
The Euler Method for the Initial Value Problem

http://people.sc.fsu.edu/∼jburkardt/isc/week10
lecture 18.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 12 July 2011

1 / 1

The Euler Method for the Initial Value Problem

Introduction

Approximating Change

Example Differential Equations

Euler’s Method

A Function for Euler’s Method

Detecting and Dealing with Error

Lab Exercise #9

2 / 1

INTRO: Schedule

Next Class:

More About Differential Equations

Assignment:

Today: in-class lab exercise #9

Thursday: Programming Assignment #7 is due.

3 / 1

INTRO: Warning

Some recent homework submissions look to me as though they
have been copied from other people.

It’s always permissible to talk about the problem, and to give
advice about how to get something done. But when homework
looks as though it has been created using cut and paste, a line has
been crossed.

Please understand that your homework submissions represent your
own work. You should type in every letter that appears in your
program. You should be able to explain every statement in your
program.

I have asked Detelina to bring any further suspicious assignments
to my attention.

4 / 1

INTRO: Measuring Change

The name planets means wandering stars; since ancient times,
people realized that these lights moved through the sky in a way
that was different from the other stars.

Every night, a given planet would have moved slightly. By keeping
records, people were able to trace the orbit, or trajectory, followed
by a planet. Kepler showed that this was an ellipse.

Because a planet had a new position each night, it was possible to
take the quotient of the change in position over change in time to
estimate velocity.

d~x

dt
≈
~x(today)− ~x(yesterday)

today− yesterday
=

∆~x

∆t

5 / 1

INTRO: Differential Equations Model Change

It’s important to realize that a velocity estimate is computed
from a change in position over a time interval, while the velocity is
understood to be the limit of such estimates as the time interval
shrinks to zero, that is, the derivative.

Using the idea of derivatives, it was possible to propose good
mathematical models to describe many physical systems that
change over time. Because such models involve derivatives, they
are usually known as differential equations.

6 / 1

INTRO: Initial Value Problems

An initial value problem (IVP) is a differential equation that:
Describes something that changes by specifying an initial state,
and giving a rule for how it changes over time.

Thus, a simple IVP would state that at time t = 2.0, the value of x
is 7, and that thereafter, x changes according to the rule dx

dt = ex .

Starting with planets, the differential equation approach has been
applied to chemical reactions, disease spread, economic changes,
the interaction of herds of wild animals, the heating of a star core,
the movement of water through Florida’s underground channels.

Calculus tells us how to solve certain simple differential equations;
scientific computing gives us methods for automatically producing
approximate solutions for almost any system described this way.

7 / 1

The Euler Method for the Initial Value Problem

Introduction

Approximating Change

Example Differential Equations

Euler’s Method

A Function for Euler’s Method

Detecting and Dealing with Error

Lab Exercise #9

8 / 1

CHANGE: Simple IVP’s

Here are some initial value problems, where we assume u(0) = 1:

du

dt
=0;

du

dt
= 1;

du

dt
= t;

du

dt
= et ;

du

dt
= u;

du

dt
= u ∗ t;

The first four equations are easy. The fifth one is only easy if you
recognize it; I am sure you have no idea whether the sixth equation
has a solution or not.

In mathematics, we think of a solution as a formula. The
mathematical solution to both equations #4 and #5 is u(t) = et ,
but the form of equation #5 makes it harder to think about and
solve.

9 / 1

CHANGE: Approximate Solutions

The problems for which exact solutions are known are very few.
If we can’t find a formula to solve an initial value problem, what
can we do?

Computational approximation is possible, but we need to
understand the difference. We will not be getting a formula.

If we think of the graph of the solution, then a computational
solution is, a sequence of values, that is points (t1, u1), (t2, u2),
and so on, that we hope are close to, the graph of the true solution.

Because each step depends on the previous one, we can also expect
that errors gradually increase as we move from the initial data.

10 / 1

CHANGE: An Initial Value Problem

To see what is going on, let us suppose that in 1980 a
prospector discovered a cave containing 10 tons of uranium.

He and a friend come back in 1982, but this time only measure 9
tons. Uranium, of course, gradually decays into other elements.

He and his friend figure they must extract the uranium as soon as
possible, or it will all “melt away”. But they are captured by
bandits and held until the year 2000. When they escape, the
prospector says there’s no point in returning to the cave, because if
the uranium lost half a ton every year, then after 20 years it’s all
gone.

11 / 1

CHANGE: A Crude Estimate of Change

While the prospector first thought his uranium was a constant
10 tons, he recognized after the second visit that it was changing.
Seeing 10 tons became 9, he estimated the rate of change:

change in U

change in time
=

1.0 ton

2 years
= 0.5 tons per year

12 / 1

CHANGE: The Estimate Was Way Off

However, the fact that the prospector’s graph becomes negative
after 20 years suggests something is wrong with the model. If the
prospector had actually been able to measure the amount each
year, he would have seen how his model went wrong:

13 / 1

CHANGE: The Actual Differential Equation

The issue here is that the prospector assumed that the rate of
change could be evaluated at one time, and used forever. This is
like assuming that a car’s velocity will never change. An accurate
model of a system must account for the fact that the rate of
change might vary over time.

In fact, the amount of uranium that decays should be proportional
to the amount of uranium we have available. If 10 tons becomes 9
in one year, then 20 tons should become 18 in a year. That means
the differential equation has the form

du

dt
= −0.0513 ∗ u

where the coefficient −0.0513 shows the rate of decay.

14 / 1

CHANGE: The Change in the Rate of Change

If we plot the model over a longer span of time, you can see that
the slope (the rate of change) varies a great deal. The prospector’s
slope of -0.5 was only a reasonable estimate initially.

15 / 1

CHANGE: So How Do We Do Better?

Now let’s put ourselves in the prospector’s place, and assume we
know that u(1980) = 10, and that

du

dt
= −0.0513 ∗ u

How can we construct a computational solution of this problem,
that is, estimates at regularly spaced times?

The prospector’s guess was also a computational solution...just a
bad computational solution.

Can we accurately estimate a system described by an initial value
problem?

16 / 1

The Euler Method for the Initial Value Problem

Introduction

Approximating Change

Example Differential Equations

Euler’s Method

A Function for Euler’s Method

Detecting and Dealing with Error

Lab Exercise #9

17 / 1

Example 1: The Baby Boom Equation

18 / 1

Example 1: The Baby Boom Equation

Suppose we are measuring the size of a population. In the baby
boom model, we have unrestricted growth:

du

dt
= c ∗ u

where c measures the number of babies born per person each year.
If c is positive, then in such a model the population grows with no
limit.

Note that this problem is the same as the uranium decay problem,
except that we assume c is positive!

19 / 1

Example 2: The Baby Bust Equation

20 / 1

Example 2: The Baby Bust Equation

The baby boom equation is not a good model for population
behavior over long times, since the population goes to infinity.

In the baby bust model, we add a factor that accounts for the fact
that the city, island or planet we are studying can only support a
maximum of umax people. In that case, the population can be
modeled by:

du

dt
= c ∗ u ∗ (1− u

umax
)

As the population approaches umax , the rate slows down.

21 / 1

Example 3: The Wiggly Equation

22 / 1

Example 3: The Wiggly Equation

The derivative can depend on both u and t. We can get an idea
of the behavior of the solution by plotting the derivative vector on
a graph that displays t versus u. The solution is like a feather that
must follow the wind whose strength and direction are indicated by
the field of derivatives.

In the wiggly function, we see cosine behavior in time, but
multiplication by u means the cosines get exaggerated away from
the t axis.

du

dt
= u ∗ cos (t)

The solution curves are hard to compute because of all the
wiggling.

23 / 1

The Euler Method for the Initial Value Problem

Introduction

Approximating Change

Example Differential Equations

Euler’s Method

A Function for Euler’s Method

Detecting and Dealing with Error

Lab Exercise #9

24 / 1

EULER: A Straight Line Model for a Small Step

Euler’s method is the simplest approach to approximating a
solution to a differential equation.

It uses the information we know to estimate unknown information
that is nearby. We have the initial value u0 at time t0, and the
derivative function f (u, t) tells us how fast u0 will change over
time.

Because f (u0, t0) is the slope of the solution curve at time t0, so a
straight line with this slope is a reasonable local approximation:

u(nearby t) ≈ u0 + f (u0, t0) ∗ (t − t0)

25 / 1

EULER: Step, Then Adjust the Direction

Let’s decide to take a small step forward, from time t0 to
t1 = t0 + ∆t. Then we have

u(t1) ≈ u0 + f (u0, t0) ∗∆t = u1

If our step is small enough, and the graph doesn’t wiggle violently,
we are still close. The direction may have changed a little, but we
can check that by evaluating the derivative function at our new
time. So we can try taking a second step, from t1 to t2 = t1 + ∆t:

u(t2) ≈ u1 + f (u1, t1) ∗∆t = u2

Continuing in this way, we can advance in time, producing a
sequence of approximations to the solution at equally spaced
points in time from t0 to tfinal .

26 / 1

EULER: Apply to Baby Boom Equation

To understand how this might work, let’s consider the “baby
boom” version of example equation #2, and specify some numbers
for the initial conditions:

du

dt
= 0.05 ∗ u

t0 = 2011

u(2011) = 10, 000

This equation could be considered to be a model of a population
that is at 10,000 in the year 2011. If it takes a couple of people to
make a new child, the growth rate of 0.05 means that each year a
child is born to 1 out of 10 couples (1 new baby a year for every 20
people = 10 couples).

27 / 1

EULER: Use 2011 to Predict 2012

It is natural to estimate the population in 2012 as follows:

u(2012)− u(2011)

2012− 2011
=

∆u

∆t
≈ du

dt
du

dt
=0.05 ∗ u = 0.05 ∗ 10, 000 = 500

u(2012) =u(2011) + ∆t ∗ u(2012)− u(2011)

2012− 2011

≈10, 000 + 1 ∗ 500 = 10, 500

In the last equation, everything is exact except for the 500; since
the population is increasing over the year, the du

dt is increasing as
well, rather than sticking at 500.

28 / 1

EULER: Our Approximation Involves Choices

Keep in mind that the “magic” of being able to predict the
future depends on a lot of things that are only approximately true!

If the growth of a human population can be exactly calculated by a
continuous curve (which means we sometimes have fractions of
people!) and that curve can be described by a formula that is
differentiable, and we can work out the parameters (such as the
0.05 growth rate), then the exact solution of the differential
equation gives us the future population.

In order to work computationally, we make one more
approximation, that if we take a small enough step in time, the
derivative won’t change that much, so we can simply use its value
at the starting time as though it were constant for the whole step.

29 / 1

EULER: Stepping Forward On Paper

Once we’ve got the population in 2012, we can take another
step. However, we need to update our estimate for the derivative
when we do that:

u(2011) = 10,000
u’(2011) = +500.0

u(2012) = u(2011) + 1 * u’(2011) = 10,500
u’(2012) = 0.05 * u(2012) = +525

u(2013) = u(2012) + 1 * u’(2012) = 11,025
u’(2013) = 0.05 * u(2013) = +551.25

u(2014) = u(2013) + 1 * u’(2013) = 11,576.25
u’(2014) = 0.05 * u(2014) = +578.81

u(2015) = u(2014) + 1 * u’(2014) = 12,155.06
30 / 1

EULER: The Effect of the Time Step

What if we took time steps half as large? We’ll write ”2011.5”
to mean July 1, 2011:

u(2011) = 10,000
u’(2011) = +500.0

u(2011.5) = u(2011) + 0.5 * u’(2011) = 10,250
u’(2011.5) = 0.05 * u(2011.5) = +512.5

u(2012) = u(2011.5) + 0.5 * u’(2011.5) = 10,506.25
u’(2012) = 0.05 * u(2012) = +525.31

So taking steps of 6 months instead of a year, we picked up 6.25
extra births. The difference between a rate of 500 and a rate of 512
isn’t extreme, so in this case, our one-year time step is probably
small enough, as long as we don’t go too far into the future.

31 / 1

The Euler Method for the Initial Value Problem

Introduction

Approximating Change

Example Differential Equations

Euler’s Method

A Function for Euler’s Method

Detecting and Dealing with Error

Lab Exercise #9

32 / 1

EULER.CPP: How Can We Compute This?

If we have an initial value problem, and we want to use a C++
implementation of Euler’s method to get a solution, what things
do we have to consider?

The overall design of the Euler function is the first question. It
seems simplest to have it start at the initial point t0, and to
produce an approximate solution u1 at the time t1 = t0 + dt.

If we want to take another step, we use (t1, u1) as our new
starting time and starting solution, set t2 = t1 + dt and call the
function again.

By repeated calls, we can get a sequence of approximate solution
values, which we can think of as points on the solution curve.

33 / 1

EULER.CPP: Designing an Euler Function

If we do it this way, the input to the Euler function could be:

t0, the starting time;

u0, the starting value;

dt, the stepsize;

f(t,u), a function that evaluates the derivative.

and what emerges as the function value is u1, the approximate
solution at time t1.

So our function will be declared as

double euler (double t0, double u0, double dt,
double f (double t, double u));

34 / 1

EULER.CPP: The Euler Code

It only takes a simple code to start from u0 at t0, and take a
step of size dt in the direction specified by the derivative:

double euler (double t0, double u0, double dt,
double f (double t, double u))

{
double u1;

u1 = u0 + dt * f (t0, u0);

return u1;
}

35 / 1

EULER.CPP: The Baby Boom Derivative Function

Now let’s write the function for the baby boom example, which
has input of the current time t and solution u = u(t), and must
evaluate the derivative formula:

double f1 (double t, double u)
{

double dudt;

dudt = 0.05 * u;

return dudt;
}

36 / 1

EULER F1.CPP: A Program For The Baby Boom Equation

And now we are able to write a program that tries to compute
the population from 2011 to 2020:

include <cstdlib>

include <iostream>

using namespace std;

double euler (double t0, double u0, double dt, double f (double t, double u));

double f1 (double t, double u);

int main ()

{

double dt = 1.0, t0 = 2011, t1, tmax = 2020, u0 = 10000, u1; <-- Initial data

while (true)

{

cout << t0 << " " << u0 << "\n";

if (tmax <= t0) <-- Did we reach our goal?
{

break;

}

t1 = t0 + dt; <-- Take another step.
u1 = euler (t0, u0, dt, f1);

t0 = t1; <-- Shift data for next loop.
u0 = u1;

}

return 0;

}

...Text of ”euler.cpp” and ”f1.cpp” follows...

37 / 1

EULER.CPP: Table of Data

Our function returns the following computed answers:

T U(T)

2011 10000
2012 10500
2013 11025
2014 11576.2
2015 12155.1
2016 12762.8
2017 13401
2018 14071
2019 14774.6
2020 15513.3

38 / 1

EULER.CPP: Plots of Smaller Timesteps

Compare results for timesteps of 1, 1
2 ,

1
4 ,

1
8 of a year.

Results are good, perhaps because the solution is not very
“wiggly”.

39 / 1

The Euler Method for the Initial Value Problem

Introduction

Approximating Change

Example Differential Equations

Euler’s Method

A Function for Euler’s Method

Detecting and Dealing with Error

Lab Exercise #9

40 / 1

ERROR: How Can We Detect Errors?

How can we trust our results when we have no way of knowing the
correct answer? We can’t guarantee that we won’t accept a bad
answer, but we can certainly watch some simple warning signs, and
try some easy remedies.

The best error detection we have is available because, generally,
our solution estimate improves as we reduce the step size.

Thus, we tended to trust our baby boom calculation, because the
results for timesteps of 1, 1

2 ,
1
4 ,

1
8 of a year looked very close.

Let’s try this idea out on the ”wiggly function”.

41 / 1

ERROR: The Wiggly Equation

Recall that the wiggly function has a direction field with many
bends!

42 / 1

EULER.CPP: A Function for the Wiggly Derivative

Now let’s write the function for the wiggly example:

double f3 (double t, double u)
{

double dudt;

dudt = u * cos (t);

return dudt;
}

Our program needs # include <cmath> because we call cos().

43 / 1

ERROR: The Wiggly Equation

Let’s try to solve the following problem for 0 ≤ t ≤ 12 ∗ π:

du

dt
=u ∗ cos (t)

t0 =0

u(t0) =0.5

We’ll use step sizes of dt = 0.25, 0.1 and 0.01.

We make a copy of euler f1.cpp called euler f3.cpp, replace the
function f1() by f3(), and modify the initial data.

44 / 1

ERROR: Comparing Approximate Solutions

When we run our euler f3.cpp program for different time steps,
we concentrate on a few selected points:

T U U U
0.25 0.10 0.01

0.0 0.500000 0.500000 0.500000
10.0 0.185518 0.244324 0.285323
20.0 0.363628 0.769275 1.18746
30.0 0.029936 0.091483 0.173494

The values do not agree! While we can guess that the results for
dt = 0.01 are the most accurate, we really can’t be sure.

45 / 1

ERROR: Approximations versus Exact

Even our (blue) computation with dt = 0.01 has a noticeable
error when compared to the (purple) exact solution!

46 / 1

ERROR: Wiggles Require Small Steps!

The good news is that comparing results for different step sizes
did give us a warning that something was wrong.

The unfortunate fact is that, because the Euler method uses
straight line segments to approximate a curve, it’s not very good at
going around bends, which the wiggly function is full of, and so the
only remedy for a wiggly curve is to keep reducing the step size.

We will look, next time, at methods that are better at going
around the bends without losing accuracy!

47 / 1

The Euler Method for the Initial Value Problem

Introduction

Approximating Change

Example Differential Equations

Euler’s Method

A Function for Euler’s Method

Detecting and Dealing with Error

Lab Exercise #9

48 / 1

EXERCISE: The Baby Bust Equation

The “baby bust” equation is example #2.

We are going to estimate the behavior of a population that can be
described by this equation. To do so, we need to know:

t0, the initial time, is 1850;

tmax, the final time, is 2000;

u0, the initial population, is 2

c, the growth rate, is 0.10;

umax, the maximum population, is 750

dt, the stepsize, will be 1.0

Make a copy of euler f1.cpp for this problem, calling the new file
euler f2.cpp. Modify the function that evaluates the right hand
side. Change the initial data in the main program.

49 / 1

EXERCISE: The Baby Bust Equation

Compile and run your program, and save your output in a file
called ”pop.txt”.

g++ euler_f2.cpp
mv a.out euler_f2
euler_f2 > pop.txt

Plot your data using the commands:

gnuplot
plot "pop.txt" using 1:2 with lines

Show your plot to Detelina so you can get credit for the exercise!

50 / 1

