pbm, Portable Bit Map (black/white);

pdf, usually for documents;

pgm, Portable Gray Map (shades of gray);

png, an open-source replacement for GIF;

ppm, Portable Pixel Map (RGB color);

ps, usually for documents;

tif, a high-quality photographic format.

24 / 1

PGM: Common Image Formats

On our Linux system, most of these image files can be viewed
simply by double clicking the image’s icon, or, if you are using a
terminal window, you can use the eog program:

eog satellite_photo.png

25 / 1

PGM: Common Image Formats

However, every one of these formats differs in the rules for how
it organizes information. This means that a C++ program that
wants to work with image data stored in a file must know the rules
for that file format.

If we are working with a gray scale image, then the program simply
wants to set up a 2D array of the appropriate size, perhaps
containing integers between 0 and some maximum value.

The simplest way to deal with the variety of image formats is to
use a conversion program that turns any file into a single preferred
format. Then your C++ program only has to know how to read
and write that format.

26 / 1

PGM: The ImageMagick “convert” Program

ImageMagick provides a free program called convert, which can
convert between over 100 image file formats using a simple
command.

For example, to make a Microsoft BMP version of
satellite photo.png, we type

convert satellite_photo.png satellite_photo.bmp

ImageMagick knows what to do based on the file extension.

More information at: www.imagemagick.org

27 / 1

PGM: The Portable Gray Map

One of the simplest formats for grayscale images is called the
Portable Gray Map or PGM format.

It is a perfect beginner’s format, since it corresponds very closely
to our logical representation of an image, it is specifically designed
for grayscale images, and it comes in both an ASCII version (which
is easy to print or edit) and a binary version (which saves space).

There is a related PBM format for black/white images and a PPM
format for color.

28 / 1

PGM: The FEEP Example Displayed

The nice thing about the ASCII PGM format is that, for a very
small file, you can almost see the picture. For instance, here is a

zoomed-in look at an image, using 24 columns and 7 rows of
pixels, of the letters FEEP

29 / 1

PGM: The FEEP Example in a PGM File

Our data is stored as an ASCII PGM file feep.ascii.pgm:

P2 <-- Indicates this is an ASCII PGM file
24 7 <-- There are 24 columns and 7 rows
15 <-- The maximum gray is 15
0 0
0 3 3 3 3 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 15 15 15 0
0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 15 0
0 3 3 3 0 0 0 7 7 7 0 0 0 11 11 11 0 0 0 15 15 15 15 0
0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 0 0
0 3 0 0 0 0 0 7 7 7 7 0 0 11 11 11 11 0 0 15 0 0 0 0
0 0

30 / 1

PGM: Read the FEEP PGM File Into a 2D Array

A simple PGM file can be read by simple C++ commands.
Assuming we know in advance that our image data is going to be
24 columns and 7 rows, we can write feep read.cpp:

char c1, c2;
int cols, i, j, maxg, p[7][24], rows;

cin >> c1 >> c2;
cin >> cols >> rows;
cin >> maxg;
for (i = 0; i < rows; i++)
{
for (j = 0; j < cols; j++)
{

cin >> p[i][j];
}

}
31 / 1

PGM: The FEEP Example in a PGM File

If you don’t actually know the size of the image beforehand, you
can still read the PGM file, but you have to wait until after you
have gotten the number of rows and columns in order to set aside
the space.

Moreover, we have to store the p data as a 1D array, not a 2D
array!

32 / 1

PGM: Read ANY ASCII PGM File into a 1D Array

char c1, c2;
int cols, i, j, maxg, rows;
int *p; <-- P is an int array whose

size isn’t decided yet...
cin >> c1 >> c2;
cin >> cols >> rows;
cin >> maxg;
p = new int[rows * cols]; <-- P uses rows * cols ints
for (i = 0; i < rows; i++)
{
for (j = 0; j < cols; j++)
{

cin >> p[i*cols+j]; <-- Access p[i][j] this way.
}

}
33 / 1

PGM: Converting to the ASCII PGM Format

So if we have a C++ program that can read ASCII PGM files,
and we have grayscale data stored in a TIF file called xray.tif, we
can use the convert program to make an ASCII PGM version of
the same graphics information, called xray.pgm.

convert spine.tif -compress none spine.pgm

Specifying “-compress none” means we use the ASCII text format
for the file, not the binary format.

34 / 1

PGM: Comparison of File Sizes

35 / 1

PGM: Comparison of File Sizes

ASCII Binary
PGM PGM PNG JPG TIFF

-------+-----------+---------+---------+--------+---------
CASA | 561,036 | 165,615 | 105,787 | 44,403 | 51,338
-------+-----------+---------+---------+--------+---------
ROI_14 | 624,301 | 256,050 | 2,526 | 13,640 | 3,928
-------+-----------+---------+---------+--------+---------
SURF | 1,264,989 | 307,248 | 193,194 | 66,534 | 307,866
-------+-----------+---------+---------+--------+---------

The ASCII PGM file can require 10 to 20 times more space than
other formats, so it’s not a good format for permanent storage of a
lot of files. But making a temporary ASCII PGM copy of an image
means your work of reading or writing the file will be easier.

36 / 1

PGM: Converting from the ASCII PGM Format

If we have a C++ program that creates an ASCII PGM file as
output, we may need to use that graphics information with another
program, which may require a different format.

Again, the convert program can help. When converting from the
PGM format, there is no need to specify whether the PGM file
used the ASCII or binary format, so the command is simple.

To create a JPG version of the PGM file spine.pgm, we would type

convert spine.pgm spine.jpg

37 / 1

Image Processing

Introduction

Working with Files

Example Images

The Portable Gray Map Format

The Noise Problem

The Edge Problem

Lab Exercise #11

38 / 1

SALT: Extreme Noise

Sometimes an image can have a more serious problem than
being dark or washed out. The physical process of recording and
storing an image is subject to disturbance and damage.

One example occurs in certain recording devices, including satellite
scanners, but also regular cameras. What happens is that, for
certain pixel positions, the camera fails to record the actual color
or shade. Instead, it reports either the highest or lowest possible
value.

In a grayscale image, the affected pixels will show up as a
scattering of black or white spots, and for this reason, this kind of
damage to an image is called salt and pepper noise.

It may seem like a very specialized kind of problem, but it occurs
often enough that techniques are needed to deal with it.

39 / 1

SALT: RGB and Grayscale Examples

40 / 1

SALT: Can We Ignore the Noise?

There are several aspects of this problem to keep in mind.

1 An image has a lot of extra information in it; most of an
image consists of regions of pixels of roughly the same color.

2 The eye is very sensitive to sudden changes in color or
brightness. When noise artificially inserts many such changes,
the eye has trouble seeing the “real” picture. Even if 99% of
the pixels are good, the eye focuses on the bad ones.

3 The salt and pepper noise means that our smooth regions of
roughly equal color will occasionally be interrupted by one
extreme and meaningless value. We might try to replace every
pixel by the average of its neighbors; this would dilute the bad
values, but they would still be visible. It would be better if we
could make the bad values disappear.

41 / 1

SALT: The Median

The average is an attempt to produce one value that fairly
represents all the values present, by summing the values and
dividing by their number.

For our noisy problem, we expect cases where one value is
essentially meaningless because it is extreme; we would like to
eliminate it from the final result.

Instead of an average, we should use the median, which sorts the
data and takes the middle one. A single extreme value will
generally have no effect on the result!

Average Median
----------- ------- ------
1,2,3,4,5 3 3
0,8,8,8,8 6.4 8
3,5,5,7,1000 204 5

42 / 1

SALT: Computing The Median

One way to compute the median of N numbers is first to sort
them, and then to choose the entry at index n

2 .

int median (int n, int p[])
{

int value;

bubblesort (n, p);

value = p[n/2];

return value;
}

43 / 1

SALT: Using the Median Filter

To apply the median filter to a noisy image stored in the 2D
array p[m][n], we make a new array p2[m][n].

The color of the pixel at location p2[i][j] is determined as the
median of the colors of the old pixels in the “neighborhood”, that
is, somewhat symbolically;

p[i-1][j]
p2[i][j] = median (p[i][j-1] p[i][j] p[i][j+1])

p[i+1][j]

44 / 1

SALT: Images After Median Filtering

If we repeated the filtering one more time on the color picture,
almost all the remaining dots would disappear.

45 / 1

SALT: Summary

The technique we used here is called a median filter.

We didn’t really extract any information from the pictures that had
salt and pepper noise. At best, we can say we managed to hide
some of the false information.

Really, the important thing going on here was that we needed to
modify the image in a way that would make it more acceptable to
the eye. And that meant, so far as possible, to restore the smooth,
slowly changing regions of shade or color, and to ignore or destroy
the sudden noisy peaks.

We could make all the noise go away in the color photograph by
repeating the filtering operation, or by using a larger sample of
pixels. However, this will mean that we gradually introduce some
blurriness into the picture.

46 / 1

Image Processing

Introduction

Working with Files

Example Images

The Portable Gray Map Format

The Noise Problem

The Edge Problem

Lab Exercise #11

47 / 1

EDGE: An Automatic Organization Tool

The eye is an automatic image processor. The eye is very good
at detecting edges.

The eye and the brain use edges to organize the bits of light and
color into a model of the physical world, with trees and tigers and
friends.

We will try to understand how the eye can recognize an edge, by
sketching out a computer program to find edges in an array of
image information.

48 / 1

EDGE: What is an Edge?

An edge is a surprising (and possible dangerous!) event.

49 / 1

EDGE: What is an Edge?

One place we encounter an edge is when walking along a
sidewalk. The sidewalk need not be flat; it might be sloping up a
hill. However, even if we close our eyes, we can follow the slope of
the sidewalk, because it changes in a gradual and regular way.

If we suddenly step off a curb, we are shocked. Our mental model
of the sidewalk has “broken”. It seems as though an edge
represents a difference between what we expect and what we
encounter. Something new is about to occur!

If we think of this mathematically, a smoothly changing sidewalk is
like a a function that is linear, or perhaps has a derivative that
changes, but slowly and smoothly.

Perhaps an edge is a place where the derivative is large.

50 / 1

EDGE: Differences Measure Change

Our image is not a function, so we can’t compute its derivative.

However, the derivative is intended to describe changes per unit
step. Since our data is stored in a grid, we can think of how the
data changes going one step left or right, up or down. These
measures of change are similar to a derivative.

If our image data is stored in a pixel array called P[][], we could
estimate the “right/left” and “top/bottom” changes at P[I][J]:

left to right change = P[i][j+1] - P[i][j-1]
bottom to top change = P[i+1][j] - P[i-1][j]

P[i+1][j]
P[i][j-1] P[i][j] P[i][j+1]

P[i-1][j]

51 / 1

EDGE: Our Edge Detector

A large change, in either direction, says our image information is
changing fast over a short range. This sounds like what we mean
by an edge.

The sum of the absolute value of the differences is a measure of
how fast things change at each pixel, which we’ll call E[i][j]:

E[i][j] = | P[i][j+1] - P[i][j-1] |
+ | P[i+1][j] - P[i-1][j] |

The value of E is zero at places where the pixels are “flat” and is
large when nearby values differ a lot.

52 / 1

EDGE: A Test Image With Edges

53 / 1

EDGE: Compute E, and Normalize

//

// Compute E[i][j] except for first and last row and column.

//

emax = 0.0;

for (j = 1; j < n - 1; j++)

{

for (i = 1; i < m - 1; i++)

{

e[i][j] = abs (p[i+1][j] - p[i-1][j])

+ abs (p[i][j+1] - p[i][j-1]);

if (emax < e[i][j])

{

emax = e[i][j];

}

}

}

//

// Normalize E[i][j] so the maximum value is 255.

//

for (j = 1; j < n - 1; j++)

{

for (i = 1; i < m - 1; i++)

{

e[i][j] = e[i][j] * 255 / emax;

}

}

54 / 1

EDGE: The Value of E

55 / 1

EDGE: Use a Threshold, and Reverse Video

Our image is showing shades of gray, but we need to decide
what is an edge and what isn’t. We can use a threshold that says
that all values of E above a certain limit will be marked as edge
pixels. This will have the effect of making all the pixels black (no
edge) or white (edge) and no shades in between.

In fact, it’s easier to see black lines on a white background than
the other way around, so we’ll follow the threshold operation by
reversing the video.

56 / 1

EDGE: E with Threshold and Reverse Video

57 / 1

EDGE: More Is Needed!

Our computation and display of the quantity E[][] suggests how
a computer could recognize edges in image data.

But there is still more work to do! Although we see that the coins
have been identified, the fact that the black pixels actually form
boundaries of coins is still something our eye is doing for us, not
the computer!

So the computer would have to find a black pixel, look nearby for
other black pixels, and join them into a continuous border for a
coin. From that, we might be able to estimate the size, and hence
the value, of the coin.

This simple problem, which our eyes “solve” every second, is cleary
pretty involved. And yet there are computer programs available
which can go through all these steps, and more, so that they can
identify a person from a database of facial images.

58 / 1

Image Processing

Introduction

Working with Files

Example Images

The Portable Gray Map Format

The Noise Problem

The Edge Problem

Lab Exercise #11

59 / 1

EXERCISE: Anonymous Course Evaluation

Evaluation:

Go to http://campus.fsu.edu/esussai and log in. The
evaluation is anonymous.

Let Detelina know that you’ve completed the evaluation so you can
get credit for the exercise!

60 / 1

