
The Math Library, Functions and Parameters

http://people.sc.fsu.edu/∼jburkardt/isc/week05
lecture 10.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 06 June 2011

1 / 1

The Math Library, Functions and Parameters

Introduction

The <cmath> Functions

User Functions

The CHOOSE Function

The Month Length

Homework Program #4

2 / 1

INTRO: Schedule

Read:

Today’s class covers Sections 5.1, 5.2, 5.3, 5.4, 5.5

Next Class:

Function prototypes

C++ Standard Library headers

Random Numbers

Assignment:

Programming Assignment #3 is due today.

Programming Assignment #4 will be due June 16.

3 / 1

Functions

Introduction

The <cmath> Functions

User Functions

The CHOOSE Function

The Month Length

Homework Program #4

4 / 1

<CMATH>:

In several programs that we have looked at, I’ve told you to add
the following line at the beginning:

include <cmath>

That was because we wanted to use one of the C++ built-in
mathematical functions, in particular the square root function
sqrt() or the absolute value function fabs():

float x, y, z;

x = 700.0;
y = sqrt (x);
error = fabs (x - y * y);

5 / 1

<CMATH>:

We will be needing other functions from <cmath> soon, so
here is a list of some of the more useful things there:

y = f(x) x = inverse function(y)
-------------------- -----------------------
y = cos(x); x = acos(x);
y = sin(x); x = asin(y);
y = tan(x); x = atan(y);
y = tan(height/width); x = atan2 (height, width);

y = exp(x); x = log(y);
y = pow(10.0,x); x = log10(y);
y = sqrt(x); x = y * y = pow (y, 2.0);
y = pow(x,power); x = pow(y,1.0/power);
y = fabs(x);
y = ceil(x);
y = floor(x);

6 / 1

<CMATH>: Plots of Sin(x) and Cos(x)

7 / 1

<CMATH>: Trig Functions

The trig functions measure angles in radians. To convert an
angle from degrees to radians, divide by 180 and multiply by π.

To compute the cosine of 30 degrees, write

degrees = 30.0;
radians = degrees * pi / 180.0;
y = cos (radians);

The arctan2() function will report the angle corresponding to a
given slope. If a road rises 1000 feet over a distance of 1 mile
(5,280 feet), then the angle is atan2 (1000.0, 5280.0). The
angle will be reported in radians, so if we want degrees, we divide
by π and multiply by 180:

radians = atan2 (1000.0, 5280.0);
degrees = radians * 180.0 / pi;

which works out to about 10.7 degrees.
8 / 1

<CMATH>: Exponentials and Powers

The exp() function is used to model exponential growth. It is
sometimes written y = exp(x) = ex .

The log10() function uses 10 as the base. The log() function uses
e as the base.

The pow(base,power) function requires two arguments, and
computes xy . Some combinations of base and power are illegal,
because they represent meaningless quantities such as 0−1 or

(−4.0)
1
2

9 / 1

<CMATH>: Remaining Functions

We have seen that the fabs() function returns the absolute
value. fabs(-17.3)=fabs(17.3)=17.3.

The ceil() function rounds numbers “upwards”. While ceil(4.9) is
5.0, you may be surprised that ceil(-4.9) = -4.0. Rounding “up”
means rounding towards positive infinity!

Similarly, floor() rounds numbers “downwards”, that is, towards
negative infinity. floor(4.9)=4.0 and floor(-4.9)=-5.0.

10 / 1

<CMATH>: Arguments Should be Real

The numbers you send into these functions (that is, the
“arguments”) should always be real variables (float or double), or
real constants (numbers that have a decimal point).

To compute the square root of 225, you must type

y = sqrt (225.0);

To compute the square of 15, you must type

y = pow (15.0, 2.0);

11 / 1

<CMATH>: Arguments Should be Real

What exactly goes on when you “include” <cmath>?

Essentially, <cmath> is a list of function declarations, similar to
variable declarations, but with extra information. A function h as a
type, because it returns a value, but also has input variables,
whose number and type must be declared.

Instead of

double x;

we have things like

double sin (double x); <-- one double in
double pow (double x1, double x2); <--two doubles in

so the include statement gives the rules for how you are
allowed to use the <cmath> functions.

12 / 1

Functions

Introduction

The <cmath> Functions

User Functions

The CHOOSE Function

The Month Length

Homework Program #4

13 / 1

USER:

You may have noticed that the list of functions available in
<cmath> does not include a function to compute the maximum
value of two numbers. You can always do this yourself by writing
the necessary code:

x1 = pow (e, pi);

x2 = pow (pi, e);

if (x1 < x2)

{

biggest = x2;

}

else

{

biggest = x1;

}

To find the longest word in a file, you’d also have to write
something like:

record_length = 0;

while (more to read)

{

new_length = length of next word;
if (record_length < new_length)

{

record_length = new_length;

}

}

14 / 1

USER: Write Your Own Max Function

Now it might turn out that you had to find the maximum value
in many places in your program, in which case it starts to become
a problem having to write several lines to express a simple thought.

It would be so much nicer if you could define your own function,
just like a <cmath> function, which might have the declaration:

double my_max (double x1, double x2);

meaning that my max is a function that takes two real numbers
as input, and returns a real number as a result.

15 / 1

USER: Write Your Own Max Function

We would like our programs to replace the several lines of code
by a single line, reading something like:

y = my_max (x1, x2);

where, we assume, x1 and x2 are two real numbers. Then our user
function my max() would return the maximum of the two.

In fact, C++ allows you to write exactly such a user function, and
to use it as described.

So far, we have only written programs involving a single function,
called main(). Now we will see, with user functions, how a large
computer program is built out of many, cooperating functions.

16 / 1

USER: Form of a Function

The form of a user function is something like this:

output type my_max (double x1, double x2) <-- interface
{
double x; <--an “internal” variable
...
middle part computes x from x1 and x2
...
return x; <-- how the result is returned

}

17 / 1

USER: Form of the MY MAX Function

Here is a possible form of the my max function:

double my_max (double x1, double x2)
{
double x;

if (x2 < x1)
{

x = x1;
}
else
{

x = x2;
}
return x;

}

18 / 1

USER: In and Out of the Function

The “middle” of the function makes sense. It’s just what we said
before. The unusual parts come at the beginning and end.

Note that the beginning and end are similar to a main function:

double my_max (double x1, double x2) <-- the interface
{
double x; <--an “internal” variable
...
middle part computes x from x1 and x2
...
return x; <-- how the result is returned

}

19 / 1

USER: In and Out of the Function

The first line tells us several things:

double my_max (double x1, double x2)

this function is named my max;

this function takes two inputs, which we’ll call x1 and x2;

both inputs are of double type;

the output is also a double value;

The last line

return x;

identifies the point at which the result is ready to be returned.

20 / 1

USER: Using the Function

compare.cpp:

beginning stuff
int main ()

{

double my_max (double x1, double x2);

double x, y, z;

cout << "Enter two numbers to compare: ";

cin >> x >> y;

z = my_max (x, y);

cout << "The maximum of " << x << " and " << y

<< " is " << z << "\n";

return 0;

} <-- The text of my max follows the main program -->

double my_max (double x1, double x2)

{

double x;

if (x1 < x2)

{

x = x2;

}

else

{

x = x1;

}

return x;

}

21 / 1

USER: In and Out of the Function

Some interesting questions should come up in your mind,
especially about the names of variables.

When we use my max(), must our input be called x1 and x2?

There is an x variable in my max().
What if my program already has a variable called x?

22 / 1

USER: In and Out of the Function

The variables named x1 and x2 are sometimes called dummy
variables. The name is supposed to capture the idea that these are
simply stand-ins for whatever variables the user actually supplies.
The user function has to give them names too, but these names
are simply a convenience, and are local to the function.

Another way of saying this is that the scope of the variable names
x1 and x2 is limited to the function my max. The specific names
are attached to specific values, but only as long as we are working
in that function.

This answers the second question as well. Both the main program
and the function my max() can have variables called x but this
really means we have two declarations:

1 the variable x as defined and used in main();
2 the variable x as defined and used in my max().

23 / 1

USER: What Happens During Execution?

To try to understand how memory is used, and how the main
program and function cooperate, let’s walk through the execution
of a program that calls my max() which I will roughly sketch as:

initial stuff
int main ()
{

double my_max (double x1, double x2); <-- Declare
double x, y, z; function!
x = 1;
y = 2;
z = my_max (y, x);
cout << "my_max (" << y

<< "," << x << ") = " << z << "\n";
return 0

}

24 / 1

USER: What Happens During Execution?

main scope	my_max scope
X Y Z | X1 X2 X
------------+----------------

x=1; - - - | - - -
y=2; - - - | - - -
z=my_max(y,x); - - - | - - -
if (x2 < x1) - - - | - - -
x = x1; - - - | - - -

else - - - | - - -
x = x2; - - - | - - -

return x; - - - | - - -
z=my_max(y,x); - - - | - - -

25 / 1

USER: What Happens During Execution

main scope	my_max scope
X Y Z | X1 X2 X
------------+----------------

x=1; 1 - - |
y=2; 1 2 - |
z=my_max(y,x); 1 2 ? | 2 1 - <-- created
if (x2 < x1) | <-- true

x = x1; 1 2 ? | 2 1 2
else |

x = x2; |
return x; 1 2 - | 2 1 2

z=my_max(y,x); 1 2 2 | - - - <-- erased

26 / 1

Functions

Introduction

The <cmath> Functions

User Functions

The CHOOSE Function

The Month Length

Homework Program #4

27 / 1

CHOOSE: How Many Ways?

One way to estimate the probability of an event is to count how
many ways it could happen out of how many total choices there
are. This works when all the ways are equally probable.

If I am thinking about the game of poker, in which five cards are
drawn from a deck of 52, I may want to know how many different
hands are possible. (I assume that the order in which I draw a
certain set of cards is not important, just which five I got.)

There is a formula that allows us to count such quantities, and it is
called n-choose-k. This is sometimes symbolized by C (n, k) or

(n
k

)
.

The definition is: (
n

k

)
=

n!

k!(n − k)!

28 / 1

CHOOSE: How Many Ways?

Here, the symbol n! stands for the factorial function, whose
simple definition for positive n is:

n! = n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 2 ∗ 1

and we add the definition that 0! = 1.

Now that we know what a factorial is, we can go back and look at
the n-choose-k function to count poker hands:(

52

5

)
=

52!

5!47!
=

52 ∗ 51 ∗ 50 ∗ ... ∗ 3 ∗ 2 ∗ 1

(5 ∗ 4 ∗ 3 ∗ 2 ∗ 1) ∗ (47 ∗ 46 ∗ 45 ∗ ... ∗ 3 ∗ 2 ∗ 1)

=
52 ∗ 51 ∗ 50 ∗ 49 ∗ 48

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1
=2, 598, 960 possible poker hands.

which is, in some ways, a surprisingly small number!

29 / 1

USER: Using FACTORIAL to Define CHOOSE

So, if we needed to compute
(n

k

)
, we have to compute three

different factorials, of n, of k and of n − k . Rather than do that
three times, it would be much easier to work out the computation
once, make factorial() a user function, and then call it like this:

choose = factorial (n) / factorial (k)
/ factorial (n - k);

We’ve chosen a name for our user function, we know it has one
integer input and one integer output, so we’re ready to write it!

30 / 1

CHOOSE: The factorial() Function

int factorial (int n)
{

int i;
int value;

value = 1;
for (i = 1; i <= n; i++)
{
value = value * i;

}
return value;

}

31 / 1

CHOOSE: The choose() Function

I mentioned that the value of n-choose-k comes up in probability
calculations, so it might be nice to make that a function too! We
know the formula, but now we need to “dress it up” with the
interface information and declarations:

int choose (int n, int k)
{

int factorial (int n); <-- Declare factorial()
int value;

value = factorial (n) / factorial (k)
/ factorial (n - k);

return value;
}

32 / 1

CHOOSE: Using choose()

Now if our main program wants to evaluate the number of poker
hands, it has to declare choose(), and then call it. Notice that it
does not have to declare factorial(), because the main program
does not call that function directly.

beginning stuff
int main ()
{

int choose (int n, int k); <-- Declare choose()
int n, k, value;

n = 52;
k = 5;
value = choose (n, k);
cout << "Number of poker hands is " << value << "\n";
return 0;

}
33 / 1

CHOOSE: Using choose()

This program is available as poker hands.cpp. It looks correct.
Mathematically, it is correct. But it is unable to get the right
answer.

Is there anything peculiar about our computation that would
explain the problem? Notice that when we did the problem by
hand, we did not actually compute 52!; instead, we used
cancellation to simplify the problem.

If we had actually multiplied out 52! first, (which would be
acceptable), how big would that number be? Remember, there is a
maximum possible integer in C++, and for the regular integers we
are using, that number is about 2 billion: 2,000,000,000 (9 zeros).

So to fix this program, we’d have to think of how to teach our
choose() program to use the same cancellation idea we used!

34 / 1

Functions

Introduction

The <cmath> Functions

User Functions

The CHOOSE Function

The Month Length

Homework Program #4

35 / 1

MONTH: Our Irregular Calendar

Thirty days hath September,
April, June and November,
Thirty one for all the rest –

Except February, which I detest;
It usually has twenty eight,
Or twenty nine at any rate.

Our irregular calendar makes it difficult to count. A month, more
often than not, does not equal 30 days; a year is 12 months, but
not 12*30 days, and so on. Every year begins on a different day of
the week.

So how hard is it to answer the following question, which obviously
has an exact, simple answer:

Exactly how many days old are you?

36 / 1

MONTH: How Shall I Count the Days?

If we decide that such a problem is worth answering using C++,
we have to think about the procedure that would be necessary to
do it.

Let’s imagine that the user types in the month, day and year of
birth as three numbers, such as 5, 4, 1776 for July 4th, 1776, for
example. Let’s call these values m1, d1 and y1.

Let’s suppose the computer can figure out the month, day, and
year for today. Let’s call these values m2, d2 and y2.

How do we count the days between these two dates?

37 / 1

MONTH: A Formula Would be Great

One way to answer this question is to come up with a formula.

The formula can somehow work out from any year, month and day
the total number of days since some day in the past, which we can
call, maybe, jd(y,m,d).

If we can do that, then:

my age in days = jd (today) - jd (my birthday);

It is possible to do this, but it takes some thought. (Look up the
“Julian Day Number” if you want to know more.)

38 / 1

MONTH: Imagine Tearing Pages Off

day count.cpp:
A second way is to imagine tearing off pages from a calendar, one
day at a time, until we reach today. Seems pretty simple.

So we have variables called m, d and y, which start at m1, d1 and
y1, and end at m2, d2 and y2.

We start the day count at 0, and m/d/y at m1/d1/y1.

When we tear off a page of the calendar, the day count goes up by
one. But also, d goes up by one:

while (m != m2 || d != d2 || y != y2)
{

days = days + 1;
d = d + 1;
...

39 / 1

MONTH: Fixing an Illegal Day

But the day number d doesn’t go up forever. How do we know if
it has gotten too high? If it is bigger than the number of days in
the month. Ahh, so we have to keep track of the days in the
month. And what do we do if d gets too big?

if (month_length (m, y) < d)
{
m = m + 1;
d = 1;

}

Why does the month length function need the value of y?

40 / 1

MONTH: Fixing an Illegal Month

But the month could have gotten too high. So we have to make
sure it didn’t go over 12. If it did, we have to correct it:

if (12 < m)
{
y = y + 1
m = 1;

}
}

And that’s the end of the while loop.

41 / 1

MONTH: The Month Length

The month length() function might look like this:

int month_length (int m, int y)

{

bool leap_year (int y);

int value;

if (m == 4 || m == 6 || m == 9 || m == 11)

{

value = 30;

}

else if (m == 1 || m == 3 || m == 5 || m == 7 || m == 8 || m == 10 || m == 12)

{

value = 31;

}

else

{

if (leap_year (y))

{

value = 29;

}

else

{

value = 28;

}

}

return value;

}

(A bool variable is a logical true/false variable.)
42 / 1

MONTH: Remarks

In this overview, I’ve left some things out:

What is the leap year function?

Could the program tell what day of the week I was born (yes!);

Could the program count forward to a future event?

Could the program be more efficient (counting years at a
time)?

However, I hope just thinking about how to solve this problem
shows you that it can be natural to say “I’ll handle that part of the
calculation by writing another function.”

This example, computing the number of days since you were born,
would be an acceptable kind of final project. If you are interested
in a calendar-based project, let me know.

43 / 1

Functions

Introduction

The <cmath> Functions

User Functions

The CHOOSE Function

The Month Length

Homework Program #4

44 / 1

ASSIGNMENT #4: The Body Mass Index

The Body Mass Index (BMI) is an attempt to summarize in a
single number the amount to which a person is overweight or
underweight. For many reasons, it is just a ballpark figure. We are
only interested in this computation as an example.

The BMI is defined as

BMI =
weight in kilograms

(height in meters) 2

Since we don’t use the metric system, our weights are in pounds,
and our heights are in feet. That means that before we can use
this formula, we need to convert our weights and heights.

45 / 1

ASSIGNMENT #4: English to Metric Conversion

A formula to convert a weight lb in pounds to kilograms kg is:

kg = 0.4536 ∗ lb;

A formula to convert a height ft in feet to meters m is:

m = 0.3048 ∗ ft;

46 / 1

ASSIGNMENT #4: Write Three Functions!

Write three functions:

lb to kg(*) converts input pounds to output kilograms;

ft to m(*) converts input feet to output meters;

bmi(*,*) takes input weight in pounds and input height in
feet, and returns the BMI;

Assume that all numbers are real numbers of type double.

Your bmi(*,*) function will call the other two functions for help,
and so it will have to declare them.

The main function will call the bmi(*,*) function, and so it will
need to declare the bmi(*,*) function.

47 / 1

ASSIGNMENT #4: Careful With Fractions!

Notice that the BMI is a fraction of the form weight
height2 .

Here are four ways to compute such a fraction, one of which is
wrong.

value1 = weight / height * height; <--wrong!
value2 = weight / height / height;
value3 = weight / (height * height);
value4 = weight / pow (height, 2.0);

48 / 1

ASSIGNMENT #4: Details of Assignment

Write a main program which calls bmi(*,*) to determine the
Body-Mass-Index for each of the following individuals:

Name Weight in pounds Height in Feet BMI

Pinocchio 5 1.25 ?
Big John 245 6.50 ?
Miss Liberty 312,000 305.00 ?

You may find this program harder to write than the previous ones.
Please look at it early enough so you can ask for help!

Email to Detelina:

your program’s three BMI results;

a copy of your program.

The program and output are due by Thursday, June 16.

49 / 1

