
Characters and the SWITCH Statement

http://people.sc.fsu.edu/∼jburkardt/isc/week05
lecture 09.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 07 June 2011

1 / 1

Characters and the SWITCH Statement

Introduction

The CONTINUE Statement

Character Data

Reading Characters

The SWITCH Statement

ETAION SHRDLU

Lab Exercise #5

2 / 1

INTRO: Midterm Exam

The Midterm Exam is scheduled for Thursday, June 30th.

It will be an in-class exam.

It is not an open book exam, but you will be allowed to bring and
use two sheets of (normal size) paper on which you have notes.

Detelina will be available on Wednesday, June 29th, during lab
hours, to review with you.

I will talk more about the exam on Tuesday, June 28th.

The programming assignment #6, given on June 23rd will not be
due on June 30th; it will be due on July 7th instead.

3 / 1

INTRO: Schedule

Read:

Sections 4.6, 4.7

Next Class:

The Math Library, Functions and Parameters

Assignment:

Today: in-class lab exercise #5

Thursday: Programming Assignment #3 is due.

4 / 1

INTRO: Today’s Topics

Today we will quickly go over the continue statement, which is
related to the break statement we saw last time. Instead of
completely terminating a loop, the continue statement jumps to
the end of the current set of statements, allowing the next cycle of
the loop to begin.

Then we will introduce the topic of how C++ stores and handles
single characters.

We will look at an example of how to read characters, one by one,
from a file.

5 / 1

INTRO: Today’s Topics

Then we will look at an example, using a combination of a while
statement and a break statement, in which we capitalize the
letters read from a file to make an UPPERCASE VERSION.

Then we will look at the switch statement, which allows us to
describe a situation in which we are going to choose one of many
actions, based entirely on the value of some variable.

Our in-class lab exercise will read characters from a file, using a
switch statement to count characters, and make a histogram of
character frequency in the file.

6 / 1

Characters and the SWITCH Statement

Introduction

The CONTINUE Statement

Character Data

Reading Characters

The SWITCH Statement

ETAION SHRDLU

Lab Exercise #5

7 / 1

CONTINUE: Skip to Next Loop Cycle

The continue statement is used inside a looping statement,
such as for, while or do...while.

while (condition)
{

some statements;
continue;
more statements;

}

Typically, it occurs somewhere in the middle of the statements
being repeated. The effect of the continue statement is to skip
over the statements which follow it in the loop, but to start the
next cycle of the loop, rather than to terminate the loop (which is
what the break statement does.)

8 / 1

CONTINUE: Skip to Next Loop Cycle

Of course, if the continue statement showed up the way I wrote
it in the previous example, the statements after it would never be
executed. What’s more likely is that we want to skip those
statements if some condition is true:

while (condition)
{

some statements;
if (some other condition)
{

continue;
}
more statements;

}

This would make sense if the following statements were only
necessary when the condition was not true.

9 / 1

CONTINUE: Skip to Next Loop Cycle

The continue statement is another convenience. You can always
do the same thing by using an if statement in the right way, but
sometimes in big programs the continue statement makes it easier
to see what is going on.

Let us consider a computation in which, for any integer n between
1 and 20, we want to compute the product:

product = (n − 1) ∗ (n − 2) ∗ ... ∗ (n − 20).

As we have described it, product will be zero, because n is actually
equal to 1, or 2 or one of the other integers.

However, let’s suppose we actually want to compute this product
by skipping the step where the factor is 0.

10 / 1

CONTINUE: Skip to Next Loop Cycle

We can use a for statement to do the loop, and a continue
statement to jump to the next step in a for statement just as it
does for a while:

product = 1;
for (i = 1; i <= 20; i++)
{
if (i == n)
{

continue;
}
product = product * (n - i);

}

If n is 7, we correctly skip the zero factor:
product = 6 * 5 * 4 * 3 * 2 * 1 * (-1) * (-2) ... * (-13).

11 / 1

Characters and the SWITCH Statement

Introduction

The CONTINUE Statement

Character Data

Reading Characters

The SWITCH Statement

ETAION SHRDLU

Lab Exercise #5

12 / 1

CHAR: a Single Character Data Type

If you’re trying to alphabetize a list of names, you don’t compare
numbers, but rather letters. C++ prefers to use the word
characters rather than letters, because we want to think about
messages that include not just ’A’, ’B’, ’C’, but also ’&’ and ’7’
and ’[’ and so on.

C++ provides the variable type char for characters.

We want to know some simple things about character data:

How do we represent a literal character?

Can we uppercase a character? Compute the next character?

How do we read and write single characters?

What about special characters?

How is the computer storing characters?

13 / 1

CHAR: Literal Values

The literal value of a character can be given using single quotes.

char capA = ’A’, lowA = ’a’, capB = ’B’;
char c;

c = ’a’;
if (c == capA) cout << c << " == " << capA << "\n";
if (c == lowA) cout << c << " == " << lowA << "\n";
if (c == capB) cout << c << " == " << lowB << "\n";

The single quote can be confusing, since text strings use double
quotes. And so ’w’ is a character, but ”w” is a (very short) string.
We’re not ready to worry about strings right now!

14 / 1

CHAR: Reading and using a CHAR

You might want the user to type in ’Y’ or ’N’ for yes or no.

char answer;

cout << "Do you want help? (Y/N): ";
cin >> answer;

if (answer == ’y’ || answer == ’Y’)
{
cout << "Here is some helpful information...\n";
...and here we print stuff out.

}

15 / 1

CHAR: Capitalizing a CHAR

It’s frustrating to have to worry about whether a character is
uppercase or lowercase. One thing you can do is use the functions
toupper() or tolower() from <cctype>.

No matter whether the character c is lowercase or uppercase, for
instance, toupper(c) returns an uppercase version of it.

include <cstdlib>

include <iostream>

include <cctype> <-- Need this at beginning!

using namespace std;

int main ()

{

char answer;

cout << "Do you want help? (Y/N): ";

cin >> answer;

if (toupper (answer) == ’Y’)

{

cout << "Here is some helpful information...\n";

...and here we print stuff out.
}

return 0;

}

16 / 1

CHAR: How Are CHAR’s Ordered?

If we want to alphabetize things, then we can use the
comparisons < and <= and > and >= and == and !=.

char capa = ’A’, capt = ’T’, lowb = ’b’, lowt = ’t’;

cout << "Is A < b?: " << (capa < lowb) << "\n";

cout << "Is T < b?: " << (capt < lowb) << "\n";

cout << "Is t < b?: " << (lowt < lowb) << "\n";

Remember, (capa < lowb) is a logical variable, so you can print
it, and it will come out as “0” for false, or “1” for true.

If you insert << boolalpha before the printout, logical variables
will print out as “true” or “false” instead.

cout << "Is A < b?: " << boolalpha << (capa < lowb) << "\n";

All capital letters come before any lowercase letters, so:
’A’ < ’B’ < ’C’ < ... < ’Z’ < ’a’ < ’b’ < ’c’ < ... < ’z’.

17 / 1

CHAR: How Are CHAR’s Ordered?

Actually, I left out some information about the ordering of
characters. C++ orders all sorts of numbers and characters
besides the usual alphabetic letters, so the sequence that includes
the alphabet looks like this:

... @ A B C D ... Y Z [\] ^ _ ’ a b c d ... y z { | }...

Luckily, this is still pretty simple. In particular, if we have a
character c, and we want to know if it represents a letter of the
alphabet, we simply check if

(’A’ <= c && c <= ’Z’) || (’a’ <= c && c <= ’z’)

If that’s too complicated, you can instead # include <cctype>
and then call the function

isalpha (c);

which returns true if c is alphabetic.
18 / 1

CHAR: Using a CHAR Variable

average.cpp: The book likes examples that involve letter grades:

char grade;

float average;

if (90 <= average)

{

grade = ’A’;

}

else if (80 <= average)

{

grade = ’B’;

}

else if (70 <= average)

{

grade = ’C’;

}

else if (60 <= average)

{

grade = ’D’;

}

else

{

grade = ’F’;

}

cout << "Your grade is " << grade << "\n";

Why can’t we assign a grade of B+ this way?
What if we really want plus and minus grades?

19 / 1

Characters and the SWITCH Statement

Introduction

The CONTINUE Statement

Character Data

Reading Characters

The SWITCH Statement

ETAION SHRDLU

Lab Exercise #5

20 / 1

READ: Reading Character Input

Suppose we wanted to allow the user to type a bunch of letters,
and we plan to read them in, one character at a time.

How can we read the data, and how will we be able to stop the
process?

Our idea is to do this in a way that makes it easy to use the same
program to read “input” from a file instead of from a live user.

I hope you can see that part of the answer will be the requirement
that the live user has to enter the EOF (end-of-file) character to
terminate the process. Remember that EOF is generated by
CTRL-D on Mac OSX, Unix and Linux systems.

On a PC, the EOF character may require CTRL-Z instead.

21 / 1

READ: Reading Character Input

Remember how we handled reading an unknown amount of
input from the user:

We read the data in a loop;

The user as many items as desired;

The user entered CTRL-D to terminate;

The function cin.eof() returns true on end of file.

It will be convenient to use a while (condition) loop, but we
want to check for end-of-file in the middle of the loop. We can
simply use a break there. So the while() has nothing to check,
and should just loop forever. We can make that happen by putting
the word true as the condition of the while(). You have never
seen this before, so prepare to be surprised a little.

22 / 1

READ: Program Outline

character count.cpp:

char c;
int n = 0; <-- Count the characters we read.
while (true) <-- Loop forever!
{
cin >> c;
if (cin.eof ()) <-- Break at end-of-file!
{

break;
}
n = n + 1; <-- We’ve read another character.

}
cout << "Number of characters was " << n << "\n";

23 / 1

READ: Compare with WC

Remember that the wc command can be used to count the
number of lines, words and characters in a file. Let’s compare our
program against wc, by measuring the length of the Gettysburg
address!

wc gettysburg.txt

24 278 1469 gettysburg.txt
g++ character_count.cpp
mv a.out character_count
./character_count < gettysburg.txt

Your input consisted of 1189 characters.

24 / 1

READ: The Discrepancy is “White Space”

The wc program found more characters than our program.
That’s because the cin function, by default, doesn’t “see” blanks
and new lines and tabs and other separator characters, sometimes
called white space.

Maybe that’s what we actually want. On the other hand, we may
need to know the exact number of characters, including every time
we hit the space bar or the return key.

If that’s what we want, we simply replace our friendly cin >> c
call by the slightly less friendly, but more powerful, c = cin.get()
function, which returns every character the user types, including
spaces, tabs, and so on.

25 / 1

READ: Count ALL the Characters

character count2.cpp:

char c;
int n = 0; <-- Count the characters we read.
while (true) <-- Loop forever!
{
c = cin.get (); <-- Also read control characters!
if (cin.eof ()) <-- Break at end-of-file!
{

break;
}
n = n + 1; <-- We’ve read another character.

}
cout << "Number of characters was " << n << "\n";

26 / 1

READ: Compare with WC

wc gettysburg.txt

24 278 1469 gettysburg.txt
--

g++ character_count.cpp
mv a.out character_count
./character_count < gettysburg.txt

Your input consisted of 1189 characters.
--
g++ character_count2.cpp
mv a.out character_count2
./character_count2 < gettysburg.txt

Your input consisted of 1469 characters.
27 / 1

READ: Longest Word

Suppose we wanted to know the length of the longest word in a
file? How would we go about this?

Think of a word as an uninterrupted sequence of characters.

Imagine I encounter a character for the first time. I count it’s
length as 1. I read another character. If it is also alphabetic, I
increase length by 1 again. I continue until I reach a nonalphabetic
character.

At that point, I have the length of this word. So I compare the
length of this word to the maximum, and update that if necessary.

28 / 1

READ: Longest Word

longest word.cpp:

int length = 0;

int length_max = 0;

while (true)

{

c = cin.get ();

if (cin.eof ())

{

break;

}

if ((’A’ <= c && c <= ’Z’) || (’a’ <= c && c <= ’z’))

{

length = length + 1;

}

else

{

if (length_max < length)

{

length_max = length;

}

length = 0;

}

}

cout << "Longest word has length " << length_max << ".\n";

29 / 1

Characters and the SWITCH Statement

Introduction

The CONTINUE Statement

Character Data

Reading Characters

The SWITCH Statement

ETAION SHRDLU

Lab Exercise #5

30 / 1

SWITCH: Action Based on Variable Value

The switch statement can be thought of as a special kind of
if/else statement, which allows a user to quickly define a choice of
different actions based on the possible values of a variable.

The format of the switch statement is unusual, and it is not that
commonly used. However, there are some kinds of problems where
it can be the best solution.

We will see that, typically, each set of actions terminates with a
break statement. This is an important part of the structure! We
will look at what happens otherwise.

31 / 1

SWITCH: Format of the Statement

The switch statement has the following form:

switch (variable) <-- variable to check
{

case value 1: <-- if variable has this value
actions; then do these things.
break;

case value 2: <-- and so on...
actions;
break;

case value 3:
actions;
break;

(...perhaps more cases...)
default: <-- if no matches for variable value

actions; then do this.
break;

}

32 / 1

SWITCH: Action Based on Variable Value

grade.cpp: Assume the char variable grade contains a letter
grade. Print the corresponding range of averages.

switch (grade) <-- variable to check
{

case ’A’:

cout << "Range for A is 90 to 100.\n";

break;

case ’B’:

cout << "Range for B is 80 to 89.\n";

break;

case ’C’:

cout << "Range for C is 70 to 79.\n";

break;

case ’D’:

cout << "Range for D is 60 to 69.\n";

break;

case ’F’:

cout << "Range for F is 0 to 59.\n";

break;

default:

cout << grade << " is not a legal grade.\n";

break;

}

33 / 1

SWITCH: Action Based on Variable Value

We can’t give a range of values, only a specific value. So we can
not use switch to look at the value of the average, and return the
letter grade

This is not how switch works!

switch (average) <-- variable to check
{
case 90 to 100: <--No! You cannot use a range!

cout << "Grade is A.\n";
break;

case 80 to 89:
cout << "Grade is B.\n";
break;
...

}

34 / 1

SWITCH: Action Based on Variable Value

However, if we know that the average was an int, then we are
allowed to list several cases together, to get the same action.

switch (average) <-- variable to check
{

case 100:

case 99:

case 98:

case 97:

case 96:

case 95:

case 94:

case 93:

case 92:

case 91:

case 90:

cout << "Grade is A.\n";

break;

case 89:

case 88:

...and so on...
cout << "Grade is B.\n";

break;

case 79:

case 78:

...and so on...
}

Here, a set of if/else if statements would be better!

35 / 1

SWITCH: Action Based on Variable Value

grade.cpp: Returning to our grade example, we can accept
upper or lowercase grades this way:

switch (grade) <-- variable to check
{

case ’A’:

case ’a’:

cout << "Range for A is 90 to 100.\n";

break;

case ’B’:

case ’b’:

cout << "Range for B is 80 to 89.\n";

break;

case ’C’:

case ’c’

cout << "Range for C is 70 to 79.\n";

break;

case ’D’:

case ’d’

cout << "Range for D is 60 to 69.\n";

break;

case ’F’:

case ’f’

cout << "Range for F is 0 to 59.\n";

break;

default:

cout << grade << " is not a legal grade.\n";

break;

}

36 / 1

Characters and the SWITCH Statement

Introduction

The CONTINUE Statement

Character Data

Reading Characters

The SWITCH Statement

ETAION SHRDLU

Lab Exercise #5

37 / 1

ETAOIN: Letter Frequency

It is known that the letter ’E’ tends to occur most frequently in
English text. At one time, it was thought that the correct listing
for English letters, by frequency, was ETAOIN SHRDLU.

More careful and complete counting suggests the full order might
be ETAOIN SRHDLU CMFYWG PBVKXQ JZ

Now let us suppose that we wanted to examine a piece of text, and
count the frequency of occurrence of some of the more common
letters.

We might start, simply, with ’E’ and ’T’.

38 / 1

ETAOIN: Program Design

We can start with the character count.cpp program, but once
we have read a character c, we want to analyze it before getting
the next one.

In particular, in case c is an ’E’, we want to increment the variable
ecount and if it is a ’T’, we increment tcount.

It is easy to do this with a switch statement, and that reminds us
that we should also check for ’e’ and ’t’ at the same time!

Once we’re done reading, we print the values of ecount and
tcount.

39 / 1

ETAOIN: A Program to Count ’E’ and ’T’

frequency.cpp:

char c;

int ecount = 0, tcount = 0;

while (true)

{

cin >> c;

if (cin.eof ())

{

break;

}

switch (c)

{

case ’E’:

case ’e’:

ecount++; <-- I got lazy and used the abbreviation!

break;

case ’T’:

case ’t’:

tcount++;

break;

default:

break;

}

}

cout << " 1 " << ecount << " E/e\n"; <-- If I write the output this way
cout << " 2 " << tcount << " T/t\n"; I can plot it later with gnuplot.

40 / 1

Characters and the SWITCH Statement

Introduction

The CONTINUE Statement

Character Data

Reading Characters

The SWITCH Statement

ETAION SHRDLU

Lab Exercise #5

41 / 1

EXERCISE: Letter Frequency

Get a copy of frequency.cpp, which computes the frequency of
the letters ’E’ and ’T’ in a file, and gettysburg.txt.

Modify the program so that both ’E’ and ’e’ will increase ecount
and both ’T’ and ’t’ will increase tcount.

Compile your program, rename it to frequency, and then run it,
reading the input from the file:

./frequency < gettysburg.txt

You should see 165 occurrences of ’E’/’e’ and 126 of ’T’/’t’.

Modify the program to check for ’A’, ’I’, ’O’ and ’N’ (upper and
lowercase) as well. You have to add new variables, new cases to
the switch statement, and new printout lines at the end.

Once you get your program set up to check all six letters, run it,
and save the output:

./frequency < gettysburg.txt > count.txt
42 / 1

EXERCISE: Letter Frequency

If you updated your output statements correctly, your output file
count.txt should have the form:

1 165 E/e
2 126 T/t
3 ??? A/a
4 ??? I/i
5 ??? O/o
6 ??? N/n

where the ??? will be replaced by your results.

Please show your final table of results to Detelina so you can get
credit for the exercise!

43 / 1

EXERCISE: GNUPLOT Can Plot Your Data

gnuplot
plot "count.txt" using 1:2 with boxes
...or, for better results...
set yrange [0:180]
set style fill solid
plot "count.txt" using 1:2:(0.90) with boxes

44 / 1

