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INTRO: Schedule

Next Class:

Differential Equations

Assignment:

Programming Assignment #6 is due today.

A short project proposal is due Tuesday, July 12.

Programming Assignment #7 will be due July 14.
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INTRO: Improving the Bisection Code

In the last lecture, we talked about the bisection method, a
simple procedure that slowly squeezes the uncertainty out of an
estimate for the solution of a nonlinear equation, assuming we were
able to bracket the solution, that is, find a negative and positive
function value, so that a crossing must occur in between.

We created a C++ function, bisect1.cpp, to carry out this
procedure. This meant the user had to write a C++ function to be
used by the bisection procedure. And so we had to pick one name
for that function and stick with it. We will see a simple way of
allowing the user to use any name for the function, just like the
user can have any name for the input variables to a function.
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INTRO: Methods Faster than Bisection

We will then look at another method for solving nonlinear
equations, called the secant method, which can be much faster
than bisection, but which can fail if we start too far from the
solution.

We will then consider a related, but much more powerful solver
called Newton’s method, which uses derivative information to get
a more accurate fix on the probable location of the solution.
Newton’s method is important because it can be modified to
handle systems of nonlinear equations, that is, two, three or
hundreds of equations for which a solution is needed.
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VARIABLE: Must Our Function be Named F(X)?

The bisection program can be very useful, but one of its
limitations is that it requires that the equation to be solved is
described by a function whose name must be f().

This is inconvenient; we might want our function to be described
by some other name.

Moreover, we might have one program that wants to solve several
different equations, say f1(), f2() and f3(). Are you saying we can
only solve one of these equations, and even for that one we have to
rename the function to f()?

Surprisingly, we can make our program more flexible, because C++
allows us to use the name of the function to be solved as just
another input quantity. In other words, it’s easy to tell bisect() to
“please solve f3(x)=0”.
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VARIABLE: Functions are Similar to Variables

So if we wanted to think of the function we are working with as
just another variable, how would we describe it? We already have!
When we declared function f1(x), we described it as

double f1 ( double x );

We made similar declarations for functions f2(x) and so on. So our
bisection solver will work as long as it is given a function, let’s call
it just plain old f(x), which looks like

double f ( double x );

So we can add a function name as input to version 2 of the
bisect() solver:

double bisect2 ( double a, double b, double f ( double x ) );
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VARIABLE:

This means we can have one program that includes our functions
f1() through f5(), and if we want to find a solution of, say,
f 3(x) = 0, we just have to set up the appropriate input to
bisect2(), namely, the value of a, the value of b, and the value
(that is, the name) of the function f():

a = 2.0;
b = 3.0;
c = bisect2 ( a, b, f3 );

The program bisect2 f1f2f3.cpp is set up this way. Notice that
the main program solves equations involving function f1, f2, and
f3, but that bisect2() treats them all as though they were simply
named f().
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VARIABLE: BISECT2 F1F2F3.CPP

double bisect2 ( double a, double b, double f ( double x ) );

double f1 ( double x );

double f2 ( double x ); <--- We declare bisect2(), f1(), f2(), and f3()

double f3 ( double x ); up here, so "everyone" can use them.

int main ( )

{

double a;

double b;

double c;

a = - 10.0;

b = + 10.0;

c = bisect2 ( a, b, f1 ); <-- Solve using function f1()

cout << "F1(" << C << ") = " << f1 ( c ) << "\n";

a = 0.0;

b = 3.0;

c = bisect2 ( a, b, f2 ); <-- Solve using function f1()

cout << "F2(" << C << ") = " << f2 ( c ) << "\n";

a = 2.0;

b = 3.0;

c = bisect2 ( a, b, f3 ); <-- Solve using function f1()

cout << "F3(" << C << ") = " << f3 ( c ) << "\n";

return 0;

}
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FUNCTION 1: The Cosine Equation

Our first function is f1(x) = cos(x)− x :
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FUNCTION 1: The Cosine Function

double f1 ( double x )
{

double value;

value = cos ( x ) - x;

return value;
}
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FUNCTION 2: The Satellite Equation

When is the satellite directly overhead?
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FUNCTION 2: The Satellite Equation

ET is stranded on earth, while his spaceship is circling in an
elliptical orbit. ET’s only chance is to beam himself up when the
spaceship is directly overhead. ET is at coordinates (0,0). The
satellite’s position, as a function of time, is

x(t) =1.082 ∗ cos t + sin t

y(t) =− 0.625 ∗ cos t + 1.732 ∗ sin t

The satellite is directly overhead when x(t) is 0 and y(t) is
positive. When should ET try to beam up?

So our next function is f2(x) = 1.082 ∗ cos x + sin x which actually
has many zeros.
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FUNCTION 2: The Satellite Equation

The blue line is our function; the red line must be positive for
our solution to be good. That means the green dots are solutions!
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FUNCTION 2: The Satellite Function

double f2 ( double x )
{

double value;

value = 1.082 * cos ( x ) + sin ( x );

return value;
}
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FUNCTION 3: The Pole Equation

When does a 4 foot pole just touch the corner of a 1 foot square?
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FUNCTION 3: The Pole Equation

Can a 4 foot pole leaning against a wall in such a way that it
exactly touches the corner of a 1 foot cube?

The pole forms one big triangle against the wall and ground.
Subtract the square from that triangle and two similar triangles
remain, with horizontal sides x and 1, and with slanting sides y
and 4− y . Because these triangles are similar:

y

x
=

4− y

1

Using the Pythagorean theorem, we can conclude that we need to
find a value x for which it is true that:

x4 + 2x3 − 14x2 + 2x + 1 = 0

If we know x , we can determine y and the angle of the pole.
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FUNCTION 3: The Pole Function

double f3 ( double x )
{

double value;

value = pow ( x, 4 ) + 2 * pow ( x, 3 )
- 14 * pow ( x, 2 ) + 2 * x + 1;

return value;
}
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FUNCTION 3: The Pole Equation

The blue line is our function; the two red dots are solutions!
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FUNCTION 4: The Frozen Pipe Equation

How deep should we bury a water pipe so it can survive a 60 day
cold snap?
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FUNCTION 4: The Frozen Pipe Equation

Buried water pipes will freeze if the surrounding soil cools down
to 0 degrees Celsius. The deeper a pipe is buried, the longer it
takes for cold weather on the surface to affect the pipe. In a
simple model, we assume that initially, the soil had a temperature
of Ti at all depths, and that a sudden cold snap means the surface
air stays at a temperature of Ts .

T (x , t)− Ts

Ti − Ts
= erf(

x

2
√
αt

)

where erf() is the error function and α = 0.138 · 10−6 is a number
that measures how rapidly the soil cools. The C++ math library
includes the error function erf(). Time t is in seconds.

We seek a value x for which T (x , t) is 0 when t equals 60 days
(that is, the soil just got to freezing after 60 days).
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FUNCTION 4: The Frozen Pipe Function

double f4 ( double x )
{

double alpha = 0.138E-06; <-- 0.138 x 10^(-6)
double t = 60 * 24 * 60 * 60; <-- days * hours *

minutes * seconds
double temp_init = 20.0;
double temp_cold = -15.0;
double value;

value = temp_cold + ( temp_init - temp_cold )
* erf ( 0.5 * x / sqrt ( alpha * t ) );

return value;
}
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FUNCTION 5: The Water Tank

A water tank has a circular cross section, and a radius of R = 3
feet. If the tank is 1

4 full, what is the height H of the water?
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FUNCTION 5: The Water Tank

Using formulas for the area of a circular sector, and of a triangle,
we come up with the following formula for the area of the circle
that contains water:

Area =circular sector− triangle

=R2 arccos (
R − H

R
)− (R − H)

√
H(2R − H)

For our problem, we would be asking for a value of H that makes
this equation true:

1

4
(π32) = 32 arccos (

3− H

3
)− (3− H)

√
H(6− H)

which seems impossible to work out.
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FUNCTION 5: The Water Tank Function

double f5 ( double h )
{

double r = 3.0, pi = 3.14159265;
double value;

value = r * r * acos ( ( r - h ) / r )
- ( r - h ) * sqrt ( h * ( 2 * r - h ) )
- 0.25 * pi * r * r;

return value;
}
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FUNCTION 5: The Water Tank
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FUNCTION 6: Lambert’s Function

For our in-class exercise, we considered a special case of
Lambert’s function, by asking for a solution of the equation:

xex = 1000

and we rewrote this as the function f6(x) = x ∗ ex − 1000.

During the lab, you were probably able to find that the function
changes sign in the interval [5,6].
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FUNCTION 6: The Lambert Function

double f6 ( double h )
{

double value;

value = x * exp ( x ) - 1000.0;

return value;
}
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FUNCTION 6: The Lambert Function
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SECANT: Can We Go Faster?

The bisection method has been good to us; it requires a change of
sign interval, but after that, it slowly but surely narrows in on the
solution. It takes 10 steps to reduce the size of the x interval by a
factor of 1000, and maybe 20 steps to reduce it by a factor of
1,000,000. So, roughly speaking, if we started in the interval [0,1],
it takes 20 steps to get 6 digits of accuracy in the solution.

If the slow but reliable bisection method is not good enough, you
can try a quicker but less reliable procedure called the secant
method. The secant method does not require a change of sign
interval; its convergence can be significantly faster than bisection;
however, it is not guaranteed to converge, especially if your
starting estimate of the solution is too far from the correct value.
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SECANT: A Sequence of Pairs of Points

The secant method is an iteration that produces a sequence of
estimates for the solution. It starts with estimates x0 and x1 for
the solution, and produces x2, a better estimate. We discard x0

and use x1 and x2 for the next step, and so on.

The secant method approximates the the graph of the function by
the straight line through the points (x0, f (x0)) and (x1, f (x1)). If
the curve and line are close, then we can hope that where the line
crosses the x axis is close to where the curve crosses.

Since we only have two points of the curve at any one time, you
can see we are taking quite a risk. However, if our procedure gets
close to the solution, then the approximation should be good, and
get better very fast.
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SECANT: Estimate the Crossing

If we have a line that goes through the points (x0, f (x0)) and
(x1, f (x1)), then the formula for this line is

y = f (x0) + (f (x1)− f (x0)) ∗ x − x0

x1 − x0

To find where this line crosses the x axis, we set y to 0 and solve
for x , which we call x2 because it’s the next entry in our sequence:

x2 =
f (x1) ∗ x0 − f (x0) ∗ x1

f (x1)− f (x0)

We repeat the step, replacing x0 by x1, and x1 by x2, as needed.

Bisection always looks halfway between the two values. The secant
method uses the size of the functions for a better guess.
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SECANT: Code for the Method

secant.cpp

double secant ( double x0, double x1, double f ( double x ) )

{

double fx0, fx1, fx2, x2;

fx0 = f ( x0 ); <-- Initialization.

fx1 = f ( x1 );

while ( true )

{

x2 = ( fx1 * x0 - fx0 * x1 ) / ( fx1 - fx0 ); <--- Next estimate.

fx2 = f ( x2 );

if ( fabs ( fx2 ) < 0.000001 ) <--- Can we stop?

{

break;

}

x0 = x1; <--- Shift data.

fx0 = fx1;

x1 = x2;

fx1 = fx2;

}

return x2;

}
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SECANT: Calling the Method

secant f1.cpp

# include <cstdlib>

# include <iostream>

# include <cmath>

using namespace std;

double secant ( double a, double b, double f ( double x ) );

double f1 ( double x );

int main ( )

//

// SECANT_F1 is a program which uses SECANT to solve for a solution

// of F1(X) = 0.

//

{

double a = -10.0, b = +10.0, c;

c = secant ( a, b, f1 );

cout << "\n";

cout << "SECANT returned solution estimate C = " << c << "\n";

cout << "F1(C) = " << f1 ( c ) << "\n";

return 0;

}

...text of secant()...

...text of f1()
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SECANT: Solving COS(X) - X = 0

If we start the secant iteration with the same points we used for
the bisection method, then here is the sequence of steps:

STEP X F(X)

---- ---------- --------

0 -10.0 9.16093

0 10.0 -10.8391

1 -0.839072 1.50723

2 0.484153 0.400916

3 0.963678 -0.393174

4 0.726253 0.021415

5 0.738517 0.000951081

6 0.739087 -0.00000271414

7 0.739085 0.000000000340712

As the approximation gets close, the error really starts to drop. In
fact, if we take one more step, the function value decreases by
another factor of 10,000. In contrast, the bisection method took
23 steps, and did not get faster as we came closer.
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SECANT: Starting without a Change of Sign

Note that the secant method does not actually need a change of
sign interval, either. We can start with the points x0 = - 10.0 and
x1 = -8.0. Here’s what we get then:

STEP X F(X)

---- --------- --------

0 -10.0 9.16093

0 -8.0 7.85450

1 4.02439 -4.65938

2 -0.452739 1.35199

3 0.554191 0.296135

4 0.836604 -0.166616

5 0.734920 0.00696489

6 0.739000 0.000142883

7 0.739085 -0.000000131713
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SECANT: Defeating the Secant Method

However, the secant method works best when the curve is not
too wiggly. To defeat it, we need a situation where the graph is
going down, but not towards a solution!

Here is a table of data for such a case. The solution is at x = 0,
but the secant method is running away from the solution. Why?

STEP X F(X)

---- --------- --------

0 1.5 0.334695

0 2 0.270671

1 4.1138 0.0672424

2 4.81251 0.0391135

3 5.78407 0.0177928

4 6.59487 0.00901761

5 7.42806 0.00441477

6 8.22722 0.00219896

7 9.02029 0.00109083

8 9.80099 0.000542944

9 10.5746 0.000270245

10 11.3413 0.000134644
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SECANT

Going down the hill on the right guarantees you’ll never find a
solution!
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NEWTON: Rewrite the Secant Method

The secant method works (when it works) by using the current
position and an estimate of the slope of the graph.

We can rewrite the secant formula as follows:

x2 =
f (x1) ∗ x0 − f (x0) ∗ x1

f (x1)− f (x0)

=x1 − f (x1) ∗ x1 − x0

f (x1)− f (x0)

≈x1 −
f (x1)

f ′(x1)

because

f ′(x1) ≈ f (x1)− f (x0)

x1 − x0
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NEWTON: Use Derivative instead of Slope Estimate

Notice that in this new version, the point x0 has completely
disappeared. It seems we really only needed it to estimate the
slope of the curve; if we have the derivative at x1, that gives us the
information we need.

This suggests two important advantages of Newton’s method:

it only needs one point at a time;

the derivative is a more accurate estimate of the slope, which
means the computation might be faster.

and, of course, a disadvantage:

the user must supply a derivative function.
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NEWTON: The Derivative Function (Careful!)

The function fp1() should evaluate the derivative of
f 1(x) = cos (x)− x .

double fp1 ( double x )
{

double value;

value = sin ( x ) - 1;

return value;
}

We will need to come back and fix this function shortly!
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NEWTON: The Newton Method Fails

Let’s start at x0 = −10 and see how Newton’s method works:

STEP X F(X)

---- ------------- --------

0 -10.0000 9.16093

1 10.0907 -10.877

2 3.36722 -4.34187

3 -0.180882 1.16457

4 0.806126 -0.113827

5 0.39725 0.524878

6 1.25333 -0.941176

7 -17.5816 17.8799

8 375.219 -375.419

9 185.588 -186.561

10 34.1486 -35.0662

11 -24.0607 24.539

12 177.367 -177.235

13 -19963.9 19963.3

14 -8925.65 8924.72

15 5397.85 -5397.03 <-- 15 step limit stops us!
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NEWTON: Oops

So after looking at these discouraging results, let’s go back and
look at the function and derivative codes that we gave newton()
to work with:

f1(): value = cos ( x ) - x;
fp1(): value = sin ( x ) - 1; <-- Notice anything wrong here?

If we give newton() wrong information, we can’t blame it for
getting confused. But we have to realize that when the user has to
supply two pieces of information, the function and the derivative,
we’ve doubled the chances that the user (in this case, me!) is
going to make a mistake.

Let’s rerun the program after fixing my error!
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NEWTON: The Newton Method Fails Again

Let’s restart, using the correct derivative!

STEP X F(X)

---- ------------- --------

0 -5 5.28366

1 -2.30277 1.63443

2 4.0781 -4.6707

3 -19.9346 20.4015

4 156.443 -155.639

5 -227.134 227.724

6 953.782 -953.478

7 -19172.3 19171.6

8 58810.8 -58809.8

9 10096.6 -10095.7

10 -8064.42 8063.42

11 380.285 -381.273

12 -68.9853 69.9769

13 -7.02201 7.76127

14 16.7432 -17.2535

15 -106.486 107.433 <-- 15 step limit stops us!

These results are just as bad, and we’re using good information!
Our starting point must be too far away!
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NEWTON: Starting Close, the Method is Fast

Let’s start at 0, which is one endpoint of the change of sign
interval we used with bisection (which took 23 steps to get a
decent result.)

STEP X F(X)

---- ---------- --------

0 0 1

1 1 -0.459698

2 0.750364 -0.0189231

3 0.739113 -4.64559e-05

4 0.739085 -2.8472e-10

Once we get close enough that the graph is behaving like a
straight line, newton() picks up the answer, and the error drops
very quickly.
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NEWTON: The Cosine Equation Has Flat Spots

When our function f1(x) is roughly flat, such as between
−2.5 ≤ x ≤ −1, the derivative is almost zero, and suggests going
way far to the right for the next approximation. It is only if we are
in the range −0.5 ≤ x ≤ +3 that I feel “safe” that newton() can
figure things out.
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ASSIGNMENT #7: F3(X), the “Pole” Function

Consider the pole function,

f3(x) = x4 + 2x3 − 14x2 + 2x + 1

Because the equation f3(x) = 0 involves a polynomial of degree 4,
it is possible to have as many as four solutions, and in this case,
we have exactly that many. For the pole problem, the two positive
solutions are most interesting, but there are also two negative
solutions.
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ASSIGNMENT #7: Solve the Pole Equation

Using plotting, or the bracket function, try to find change of
sign intervals for the four solutions to the pole function
problem. (four pairs of numbers [a,b])

For each interval, use the secant method to estimate the
solution. Start the secant method with the pair of endpoints
of your interval. (four solution estimates)

Compute the derivative function fp3(x), and use it, with
Newton’s method, starting at x = 2, to compute one solution
to the problem. (one solution estimate)
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ASSIGNMENT #7: Things to Turn in

Email to Detelina:

your program’s results:

4 pairs of change of sign intervals,
4 secant answers,
1 Newton answer

a copy of your programs.

The program and output are due by Thursday, July 14.
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