
Solving an Equation

http://people.sc.fsu.edu/∼jburkardt/isc/week09
lecture 16.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 05 July 2011

1 / 1

EQUATIONS

Introduction

Project Discussion

When does Cos(X) = X?

The Bisection Idea

A Sample Bisection Solver

Bracketing the Solution

Lab Exercise #8

2 / 1

INTRO: Schedule

Next Class:

The Secant and Newton Methods

Assignment:

Today: in-class lab exercise #8

Thursday: Programming Assignment #6 is due.

Tuesday, July 12: 1 paragraph project proposal is due.

3 / 1

INTRO: Projects, Problems, Programs

For the month of July, you will need to choose and work on a
final project. This is a feature of the FSU Computer Competency
Requirement. I will suggest some topics, and give you some
guidelines.

We have learned enough C++ to be “dangerous”. That is, it’s a
good time to stop learning about pieces of the language, and to
focus on how they are put together to solve problems. This is a
chance to understand better some of the things we think we’ve
learned.

One example of a common scientific task involves solving an
equation, or, more accurately, getting a good estimate of a solution
to a nonlinear equation. We will seek a program to help us.

4 / 1

INTRO: Solving a Nonlinear Equation

We will start by looking at some examples of this kind of
problem, and look at a simple idea that can help us, as long as we
are able to make a rough guess as to where the answer is.

We will put this idea into a C++ code.

Then we will think about how we can reuse this code. That will
involve turning it into a function, which takes in an equation and
spits out a solution. To do that we have to answer the question:

How can we make an equation become an input quantity?

5 / 1

EQUATIONS

Introduction

Project Discussion

When does Cos(X) = X?

The Bisection Idea

A Sample Bisection Solver

Bracketing the Solution

Lab Exercise #8

6 / 1

PROJECTS: A Course Requirement

We are required to do a final project for this course.

Each student needs to pick a topic, investigate it, write a program
that examines some feature of the topic, write a short report and
make an oral presentation.

These presentations will be made on our last day of class, Tuesday,
August 2nd.

To start the process, I need each of you to turn in, by Tuesday,
July 12, a paragraph describing a project you will work on.

I have talked with a few students who already had an idea about a
project to work on, but I understand many of you may have no
ideas about what to do.

7 / 1

PROJECTS: Possible Topics

I have a one page outline of the project guidelines for you,
followed by a list of 15 possible topics you might choose. Most of
these topics are associated with an article or short writeup, and I
have printed one copy of each of those, as well.

I invite you to look over the articles to find something that
interests you.

Some of the articles seem long and complicated. However, in each
one, I believe there is a simple idea that can be investigated and
programmed. I am willing to help each of you get started on
forming a project from one of these articles, especially during my
office hour time on Friday.

Remember, I need a decision from each of you by next Tuesday!

8 / 1

EQUATIONS

Introduction

Project Discussion

When does Cos(X) = X?

The Bisection Idea

A Sample Bisection Solver

Bracketing the Solution

Lab Exercise #8

9 / 1

COS(X): A Coincidence?

If we look at a table of cosines, we notice something interesting
happening a little bit after x = 0.7:

X COS(X)
-------- --------
0.700000 0.764842
0.710000 0.758362 <-- X < COS(X)
0.720000 0.751806
0.730000 0.745174

0.740000 0.738469
0.750000 0.731689
0.760000 0.724836 <-- X > COS(X)
0.770000 0.717911
0.780000 0.710914
0.790000 0.703845
0.800000 0.696707

10 / 1

COS(X): A Coincidence?

Noticing that at some point, x becomes larger than cos (x), we
can ask ourselves, is it possible that for some value of x , it is true
that cos (x) = x exactly?

If you think about it, you probably know that cos (x) is a
continuous function, and, for our purposes, one property of a
continuous function is that its graph cannot have any holes or
jumps.

And that means that if a mountain climber A is walking down
“Mount Cosine”, and a lazy person B is gliding up “Escalator X”,
then if at some point A is above B, and later the positions are
reversed, there must have been a time when B caught up to A...at
which point cos (x) = x .

11 / 1

COS(X): Compare Graphs of COS(X) and X

When is it true that cos x = x?

12 / 1

COS(X): A Graph is Quick but Expensive and Crude

Now the graph makes it look obvious that this must happen.

However, a graph is not always the best way to answer this kind of
question, because:

we had to know where to look;

we had to call the function about 500 times to get a picture;

the accuracy of the answer is at best 1 decimal place for this
picture;

to get more accuracy, we’d have to do a new plot, on a finer
scale, with 500 more values (and again, and again).

13 / 1

COS(X): Look for Crossings

We looked at this problem in an earlier homework exercise.
Starting in [0,1], we chose 11 points, and looked for the crossing:

1 0.000000 1.000000
2 0.100000 0.995004
3 0.200000 0.980067
4 0.300000 0.955336
5 0.400000 0.921061
6 0.500000 0.877583
7 0.600000 0.825336
8 0.700000 0.764842 <-- X < COS(X)

9 0.800000 0.696707 <-- X > COS(X)
10 0.900000 0.621610
11 1.000000 0.540302

We zoomed in to [0.7, 0.8] with 11 more points, and so on.
14 / 1

COS(X): Create a function F1(X) = COS(X) - X

Now I’m going to try to make it easier to find crossings, by
considering a function f1(x) = cos(x)− x :

1 -1.000000
2 -0.895004
3 -0.780067
4 -0.655336
5 -0.521061
6 -0.377583
7 -0.225336
8 -0.064842 <-- F1(X) < 0 (same as X < COS(X))

9 0.103293 <-- F1(X) > 0 (same as X > COS(X))
10 0.278390
11 0.459698

It’s easier to look for a change in sign in one list!
15 / 1

COS(X): Graph of F1(X) = COS(X) - X

Rewriting cos(x) = x as f1(x) = cos(x)− x gives new
perspective. Where does the graph cross the x axis?

16 / 1

COS(X): Graph of F1(X) = COS(X) - X

By itself, knowing the value X for which COS(X) = X is not
important. But it is an example of a kind of calculation that goes
on all the time in scientific computing, called the solution of a
nonlinear equation.

A workable strategy for many examples of this problem is:

1 rewrite your problem as a function that must equal 0;
2 find an interval [a,b] where the function changes sign;
3 cut the interval in half after evaluating the midpoint;
4 repeat step 3 until satisfied.

This procedure is known as the method of bisection.

17 / 1

EQUATIONS

Introduction

Project Discussion

When does Cos(X) = X?

The Bisection Idea

A Sample Bisection Solver

Bracketing the Solution

Lab Exercise #8

18 / 1

BISECT: Step 1 Requires a Function

Let’s think about the steps involved in the bisection method,
using our example problem cos(x) = x as a guide.

Step 1: Rewrite your problem as a function that must equal 0.

It seems easy to do this:

f1(x) = cos(x)− x

but of course, now we probably also need to implement this as a
C++ function!

19 / 1

BISECT: The Cosine Function

double f1 (double x)
{

double value;

value = cos (x) - x;

return value;
}

20 / 1

BISECT: Step 2 Requires a Change of Sign Interval

Having described our problem as a function f1(x), we are ready
for step 2:

Find an interval [a,b] where the function changes sign.

There are many ways that this can be done. We really just need
two values at which the function has opposite sign. We might have
stumbled on such values, or guessed them from the equation, or
used the computer to sample some values, or even looked at a
graph.

A change of sign interval is very important. It tells us there is a
solution, and it “fences in” the location of a solution.

If we graphed f1(x) over the range [-5,+5], it would make sense to
choose the interval [0,1] as our [a,b]. (For our example, we’ll
pretend we picked [-10,+10] instead...)

21 / 1

BISECT: F1(X) = COS(X) - X

Rewriting cos(x) = x as f1(x) = cos(x)− x gives new
perspective:

22 / 1

BISECT: Step 3 Cuts the Interval in Half

Step 3 says:
Cut the interval in half after evaluating the midpoint.

What we are saying here is this. Rather than picking 11 points in
the interval [a,b] to sample the function, just pick the midpoint,
c = a+b

2 , and evaluate f1(c). Now either f1(c) matches the sign of
f1(a), or of f1(b). Whichever point has the same function value
sign as c indicates the half of the interval we can discard. The
remaining half is still a change of sign interval, and is guaranteed
to contain a solution.

23 / 1

BISECT: First Bisection

To see what this means in practice, assume we started out with
[a,b] = [-10,+10]. Our initial table looks like this:

A B
X: -10.0 +10.00

F1(X): 9.16 -10.83

Setting c = a+b
2 = 0 for which f1(c) = 1.0. Now our table is:

A C B
X: -10.0 0.00 +10.00

F1(X): 9.16 1.00 -10.83

The value of f1(c) tells us that the solution must be in the interval
[c , b]. So if we replace the value of a by c , then it is again true
that our solution is somewhere in the (smaller) interval [a, b].

24 / 1

BISECT: Second Bisection

After one step, our table looks like this:

A B
X: 0.00 +10.00

F1(X): 1.00 -10.83

The average of a and b is c = 5, for which f 1(5) = −4.71.

A C B
X: 0.00 5.00 +10.00

F1(X): 1.00 -4.71 -10.83

and so f1(c) tells us that solution is in the left half interval [a, c].
If we replace the value of b by c , it is again true that our solution
is somewhere in the (smaller) interval [a, b] = [0,5].

25 / 1

BISECT: Step 4: When Do We Stop?

Step 4 says Repeat step 3 until satisfied.

Well, what does that mean? Are we getting satisfied?

On each step, our interval is cut in half. That means we are
getting a better and better estimate of the location of the answer.

Moreover, while the function value at the midpoint will not
necessarily go down smoothly, once the interval becomes small we
expect the function to decrease regularly.

So things are getting better, but we most likely will never actually
reach a solution for which f1(x) = 0 exactly. This is simply a
reality of computing.

Therefore, the important issue for step 4 is when do we stop? To
start with, we’ll keep things simple and expect the absolute value
of the function to get pretty small.

26 / 1

BISECT: What Parts Become a Program?

It really seems like this idea can be automated. So rather than
doing any more computing by hand, let’s think about what we did,
and what parts we could turn over to an algorithm.

The user has to describe the function.

The user needs to specify the initial interval [a,b].

After that, the bisections are automatic.

The check for when to stop should also be some kind of automatic
decision.

So steps 3 and 4 of the bisection method can be easily packaged
into a C++ procedure, if the user takes care of steps 1 and 2.

27 / 1

EQUATIONS

Introduction

Project Discussion

When does Cos(X) = X?

The Bisection Idea

A Sample Bisection Solver

Bracketing the Solution

Lab Exercise #8

28 / 1

SOLVER: A Function to Solve F(X)=0

We are going to try to write a function that will find a solution
to an equation for us. We’ll think of that equation as being written
in the form f (x) = 0.

Our C++ function needs a name, and a description of the input
and output. Let’s call this C++ function bisect1(). (The “1” is
because it’s our first try, and we’ll try again later!)

The output, obviously, will be the solution estimate.

For input, the least we have to specify is a and b, the left and
right endpoints of the search interval. The user function is also a
sort of input, but (for now) it’s not really the same kind of input
that a and b are, so we treat it differently.

29 / 1

SOLVER: A Function to Solve F(X)=0

So our declaration might be:

double bisect1 (double a, double b);

and we expect a typical use to look like this:

a = 0.0;
b = 10.0;
x = bisect1 (a, b);

We are assuming, of course, that the (mathematical) function f (x)
we are trying to zero out is defined by the user in a separate
(C++) function, called f() and declared as:

double f (double x);

30 / 1

SOLVER: A Sketch of the Function

The bisect1() code, which works with a function f(), might be:
double bisect1 (double a, double b)

{

double f (double x); <-- This declaration could go at the top of the file instead.

double c;

while (true)

{

//

// C = midpoint.

//

c = (a + b) / 2.0; <-- This begins "step 3"

//

// Is F(C) extremely close to 0?

//

if (fabs (f (c)) < 0.000001) <-- This is our "step 4"

{

break;

}

//

// If F(C) is opposite in sign to F(A), C replaces B.

//

if (f (c) * f (a) < 0.0) <-- This completes step 3.

{

b = c;

}

else

{

a = c;

}

}

return c;

}
31 / 1

SOLVER: Making A Program

Suppose we try the solver on our cosine function f1(x). My copy
of bisect1() must be changed to call f1() rather than f()...

include <cstdlib>

include <iostream>

include <cmath>

using namespace std;

double bisect1 (double a, double b); <-- Declare it up here, once and for all.

double f1 (double x); <-- Declare it up here, once and for all.

int main ()

{

double a = -10.0, b = +10.0, c;

c = bisect1 (a, b);

cout << "\n";

cout << "BISECT1 returned solution estimate C = " << c << "\n";

cout << "F1(C) = " << f1 (c) << "\n";

return 0;

}

...text of bisect1() function goes here, changed to call f1()...

...text of f1() function goes here...

32 / 1

SOLVER: Using the Solver

I will modify the solver to print out the midpoint c and f1(c) at
each step:

Step C F1(C)

---- -------- ----------

1 0.0 1

2 5.0 -4.71634

3 2.5 -3.30114

4 1.25 -0.934678

5 0.625 0.185963

6 0.9375 -0.345695

7 0.78125 -0.0712161

8 0.703125 0.0597003

9 0.742188 -0.00519571

10 0.722656 0.0273953

11 0.732422 0.0111353

12 0.737305 0.0029786

13 0.739746 -0.00110635

14 0.738525 0.000936676

15 0.739136 -8.47007e-05

16 0.738831 0.000426022

17 0.738983 0.000170669

18 0.739059 4.29864e-05

19 0.739098 -2.08566e-05

20 0.739079 1.1065e-05

21 0.739088 -4.89575e-06

22 0.739083 3.08466e-06

23 0.739086 -9.05543e-07 <-- F1(C) < 0.000001, so we stop.

33 / 1

SOLVER: Improvements

There are several ways our first program could be improved:

we require the function to be named f(x);

the user might want more or less accuracy;

if the interval is small enough, that might also be a good
indication that we can stop;

we might also want to limit the total number of steps taken;

the program doesn’t check that there is a change of sign
between f(a) and f(b).

We will look at making some of these improvements in version 2 of
the program!

34 / 1

EQUATIONS

Introduction

Project Discussion

When does Cos(X) = X?

The Bisection Idea

A Sample Bisection Solver

Bracketing the Solution

Lab Exercise #8

35 / 1

BRACKET: Find Change of Sign

In order to get our bisection solver started, we need a pair of
values a and b for which f(x) changes sign. Sometimes, it’s
possible to look at the equation and guess two values that work.
But even then, we need to verify our guess by computing the value
of the function.

It may be helpful, therefore, to have a program called bracket()
which can evaluate our function for us interactively.

The simplest version of such a program might simply ask us to
type in values x at which the function should be evaluated.

36 / 1

BRACKET: Sample Session for F1(X) = COS(X) - X

On the web page, there’s a program called bracket.cpp which
does this for the function f1(x) = cos (x)− x . That means the
program includes a copy of the f1() function, and waits for us to
type in values x to try out. When we’re satisfied, we type CTRL-D
to end the input.

BRACKET:

Enter a value X, to receive a function value F(X).

Terminate with a CTRL-D or end-of-file.

5

F(5) = -4.71634

4

F(4) = -4.65364

3

F(3) = -3.98999

2

F(2) = -2.41615

1

F(1) = -0.459698

0

F(0) = 1 <-- positive value at x=0!

0.5

F(0.5) = 0.377583

0.6

F(0.6) = 0.225336

CTRL-D

37 / 1

EQUATIONS

Introduction

Project Discussion

When does Cos(X) = X?

The Bisection Idea

A Sample Bisection Solver

Bracketing the Solution

Lab Exercise #8

38 / 1

EXERCISE: Lambert’s Function

The function W () is known as Lambert’s function. It doesn’t
have a simple formula. However, we can ask when Lambert’s
function is equal to a specific value, such as 1,000. In that case,
we can write our question as seeking the value x so that

x ∗ ex = 1000

Our goal is to use the bisection method to find a solution of this
equation.

39 / 1

EXERCISE: Step 1

Step 1 is to rewrite this problem as a function, which we can call
f6(x):

f6(x) = x ∗ ex − 1000

To solve the problem, we will have to write a corresponding C++
function

double f6 (double x)

which evaluates our function. Note that the value ex can be
computed in C++ by typing exp (x), and that, because we are
calling the exp() function, your program will need the statement

include <cmath>

40 / 1

EXERCISE: Step 2

Step 2 requires us to find two values a and b for which the
function changes sign.

The interactive program bracket() can be used for this purpose.
However, to use it, you must include a copy of your function f6().
Since bracket() assumes your function is called f(), you need to
change the name of your function to f(), or change bracket() to
call f6().

Start at 0, and go up by 1’s, and you will probably find a change of
sign quickly.

41 / 1

EXERCISE: Steps 3 and 4

Steps 3 and 4 are the part we let the bisect1() code do for us.

Change the bisect1() code by

inserting your values for a and b;

adding your f6() function, and again;

changing f() to f6() or vice versa;

Now run the program to get an estimate for the solution.

Once your program has printed its results, please show your work
to Detelina so you can get credit for the exercise!

42 / 1

