
Sorting, Polynomials

http://people.sc.fsu.edu/∼jburkardt/isc/week07
lecture 14.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 26 June 2011

1 / 1

Sorting, Polynomials

Introduction

Bubble Sorting

Insertion Sorting

Sending an Array to a Function

Polynomials

Assignment #6

2 / 1

INTRO: Schedule

Read:

Today’s class covers information in Sections 6.5, 6.7, 6.8

Next Class:

2D Arrays, Strings

Assignment:

Programming Assignment #5 is due today.

Programming Assignment #6 will be due July 7.

Midterm Exam:

Thursday, June 30th

3 / 1

INTRO: Introduction

We will continue our discussion of C++ arrays.

We start by looking at how a numeric array can be sorted. One
simple method assumes we have all the numbers available at the
beginning. The second method can be used even in the case where
the entries in the array become available one at a time, as though
someone were dealing us a hand of cards.

We then look at how arrays can be passed to a function, and notice
something surprising about how data changes occurring inside a
function may or may not be returned to the calling program.

We take a look at the mathematical topic of polynomials, and
consider how some useful operations involving polynomials can be
implemented in C++.

4 / 1

Sorting, Polynomials

Introduction

Bubble Sorting

Insertion Sorting

Sending an Array to a Function

Polynomials

Assignment #6

5 / 1

BUBBLE: Sort One Thing at a Time

When we say an array is sorted, we usually mean that the entries
are listed in increasing order.

Often, a procedure to be carried out on data which be much faster
if the data is sorted. And that means that we need to find
methods that will help us sort an arbitrary list.

A simple sorting method is known as bubble sort. The name comes
from the idea that, as the elements are sorted, they rise through
the array like bubbles, switching places with other elements.

6 / 1

BUBBLE: Compare Neighbors

Let us assume that we have an array list[] of n numeric
elements, to be sorted.

It’s hard to know how to approach the problem of sorting. But
remember that last time, we were able to check whether an array
was sorted simply by comparing neighboring values.

Suppose we go through the array, comparing neighboring values,
but this time, if we find a discrepancy, we do something about it,
namely, we interchange the two values.

This probably won’t make the whole array sorted, but it will make
it a little more sorted than it was.

7 / 1

BUBBLE: How Do We Swap Two Items?

It’s hard to believe, but even a simple operation like
interchanging or swapping two numbers involves an extra step that
our minds don’t think about.

Suppose we have two variables, called a and b, which have the
values 17 and 2, and I want to swap them, so that they are sorted,
that is, so that a < b. What’s wrong with the following code?

int a = 17, b = 2;

a = b;
b = a;

Oddly enough, this does not produce a situation in which a = 2
and b = 17. Instead, both values are now 2.

8 / 1

BUBBLE: How Do We Swap Two Items?

In order to swap two items, we have to make use of a temporary
variable. It’s like an extra parking place that we need when
interchanging the locations of two cars.

We need some place to park the value of a before we move the
value of b there. Then we can go back to where we parked a and
move it into the empty spot left by b. A temporary variable is
often named t or temp:

t = a;
a = b;
b = t;

To interchange elements list[i] and list[i+1] of an array, we write:

t = list[i];
list[i] = list[i+1];
list[i+1] = t;

9 / 1

BUBBLE: Bubble Sort, One Sweep

Compare neighbors, and swap if necessary:

0 1 2 3 4 5 6

| 8 7 4 9 0 6 2 <-- Before the first sweep.
0<1? | 8 7 4 9 0 6 2
1<2? | 7 8 4 9 0 6 2
2<3? | 7 4 8 9 0 6 2
3<4? | 7 4 8 9 0 6 2
4<5? | 7 4 8 0 9 6 2
5<6? | 7 4 8 0 6 9 2

| 7 4 8 0 6 2 9 <-- After the first sweep.
The last entry of the array
is correct now.

10 / 1

BUBBLE: One Bubble Sweep, in C++

Compare neighbors, and swap if necessary.

for (i = 0; i < n - 1; i++)
{

if (list[i] > list[i+1])
{

t = list[i];
list[i] = list[i+1];
list[i+1] = t;

}
}

11 / 1

BUBBLE: Bubble Sort, One Sweep

If we carry out another sweep, you should believe me that the
value 8, which is the second largest entry, ends up in its correct
spot, second to last. Another sweep will put 7 in the correct place,
then 6, and so on.

How many sweeps do we need to sort n items? We only need n-1
sweeps, because when n-1 numbers are in the right place, so is the
last remaining one.

Moreover, each sweep is a little shorter than the previous one.
Since the first sweep puts the correct number in the last place, the
second sweep doesn’t have to check there. The third sweep
doesn’t have to check the last two spots, and so on.

12 / 1

BUBBLE: Bubble Sort, One Step

Putting these ideas together, we have a code for the bubble sort:

int main ()

{

int a[100], i, last, n = 100, t;

We assume the entries of a have been set.

for (last = n - 1; 0 < last; last--) <-- last points to the last unsorted element.
{

for (i = 0; i < last; i++) <-- Compare neighbors up to last.
{

if (a[i] > a[i+1]) <-- Is next element smaller than this one?
{

t = a[i]; <-- If so, swap them.
a[i] = a[i+1];

a[i+1] = t;

}

}

}

return 0;

}

The i loop sweeps from 0 up to (but not including) last.
The last loop sweeps in decreasing lengths from n-1 down to 1.

13 / 1

BUBBLE: Let’s Only Write This Code Once!

Even though bubble sort is a simple idea, writing the code
required some thought. The next time I need to sort an array, I will
have to think through these ideas again.

But the code we’ve written now can be used to sort other arrays,
so can’t we avoid thinking and coding again?

We can get the algorithm written correctly once as a function that
we can call whenever we need it.

Functions enable us to take a thought (sort this array!) and turn it
into a C++ function that hides all the details. So when we write a
program, and we need an array sorted, we realize we can just jot
down (sort this array!) in our plans, meaning that the C++ code
will call our sorting function.

14 / 1

Sorting, Polynomials

Introduction

Bubble Sorting

Insertion Sorting

Sending an Array to a Function

Polynomials

Assignment #6

15 / 1

INSERT: Insertion Sort

Now let us suppose that, although we know we are going to have
n objects in our list, we start out with none at all and then receive
our items one at a time.

This is just the way a hand of cards is dealt out, and you see
impatient players taking each card immediately, and sorting it into
proper order. This is an example of what is called insertion sort.

16 / 1

INSERT: Adding One Card at a Time

If we have just one card in our hand, there’s nothing to do.

So things only get interesting when we have one card in our hand,
and we are about to pick up a second card.

When the second card arrives, it might be

smaller, so it goes to the left;

larger, so it goes to the right;

Our hand is still sorted. When the third card arrives, it might be:

smaller than both old cards, so it goes to the left;

bigger than first, smaller than second, so goes in the middle;

larger than both, so it goes to the right;

17 / 1

INSERT: Thinking About an Algorithm

Because our hand is always sorted, adding a new card becomes
easy. We simply have to determine where to insert it.

To think about this in terms of arrays, we first have to assume that
the array is big enough to hold all the cards (or data items, really)
that we expect to get, but that currently, we are “holding” just n
values, in indexes 0 through n-1.

The new card will be assigned to array entry in (whatever that is),
meaning that the cards in entries 0 through in-1 don’t move, but
that all the cards currently in entries in through n-1 have to shift
one position to the right to make room for the new card.

18 / 1

INSERT: Algorithm Steps

Let’s assume our sorted array can hold at most n max entries,
and that we currently have stored n entries.

Now assume we are given one new item to add to our array.

Inserting a single element into a sorted array involves steps:

make sure n+1 ≤ n max;

determine in, the index for the new item;

shift elements in through n-1 to the right;

insert the new item at index in;

update n to n+1.

19 / 1

INSERT: Determine the Insertion Index

Let’s code the determination of in, the index for the new item.

We’ll assume the array is called a, and the new item is b.

in = n; <-- Let’s guess that b is inserted at the end.

for (i = 0; i < n; i++) <-- To check, let’s compare b against each array entry.
{

if (b < a[i]) <-- The first array entry that is bigger than b
{ is in the spot where b should go

in = i;

break;

}

}

return 0;

}

If b is bigger than all elements in a, it goes at the end, in index n.
Otherwise, if we start with the first element of a, as soon as we’ve
found an element bigger than b, that is where b should go.

20 / 1

INSERT: Shifting Elements

Let’s code the shift of elements in through n-1. Notice that
there is a right and wrong way to do this!

If we start shifting from the lower end, the first value overwrites
everything. But if we move the last entry to position n, that frees
up a spot for the previous entry, all the way down to in.

for (i = n - 1; in <= i; i--) <-- Starting at the end, move the item at index i to i+1.
{

a[i+1] = a[i];

}

a[in] = b; <-- Now location in is open for b.
n = n + 1; <-- The number of items in the array went up by 1.

21 / 1

INSERT: An Example Code

insert sort.cpp:
int a[100], b, i, in, n = 0, n_max = 100;

while (n < n_max)

{

cin >> b; <-- User enters one item at a time until CTRL-D.

if (cin.eof ())

{

break;

}

in = n; <-- Find insertion point.

for (i = 0; i < n; i++)

{

if (b < a[i])

{

in = i;

break;

}

}

for (i = n - 1; in <= i; i--) <-- Shift data and insert.

{

a[i+1] = a[i];

}

a[in] = b;

n = n + 1; <-- Update data count.

for (i = 0; i < n; i++) <-- Print current array.

{

cout << a[i] << "\n";

}

}

22 / 1

INSERT: An Example Code

We’ve assumed the data is available one item at a time.

Could we also use insertion sort if we already had all the data?

Yes, with a few adjustments. Let n max indicate the size of the
full array. Let n indicate how many items of the array have been
sorted so far, with n starting at because item 0 is sorted. Copy
item 1 into the value b. That frees up entry 1 in the array. Now we
can “insert” b into its correct position, either index 0 or index 1.

Now we have items 0 and 1 sorted. We copy item 2 into b, and
insert it into its correct order with items 0 and 1.

In this way, we can insert the data one at a time, even though we
have it all to begin with.

23 / 1

Sorting, Polynomials

Introduction

Bubble Sorting

Insertion Sorting

Sending an Array to a Function

Polynomials

Assignment #6

24 / 1

FUNCTIONS: Do It Right, But Only Once

It is convenient to have an array sorted. And sorting is another
activity that is worth thinking about once, but not twice! When
there’s an operation that is useful, but somewhat tricky to put
together, we should think about trying to write a function. That
way, once we get the function written correctly, we never have to
think about the underlying details.

Can we write a function that will sort an array for us? What is
different about using a function when arrays are involved?

As we investigate this question, we will notice what seems like a
significant difference in the way a function deals with input that
represents an array.

25 / 1

FUNCTIONS: What Should the Interface Look Like?

When we write a function, the only part we will deal with later is
the interface, or “header”, that is, the information that describes
the type and name of the function, and its input arguments.

It seems reasonable that the name of the function could be
“bubblesort”, and that it might need two input arguments: the
dimension of the array, and the name of the array.

It’s not clear what the output should be. You might think the
output should be the sorted version of the array. This makes sense,
given what we have seen in simpler examples, but because arrays
are involved, it is not what we want to do. So instead, trust me
that it will make sense if we leave the output as void.

void bubblesort (int n, int a[])

26 / 1

FUNCTIONS: Array Input Is Treated Differently

Notice how the array appears in the interface with square brackets.

That is how we tell C++ that this argument is an array. As we will
see later, this is also the information that causes C++ to treat the
array differently from the other input.

void bubblesort (int n, int a[])

Essentially, most input variables are only disposable copies, but
when an array is input, it’s as though C++ sends ”the original
copy”, and the function can modify it, and those changes remain
even after the function is done.

27 / 1

FUNCTIONS: The Function Code

bubblesort.cpp: Here is the code for the bubblesort function:

void bubblesort (int n, int a[])

{

int i, last, t;

for (last = n - 1; 0 < last; last--) <-- last points to the last unsorted element.
{

for (i = 0; i < last; i++) <-- Compare neighbors up to last.
{

if (a[i] > a[i+1]) <-- Is element i+1 smaller than element i?
{

t = a[i]; <-- If so, swap them.
a[i] = a[i+1];

a[i+1] = t;

}

}

}

return; <-- Void functions return nothing
}

28 / 1

FUNCTIONS: Using the Bubblesort Function

bubblesort test.cpp: Here is a code to test bubblesort:

beginning stuff
int main ()

{

int a[10], i, n = 10;

int random_int (int a, int b); <-- Must declare this function;

void bubblesort (int n, int a[]); <-- Must declare this function;

cout << "\nBefore sorting:\n\n";

for (i = 0; i < 10; i++)

{

a[i] = random_int (0, 100);

cout << " a[" << i << "] = " << a[i] << "\n";

}

bubblesort (n, a); <-- a goes in unsorted, comes out sorted.

cout << "\nAfter sorting:\n\n";

for (i = 0; i < 10; i++)

{

cout << " a[" << i << "] = " << a[i] << "\n";

}

return 0;

}

29 / 1

FUNCTIONS: Function Arguments

Up to now, we’ve talked about functions as purely input/output
machines. The input comes in, an output value comes out. It
seemed fairly simple. In particular, the only changes that a
function could make would come from its output value.

What is peculiar about bubblesort is that I passed the array a[] as
input, and I expect that the function will rearrange the data and
return it to me. Is that what happens (in this case, yes)

Can a function change any of its input arguments? (yes, locally.)

Will this change affect the values of those items in the calling
program? (usually not!)

30 / 1

FUNCTIONS: Function Arguments

In C++, when a function has input arguments that are scalars
(things that are not arrays), the function simply receives a separate
copy of the information. This copy is in the memory space of the
function, and disappears on return from the function. Thus, the
function can change those values, but the changes have no effect
“in the outside world”, that is, in the calling program.

However, when a function has an array as an input argument,
C++ does not make a copy of the array. Instead, what happens is
that C++ sends the function a copy of the ”address” of the array,
that is, how to find the values. The array itself is not copied, and
the function can modify those values directly.

Thus, scalar input arguments are strictly input. But array input
arguments can be changed by the function in a way that affects
their value when the function is completed.

31 / 1

FUNCTIONS: Example of Memory Usage

To see what this might look like, let’s consider how C++ thinks
of the variables in the bubblesort test and bubblesort functions.

When bubblesort test begins, C++ creates variables

bubblesort test: int a[10]; filled with data
bubblesort test: int i; used by the for loop.
bubblesort test: int n; set to 10.

32 / 1

FUNCTIONS: Example of Memory Usage

When bubblesort test calls bubblesort(n,a), C++ creates
variables as follows:

bubblesort test: int a[10]; <----+
bubblesort test: int i; |
bubblesort test: int n; |
---------------------------------| A ‘‘pipeline’’
bubblesort: int n; |
bubblesort: int a[] <--------+
bubblesort: int i;
bubblesort: int last;
bubblesort: int t;

33 / 1

FUNCTIONS: Example of Memory Usage

There is only one array a. The names in bubblesort test and
bubblesort are connected by a sort of “pipeline”. Any changes
made by bubblesort to the a array will show up in the calling
function bubblesort test.

Both functions have a variable called n. But this is not an array.
So bubblesort made a separate copy, which starts out equal to the
value assigned on input. The bubblesort function could change
the value of n, but these changes would only be local, and would
vanish when all the bubblesort memory is wiped out.

So in the simplest case, you can assume that a C++ function can
affect input arguments that are arrays, but not other kinds.

If you need a C++ function to modify input arguments and return
them, there is a way to do this, known as a “call by reference”.
We will look at this later.

34 / 1

Sorting, Polynomials

Introduction

Bubble Sorting

Insertion Sorting

Sending an Array to a Function

Polynomials

Assignment #6

35 / 1

POLYNOMIALS:

In mathematics, a polynomial is a special kind of function of x
which can be written as a linear combination of powers of x.

Examples:

p1(x) = x2 + 3x + 2;

p2(x) = x8 − 256;

p3(x) = 3x − 7;

p4(x) = 5.

The highest power of x that occurs in a polynomial is known as its
degree, d . For the four examples, the value of the degree d is 2, 8,
1 and 0, respectively.

A polynomial of degree d can always be written in the form:

p(x) = c0 + c1x + c2x
2 + ... + cdxd

36 / 1

POLYNOMIALS:

It is natural, in C++, to represent a polynomial of degree d by
an array of dimension d + 1. Here is how we might declare arrays
that store the information defining the example polynomials:

p_1: double c1[3] = { 2, 3, 1 };
p_2: double c2[9] = { -256, 0, 0, 0, 0, 0, 0, 0, 1 };
p_3: double c3[2] = { -7, 3 };
p_4: double c4[1] = { 5 };

37 / 1

POLYNOMIALS:

If you want to plot a polynomial, or make a table of its values,
you need to use the coefficient array c[] to evaluate p(x).

Here is one way:

double c[d+1]; <-- Replace "d+1" by a number.

p = 0.0;
xi = 1.0;
for (i = 0; i <= d; i++)
{
p = p + c[i] * xi;
xi = xi * x;

}

38 / 1

POLYNOMIALS: Derivatives

The derivative of a polynomial

p(x) = c0 + c1x + c2x
2 + ... + cdxd

is
p′(x) = c1 + 2 ∗ c2x + 3 ∗ c3 ∗ x2... + d ∗ cdxd−1

If we are interested in the derivative, we could set up a coefficient
array for it, of dimension d , as follows:

double cp[d]; <-- Replace "d" by a number.
for (i = 0; i < d; i++)
{
cp[i] = (i + 1) * c[i+1];

}

39 / 1

POLYNOMIALS: Product of Polynomials

Suppose p1(x) and p2(x) are polynomials of degrees d1 and d2.
If we compute the product p(x) = p1(x) ∗ p2(x), we get a
polynomial of degree d = d1 + d2. The value of the coefficient c[i]
can be found by making a table in which we pair coefficients c1[j]
and c2[j] for which i = j + k .

Suppose we multiply p1(x) = x2 + 3 + 2 times p2(x) = 3x − 7.
The table suggests the terms we are going to get.

2 3x 1x^2

-7 | -14 -21x -7x^2
3x | 6x 9x^2 3x^3

For a polynomial with more coefficients, this might seem to get
complicated!

40 / 1

POLYNOMIALS: Product of Polynomials

It is actually a simple matter to automatically compute these
terms and group them together correctly:

double c[d1+d2+1]; <-- Replace d1+d2+1 by a number;

for (i = 0; i <= d; i++)

{

c[i] = 0.0; <-- Zero out the new array.

}

for (i1 = 0; i1 <= d1; i1++) <-- Pick a coefficient of p1(x)

{

for (i2 = 0; i2 <= d2; i2++) <-- Pick a coefficient of p2(x)

{

i = i1 + i2; <-- What is the power of x?

c[i] = c[i] + c[i1] * c[i2]; <-- Add to the coefficient of that power.

}

}

For some later problems, we will need these polynomial results!

41 / 1

Sorting, Polynomials

Introduction

Bubble Sorting

Insertion Sorting

Sending an Array to a Function

Polynomials

Assignment #6

42 / 1

ASSIGNMENT #6: Football Game Attendance

The file fsu football 2010.txt contains the attendance records
for 13 FSU football games in the 2010 season.

Write a program which reads each attendance value from the file,
stores the attendance values into an array, and:

prints each attendance value as it is read;

sorts the attendance values, and prints the sorted list;

averages the attendance values and prints the average.

43 / 1

ASSIGNMENT #6: Requirements

Your program must read its input from the text file. Your
program should assume that up to 20 values might be read; it
should determine how many values there actually are in the process
of reading the data.

Your program must use the insertion sort method to sort the data.
As soon as one data item is read, it should be printed, then sorted.

The output from your program must be in three labeled groups:

1 ”Attendance Values” lists attendance values in the order read;
2 ”Sorted Attendance Values” lists attendance values in sorted

(increasing) order;
3 ”Average Attendance” should print the average attendance.

44 / 1

ASSIGNMENT #6: Things to Turn in

Email to Detelina:

your program’s results;

a copy of your program.

The program and output are due by Thursday, July 7.

45 / 1

