
Optimization of Discrete Problems

http://people.sc.fsu.edu/∼jburkardt/isc/week11
lecture 21.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 20 July 2011

1 / 1

Optimization of Discrete Problems

Introduction

Example Problems

Brute Force

Heuristics

Hill Climbing

The Shortest Path

Assignment #9

2 / 1

INTRO: Schedule

Next Class:

Image Processing

Assignment:

Programming Assignment #8 is due today.

Programming Assignment #9 will be due July 28.

3 / 1

INTRO: Two Weeks Left For Projects!

Please remember that your project is due on Tuesday, August 2nd,
at class time, 11am! This includes:

a 5 minute oral presentation;

a 3-5 page report to be turned in;

a C++ program, to be turned in.

If you do not present your talk and turn in your report and
programs on time, you will not receive a grade for the course.

4 / 1

Optimization of Discrete Problems

Introduction

Example Problems

Brute Force

Heuristics

Hill Climbing

The Shortest Path

Assignment #9

5 / 1

EXAMPLE: # 1, the Combination Lock

The Combination Lock:

6 / 1

EXAMPLE: # 1, the Combination Lock

A typical numeric combination lock contains N positions, each of
which can be set to any digit from 0 to 9. We can think of the
combination c as a number, or as an array of digits c[0] through
c[n-1]. For our purposes, it will be better to use the array
approach.

We assume there is a bool function open(n,c) which returns true
if c contains the correct set of digits.

A typical combination lock will only open for one combination, but
we might have similar problems in which several combinations will
be acceptable.

7 / 1

EXAMPLE: # 2, the Button Lock

The Button Lock:

8 / 1

EXAMPLE: # 2, the Button Lock

A button lock often involves 10 buttons labeled 0 through 9, as
well as open and clear buttons.

The length of the secret combination might be anything from 1 to
10 digits.

The user tries a combination by pressing down one button, then
another, and so on, and finally pushing the open button.

If the combination is incorrect, all the buttons pop back up, and
the user must try again.

The interesting feature here is that no digit can be repeated in the
combination.

9 / 1

EXAMPLE: # 3, the Round Trip

The Round Trip

10 / 1

EXAMPLE: # 3, the Round Trip

Given a list of cities, and the distance between any pair of cities,
we want to plan a trip, starting at city 1, that visits every city
once. What is the length of the shortest round trip we can choose?

To make life simpler, we can number the cities 1 through 5. If we
start at city 1, a round trip might be “1, 4, 3, 2, 5, 1”. Since we
know we start at 1, we can shorten this to “4, 3, 2, 5, 1”, so that
each of the five cities appears exactly once on the list. In that
case, a round trip can be described as a permutation!

One way to find the shortest distance is to count every possible
round trip, computing the length of each trip, and remembering
the trip corresponding to the shortest total distance.

11 / 1

Optimization of Discrete Problems

Introduction

Example Problems

Brute Force

Heuristics

Hill Climbing

The Shortest Path

Assignment #9

12 / 1

BRUTE:

A discrete problem is one in which the variables do not constitute a
continuous range (like the real numbers) but rather form a set that
can be listed (like the integers).

If the list is finite, and not enormous, then one way to determine
the best set of variables is simply to examine every possible set.
Such an approach is called a brute force method, because, it
seems, no mental power has been applied to the problem, and we
are simply plowing through the data mindlessly.

However, even a problem that is to be handled by brute force can
have some complications. For instance, it may not be a simple
matter to produce an orderly list of all the possibilities. And we
may discover that the possibilities, although finite, are simply too
many to examine.

13 / 1

BRUTE: A Wrong Combination Tells Us Nothing

The combination lock problem is very hard. If you are unsuccessful
with one combination, this tells you nothing about whether you are
close to the right answer or not.

In contrast, if we are trying to find the zero of a function f (), then
the fact that f (x) is not zero tells us that the value x doesn’t
solved the problem, but if its value is small or large, that hints that
we are close or far, and as f () changes we believe we are getting
closer or further away to the answer.

But with the combination lock problem, it seems the only way to
open the lock is to try every combination.

14 / 1

BRUTE: “Counting” Through The Possibilities

Let us suppose there are 5 numbers to set, and that the digits run
from 1 to 8. This means, in particular, that there are 8*8*8*8*8 =
32,768 possible combinations to try.

If a computer can do a billion things a second, then as long as
each combination doesn’t take too long to set up in our program,
we can solve the problem in under a second.

One way to check all the combinations is to march from (1,1,1,1,1)
on up. If we think about the digits as representing a number, then
we can plan to check the combinations in the order:

15 / 1

BRUTE: ”Counting” Through The Possibilities

1 1 1 1 1 <--- Increment digit 5.
1 1 1 1 2 <--- Increment digit 5.
1 1 1 1 3 <--- Increment digit 5.
.........
1 1 1 1 7 <--- Increment digit 5.
1 1 1 1 8 <--- Can’t increment digit 5, try digit 4.
1 1 1 2 1 <--- Increment digit 5.
1 1 1 2 2 <--- Increment digit 5.
1 1 1 2 3 <--- Increment digit 5.
.........
1 1 1 8 8 <--- Can’t increment digit 5 or 4, try 3.
1 1 2 1 1 <--- Increment digit 5.
.........
8 8 8 8 8 <--- Can’t increment any digit. STOP!

16 / 1

BRUTE: “Counting” Through The Possibilities

Let’s turn this simple counting idea into an algorithm.

We’ll assume we have an array d[] of length n, and that each entry
of d[] is a digit between dmin and dmax.

We’ll start with the combination in which every entry is equal to
dmin, and, one by one, generate the next combination. The next
combination can be found by starting at the last digit, and

if digit less than dmax, increment by 1 for next combination;

otherwise, reset it to dmin and check the previous digit;

but if there is no previous digit, we are done.

17 / 1

BRUTE: A Counting Algorithm

counting.cpp: assume minimum digit is 1, maximum is 8.
for (i = 0; i < n; i++)

{

d[i] = 1;

}

while (true)

{

// Working backwards, set 8’s to 1, otherwise increment.

inc = -1; <-- Setting inc to -1 indicates we haven’t found it yet.

for (i = n - 1; 0 <= i; i--)

{

if (d[i] == 8)

{

d[i] = 1; <-- Change 8’s to 1

}

else

{

d[i] = d[i] + 1; <-- Increment the first non-8 you find and break!

inc = i;

break;

}

}

// If nothing to increment, exit!

if (inc == -1) <-- If inc is still -1, we never found anything but 8’s.

{

break;

}

}

18 / 1

BRUTE: Solving the Combination Lock Problem

found = false;

for (i = 0; i < n; i++)

{

d[i] = 1;

}

while (true)

{

// Try the combination.

if (open (n, d))

{

found = true;

cout << " Found the combination!\n";

break;

}

// Working backwards, set 8’s to 1, otherwise increment.

...(same as previous page)...
// If nothing to increment, exit!

...(same as previous page)...
}

if (!found)

{

cout << "Could not find the combination!\n";

}

return 0;

}

19 / 1

BRUTE: The OPEN function

bool open (int n, int d[])

{

bool value;

if (d[0] == 1 && d[1] == 8 && d[2] == 4 && d[3] == 5)

{

value = true;

}

else

{

value = false;

}

return value;

}

and the output from running the program should be:

Found the combination: 1 8 4 5

20 / 1

BRUTE: the Button Lock

To simplify this problem, let’s assume that the combination
always uses every digit. That is, a combination is some particular
ordering of the ten digits 0 through 9.

Could we write a program which would generate each possible
combination in some orderly fashion?

Obviously, one way is simple to count from 0000000000 to
999999999, but tossing out every combination with a repeated
digit. This will work, but it is very slow.

A second approach is to realize that we are asking for all possible
permutations of the digits 0 through 9. There are already
algorithms available to generate these permutations, one at a time,
which is exactly what we need.

21 / 1

BRUTE: “Next Permutation” Algorithm

The code we will use is called next perm.cpp.

The code has the declaration:

void next_perm (int n, int p[], int &rank);

The first time we call, we set n to the number of entries or digits
in the permutation, and we set rank to -1. The program computes
the first permutation, which is (0,1,2,...,n-1), and changes the
value of rank to 1. If we call again, the next permutation is
returned, and this keeps happening until the program runs out of
permutations. At that point, it sets rank to -1.

22 / 1

BRUTE: “Next Permutation” Algorithm
perm test.cpp:

include <cstdlib>

include <iostream>

void perm_next (int n, int p[], int &rank);

using namespace std;

int main ()

{

int i, n = 4, p[4], rank;

rank = -1;

while (true)

{

perm_next (n, p, rank); <-- Try to get next permutation

if (rank == -1) <-- Quit if no more
{

break;

}

for (i = 0; i < n; i++) <-- In this example, we simply print it.
{

cout << " " << p[i];

}

cout << "\n";

}

return 0;

}

23 / 1

BRUTE: Counting 3 Digit Combinations

button perm.cpp: Thus, our algorithm to try all the
combinations on the button lock is simply:

found = false;

rank = -1;

while (true)

next_perm (n, p, rank);

if (no more permutations)

break;

end

if (open (n, p)) <--- Does this permutation open the lock?

found = true;

break;

end

end

and this is an example of the way that, in a brute force approach,
the hard part can be figuring out how to try all possibilities in an
orderly fashion!

24 / 1

BRUTE: the Round Trip

trip counting.cpp: If p[] is a vector listing the five cities we
visited, then a brute force approach would be:

set dmin = 1000000;

while (true)

generate the next trip vector p (permutation)

if no more permutations

break

d = sum (city to city distances for this trip)

if (d < dmin)

dmin = d

end

end

Shortest round trip has length 19
0 2 1 4 3
A C B E D

25 / 1

Optimization of Discrete Problems

Introduction

Example Problems

Brute Force

Heuristics

Hill Climbing

The Shortest Path

Assignment #9

26 / 1

HEURISTICS: A More Realistic Problem

How many round trip itineraries are possible with 48 cities?

27 / 1

HEURISTICS: Brute Force Fails

Given n cities, the number of permutations is n!. If we try to
find a round trip through the capitals of the “lower 48” states,
simply to count the possible permutations requires 48! steps,
which is an astronomical number. It is bigger, for instance, than
the largest integer you can represent with a C++ int!

Since problems this big (and much bigger) need to be solved,
people have looked at methods for getting good approximate
solutions. Sometimes, you can make a convincing case why a
particular approach has a chance of producing a good solution. A
method that is not proved to work, but which suggests that it
often does well, is called a heuristic method.

A heuristic is a method or procedure for making a good guess.

28 / 1

HEURISTICS: Move to the Nearest Unvisited City. Repeat.

Our heuristic for the round trip problem works as follows:

Pick a starting point at random, then build an itinerary by moving
from your current location to the nearest unvisited city, again and
again, until you must return home.

If you have n nodes, then you can be more methodical, and do the
computation once for each possible starting city.

After generating many itineraries, choose the shortest one.

29 / 1

HEURISTICS: the Round Trip

The Round Trip

30 / 1

TSP: The Nearest City Heuristic

Let’s use our heuristic on our simple problem:

Start: Length
----- ----

A-(2)-D-(5)-C-(4)-B-(3)-E-(7)-A 21
B-(3)-A-(2)-D-(5)-C-(8)-E-(3)-B 21
C-(4)-A-(2)-D-(6)-B-(3)-E-(8)-C 23
D-(2)-A-(3)-B-(3)-E-(8)-C-(5)-D 21
E-(3)-B-(3)-A-(2)-D-(5)-C-(8)-E 21

We never found the optimal route of 19, but we did OK.

31 / 1

Optimization of Discrete Problems

Introduction

Example Problems

Brute Force

Heuristics

Hill Climbing

Assignment #9

32 / 1

HILL: Try to Make a Good Solution Better

In the optimization method called hill climbing, we start with a
candidate A for the best solution, which might be chosen at
random. We evaluate the function f (A), and wonder if there is a
better solution.

We also have some idea of how to make small variations in the
solution A. If A can be represented as a sequence of integers, the
small change might be to swap two integers, or to increase or
decrease one value by 1, for instance. Thus, we are considering
other solutions that are “nearby” to A.

As soon as we find a neighbor B such that f (A) < f (B), we make
B our new candidate solution, and repeat the “twiddling” process.
But if no small change to A makes an improvement, we stop.

33 / 1

HILL: Improving a Good Round Trip

We can use a kind of hill climbing idea for the round trip
problem.

Suppose that the intercity distances are “real” distances, so that
they satisfy the triangle inequality:

distance (A to C) <= distance (A to B) + distance (B to C)

Then if our good route crosses itself, that is, the path from A to B
and the path from C to D cross over each other, then we can make
a better route by changing the itinerary so that we go from A to C
and from B to D.

34 / 1

HILL: Replace Green Lines by Red Ones

Quiz: Can you see that the new itinerary must be shorter!

35 / 1

HILL: Reversing One Segment

Another possible way to improve a good round trip is simply to
consider the effect of reversing the order of one segment of the
trip. That is,

This: ... -> C4 -> C5 -> C6 -> C7 -> C8 -> C9 -> ...
becomes this ... -> C4 -> C8 -> C7 -> C6 -> C5 -> C9 -> ...

By reversing the order, we have reduced the length by Dist(C4,C5)
+ Dist(C8,C9), and increased it by Dist(C4,C8) + Dist(C5,C9), so
it’s possible this reduces our distance, but the only way to know is
to check.

Thus, the hill climbing technique allows us to keep our good
solution, and to consider small modifications that might improve it.
If we find a good modification, we take it, and repeat the process.

36 / 1

HILL: A Random Permutation

Both ideas for the round trip problem require that we start with
some solution, which we could select using the heuristic idea, or at
random... except...how do we pick a permutation at random?

It’s like picking cards out of a deck. Here’s one way to do it,
supposing that we have int random int(int a,int b), our function
which picks a random integer between a and b:

int p[n] = { 0, 1, 2, ..., n-1};

for (i = 0; i < n - 1; i++)
{

j = random_int (i, n - 1);
t = p[j];
p[j] = p[i];
p[i] = t;

}

37 / 1

Optimization of Discrete Problems

Introduction

Example Problems

Brute Force

Heuristics

Hill Climbing

The Shortest Path

Assignment #9

38 / 1

SHORT:

The shortest path problem is similar, in some ways, to the round
trip problem.

In particular, we can think of our problem data as involving a set
of cities, and the distances between them.

For the round trip problem, it was possible to move directly from
any city to any other, as though we were using an airplane. In the
shortest path problem, however, it is common to assume that there
are direct routes only between some pairs of cities. This means the
problem is more like taking a road trip. Presumably, you can get
from any city A to any other city B, but perhaps you must go
through a few other cities to get there.

39 / 1

SHORT: What is the Length of a Path?

We can think of a path P from city A to city B as a sequence of
steps of the form {A,J}, {J,W}, {W,K}, {K,B}, (for instance),
with the property that the first step starts at A, the last step ends
at B, and we never visit a city twice.

Assuming we have a matrix or array dist[][], then the length of the
path P is simply the sum of the inter-city distances, which we
might write as:

length(P) = dist[A][J] + dist[J][W]
+ dist[W][K] + dist[K][B].

40 / 1

SHORT: The Shortest Path Problem

The shortest path problem asks for the length of the shortest
path between any two given cities.

For convenience, let’s assume the starting city is always city A,
which, we can also think of as city #1 or, if we’re working in
C++, as city #0.

If there isn’t a direct road from city I to city J, then we’d like to
put the value ∞ in the dist[i][j] matrix. For now, it will be good
enough just to put in a very large value, such as 1,000,000.

41 / 1

SHORT: An Example Road Map

42 / 1

SHORT: An Example DIST[][] Array

Our road map would be:

0 40 15 INF INF INF
40 0 20 10 25 6
15 20 0 100 INF INF
INF 10 100 0 INF INF
INF 25 INF INF 0 8
INF 6 INF INF 8 0

or, in C++

dist[5][5]={{ 0, 40, 15, 1e6, 1e6, 1e6 },
{ 40, 0, 20, 10, 25, 6 },
{ 15, 20, 0, 100, 1e6, 1e6 },
{1e6, 10, 100, 0, 1e6, 1e6 },
{1e6, 25, 1e6, 1e6, 0, 8 },
{1e6, 6, 1e6, 1e6, 8, 0 } };

43 / 1

SHORT: Constructing the DISTMIN Array

Now we understand that the dist[][] array is keeping track of the
direct distance between two cities. Where the array records an
“infinity” value, it is actually possible to reach one city from the
other, by traveling through intermediate cities.

Moreover, we can imagine that it is possible that a two-step
journey might actually be shorter than the direct route.

So our task is to create determine the minimum distance from city
A to city B, a task which:

considers all possible paths between two cities, not just the
one step path;

records the length of the shortest path.

44 / 1

SHORT: A Brute Force Approach

How would we design a brute force approach?

We would have to generate all possible paths, one at a time,
computing their lengths and keeping the shortest one.

Of course, once again, the disadvantage of a brute force method is
that you have to have some idea of how to create every possible
solution. In this case, you have to figure out how to set up every
possible path from one city to the other.

There is a method called “depth first search”, from graph theory,
that would let us do this, so the brute force approach can be made
to work. However, it only works for very small problems, because
there are so many possible paths to check. So let us move on to a
smarter procedure.

45 / 1

SHORT: Two Algorithms

The shortest path problem is important enough that people have
worked hard to find efficient and simple algorithms to solve it.

One method by Edsger Dijkstra solves the problem for a single
starting city, and requires the natural assumption that the direct
distances are never negative (you can imagine the problems a
negative distance creates!).

Instead, we will consider a more general method, by Robert Floyd,
which will compute the shortest distance between every pair of
cities, and which works even if the direct distance from city A to
city B is not the same as the distance going the other way. (It can
even allow a limited number of negative distances!)

46 / 1

SHORT: The Data

Floyd’s algorithm uses a single 2D array d[][].

When we initialize the problem, we put into d[A][B] the direct
distance from city A to city B. If there is no direct link, we would
like to set the value of d[A][B] to ∞, but instead we put in a
“large value”. For us, a value of 1000 will be large enough.

The input is n, the number of cities, and the array d[][].

The output is a modified version of d[][]. The output value of
d[A][B] is the shortest distance from city A to city B, using any
number of intermediate roads to get there.

If there is no route whatsoever between the two cities, then the
corresponding entry of d[][] will be at least 1,000, which represents
∞, that is, “no way to get there!”

47 / 1

SHORT: How the Algorithm Works

The algorithm is surprisingly simple.

Suppose we already know the shortest distance between cities A
and B that only uses intermediate cities numbered less than the
value K.

What does that tell us about the shortest distance if we are
allowed to include city K? If adding city K gives us a better route,
then it comes about because we traveled from city A to city K, and
then from city K to city B.

So if we add city K to the list of cities we are allowed to visit, we
update the distance between cities A and B by:

d[A][B] = min (d[A][B], d[A][K] + D[K][B]);

The case K = 0 is where we start, we stop at case K = N.

48 / 1

SHORT: A C++ Version

void i4mat_floyd (int n, int d[])

{

int i, j, k;

for (k = 0; k < n; k++) <-- Include intermediate cities 0 through K
{

for (j = 0; j < n; j++) <-- Start at city I...
{

for (i = 0; i < n; i++) <-- ...and travel to city J.
{

d[i][j] = i4_min (d[i][j], d[i][k] + d[k][j]); <-- What we’d like to write.
d[i+j*n] = i4_min (d[i+j*n], d[i+k*n] + d[k+j*n]); <-- What we have to write instead!

}

}

}

return;

}

It’s not easy to pass a “matrix” or 2D array to a function in C++
if you allow the dimensions to vary. The FLOYD library assumes
the 2D array is stored as a 1D array, listing rows one after another.
That means that d[i][j] is expressed, instead, as d[i+j*n].

49 / 1

SHORT: The FLOYD Library

The FLOYD library includes four “interesting” functions:

i4mat floyd(n,d) carries out Floyd’s algorithm when d is an
int array;

r8mat floyd(n,d) carries out Floyd’s algorithm when d is a
double array;

i4mat print(m,n,d,title) prints an m by n int array, with a
title;

r8mat print(m,n,d,title) prints an m by n double array,
with a title.

Although our data is a 2D matrix, these functions all expect the
2D matrix to be stored as a 1D vector, that is, with the rows listed
one after another. This is easy to set up in the initialization line;
you just list one row after another.

50 / 1

SHORT: Calling the Floyd Library

include <cstdlib>

using namespace std;

include "floyd.hpp"

int main ()

// FLOYD_TEST tests the FLOYD algorithm.

//

{

int a[6*6] = { <-- For ”technical reasons”, set up
0, 40, 15, 1000, 1000, 1000, the 2D array as a 1D array!

40, 0, 20, 10, 25, 6,

15, 20, 0, 100, 1000, 1000, <-- Note that ”1000” counts as ”infinity” here!
1000, 10, 100, 0, 1000, 1000,

1000, 25, 1000, 1000, 0, 8,

1000, 6, 1000, 1000, 8, 0 };

int n = 6;

i4mat_print (n, n, a, " Direct Distance"); <-- Print initial data

i4mat_floyd (n, a); <-- Compute the shortest distance.

i4mat_print (n, n, a, " Floyd Distance"); <-- Print results

return 0;

}

51 / 1

SHORT: A Test

Here is the result of running the example case:

Direct Distance

1 2 3 4 5 6

1 0 40 15 1000 1000 1000

2 40 0 20 10 25 6

3 15 20 0 100 1000 1000

4 1000 10 100 0 1000 1000

5 1000 25 1000 1000 0 8

6 1000 6 1000 1000 8 0

Floyd Distance

1 2 3 4 5 6

1 0 35 15 45 49 41

2 35 0 20 10 14 6

3 15 20 0 30 34 26

4 45 10 30 0 24 16

5 49 14 34 24 0 8

6 41 6 26 16 8 0

The output matrix is symmetric (because the input data was), and
no city is “infinity” away from any other one.

52 / 1

Optimization of Discrete Problems

Introduction

Example Problems

Brute Force

Heuristics

Hill Climbing

The Shortest Path

Assignment #9

53 / 1

ASSIGNMENT #9: A Ten-City Road Map

Consider the following road map relating 10 cities.

54 / 1

ASSIGNMENT #9: Shortest Distance Between All Cities

Copy the programs floyd test.cpp, floyd.cpp and the file
floyd.hpp.

Modify the file floyd test.cpp so that it solves the shortest path
problem for the ten city road map. You only need to modify the
values for the matrix d and the number of cities n.

A typical compiler command would be

g++ floyd_test.cpp floyd.cpp
mv a.out floyd_test
floyd_test > short.txt

Remember that floyd.hpp needs to be in the same directory where
you do the compiling.

55 / 1

ASSIGNMENT #9: Things to Turn in

Email to Detelina:

the output file short.txt:

a copy of your modified program floyd test.cpp.

The program and output are due by Thursday, July 28.

Note that this is the last program homework assignment.

56 / 1

