
FOR Loops

http://people.sc.fsu.edu/∼jburkardt/isc/week04
lecture 08.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 01 June 2011

1 / 1

FOR Loops

Introduction

The Increment Operator

The FOR Statement

Examples

The BREAK Statement

When does COS(X)=X?

Homework Program #3

2 / 1

INTRO: Schedule

Read:

Today’s class covers information in Sections 4.1, 4.2, 4.3, 4.4
and 4.7

Next Class:

The SWITCH Statement, the Continue Statement, Logical
Variables, Data Conversion

Assignment:

Programming Assignment #2 is due today.

Programming Assignment #3 will be due June 8.

3 / 1

INTRO:

Today we find out who put the ++ in C++, that is, we talk
about the increment operator.

We need to be comfortable with the increment operator because it
is a standard abbreviation used in for loops, a big topic for today.

Although it’s more complicated and powerful, we will start thinking
about the for statement as a simplified version of a while loop
using a counter.

This simple version of for simply repeats the statements a given
number of times. We will discover that the break and continue
statements help us make simple modifications to this behavior.

4 / 1

FOR Loops

Introduction

The Increment Operator

The FOR Statement

Examples

The BREAK Statement

When does COS(X)=X?

Homework Program #3

5 / 1

INCREMENT: The “Plus Plus” Operator

Our next topic is the increment operator, or ++.

In a sense, the increment operator is not necessary. Anything you
can do with it can be done in a simpler way. But there are good
reasons to be familiar with it:

Everyone uses ++ in for loops (today’s main topic);

The ++ operator can be a nicer, shorter way to program;

Most programs you see will include various forms of ++.
Even if you don’t use it, you should recognize it;

This is where C++ gets its name!

6 / 1

INCREMENT: Abbreviation for “Get the Next One”

One of the most common steps in programming can be
described as “get the next one”.

Computing the Fibonacci or popcorn sequence, we updated step:

step = step + 1;

We counted how may times we bet Bill Gates:

tries = tries + 1;

Sometimes, the next item was smaller, rather than bigger. For the
truck problem, we kept taking one more brick off the load:

bricks = bricks - 1;

and in divisible.cpp, we reduced the test divisor:

test = test - 1;

7 / 1

INCREMENT: Using ++ and −−

The operating of increasing a variable by 1 is so frequent that
C++ has an abbreviation that can be used for it.

Writing i++ means increase i by 1; i−− decreases it instead. We
can replace:

step = step + 1; by step++;
tries = tries + 1; by tries++;
bricks = bricks - 1; by bricks--;
test = test - 1; by test--;

C++ also defines special symbols ++i and −−i which mean
almost the same thing, but not quite. We will completely ignore
these two symbols! Ask about them in your next C++ class!

8 / 1

INCREMENT: More Abbreviations

Moreover, C++ allows you to replace many operations with a
similar kind of abbreviation:

x = x + y; by x += y;
a = a * 2; by a *= 2;
c = c / d; by c /= d;
e = e - f; by e -= f;

All of these abbreviations work because the original text read:

x = x operation y;

which is understood to be replaced by:

x operation= y;

where y is a number, a variable, or a formula.

9 / 1

INCREMENT: Example

gates plusplus.cpp:

srand (time (0));
won = 0;
bet = 1000;
tries = 1;
coin = rand ();

while (coin % 2 == 0)
{
won -= bet; \\ won = won - bet;
bet *= 2; \\ bet = 2 * bet;
tries++; \\ tries = tries + 1;
coin = rand ();

}
won += bet; \\ won = won + bet;

10 / 1

INCREMENT: i++ and i−− are Important

What’s important (you will see these everywhere, and you will
use them):

i++;
j--;

What’s not important (you don’t need to learn these well, but you
should have an idea of what is going on):

++i;
--j;
a += b;
c -= d;
e /= f;
g *= h;

They will turn up in C++ programs written by other people
(and maybe by you, too.)

11 / 1

FOR Loops

Introduction

The Increment Operator

The FOR Statement

Examples

The BREAK Statement

When does COS(X)=X?

Homework Program #3

12 / 1

FOR: Related to the WHILE Statement

So far, we have concentrated on using the while statement for
looping. Many of our examples included a counter variable, which
we often called step, had the form:

step = 0; <-- initialize counter
while (step < limit) <-- check counter
{
statements;
step = step + 1; <-- increment counter

}

In fact, using a counter to control a loop is so common that the for
statement was set up to put all these pieces together in one place.

13 / 1

FOR: Definition, Relation to WHILE

The C++ for statement has the following form:

for (initialization; continue condition; increment)
{

statements to be repeated;
}

The previous while loop becomes a special for loop:

for (step = 0; step < limit; step = step + 1)
{

statements to be repeated;
}

or even:

for (step = 0; step < limit; step++)
{

statements to be repeated;
}

14 / 1

FOR: Comments

The counter variable is usually an int. (But sometimes a float
makes sense, as in our integral approximation homework.)

The counter can have any initial value, although 0 or 1 is common.

If we think of the for loop in terms of a counter, it always repeats
the statements a certain number of times. (But the for loop is
actually more flexible.)

It is not obvious how to “jump out” of the loop early, as in the
truck problem where we were unloading bricks. (But the break
statement will solve this problem.)

It is not obvious how to make a for loop run until “as long as
necessary”, that is, until we win $1,000 from Bill Gates. (But we”ll
see the loop condition can be used for exactly this purpose.)

15 / 1

FOR: Adding 100 Integers, Making a Trig Table

sum 100.cpp:

sum = 0;
for (i = 100; i < 200; i++)
{
sum = sum + i;

}
cout << "Sum of 100 to 199 is " << sum << "\n";

trig table.cpp:

pi = 3.14159265;
for (i = 0; i <= 90; i = i + 5)
{
angle = pi * (i / 180.0); <-- Convert to radians
cout << " " << i << " " << angle

<< " " << sin (angle)
<< " " << cos (angle) << "\n";

}
16 / 1

FOR Loops

Introduction

The Increment Operator

The FOR Statement

Examples

The BREAK Statement

When does COS(X)=X?

Homework Program #3

17 / 1

EXAMPLES: What Numbers Divide 12?

twelve.cpp:

for (i = 1; i <= 12; i++)
{
if ((12 % i) == 0)
{
cout << "12 is divisible by " << i << "\n";

}
}

Note that variables i, j and k are very frequently used as counter
variables for for loops.

18 / 1

EXAMPLES: Increments Don’t Have to be +1

leapyear.cpp:

for (y = 1904; y <= 2000; y = y + 4)
{

cout << "The year " << y
<< " was a 20th century leap year.\n";

}

truck for.cpp

for (bricks = 1000; 0 <= bricks; bricks--)
{

if (truck + 5 * bricks <= limit)
{
cout << "Using " << bricks << " bricks will work!\n";
(...But now we’d like to stop searching!)

}
}

19 / 1

EXAMPLES: A Pair of Nested Loops for Tables or Grids

checkerboard.cpp:

for (i = 1; i <= 8; i++)
{

for (j = 1; j <= 8; j++)
{
cout << " (" << i << "," << j << ")";

}
cout << "\n";

}

Nested loops can be used to handle checkerboards, grids, data with
two indexes, tables, and so on.

20 / 1

EXAMPLES: Another Double Indexed Set

deck.cpp:

for (j = 1; j <= 4; j++)

{

for (i = 1; i <= 13; i++)

{

if (i == 1) cout << "A"

else if (i == 11) cout << "J";

else if (i == 12) cout << "Q";

else if (i == 13) cout << "K"

else cout << i;

if (j == 1) cout << "H\n";

else if (j == 2) cout << "C\n";

else if (j == 3) cout << "D\n";

else cout << "S\n";

}

}

(I’ve had to squeeze this code to fit it on one slide.)
We’ll see better ways of handling cards later!

21 / 1

FOR Loops

Introduction

The Increment Operator

The FOR Statement

Examples

The BREAK Statement

When does COS(X)=X?

Homework Program #3

22 / 1

BREAK: Early Termination

In the simple versions of the for loop that we consider, the set of
statements are always carried out a given number of times.

Sometimes, our strategy for solving a problem needs to be more
complicated. We might want to do something at most so many
times, but we might hope to be done earlier than that. Or, we
might want to do something a certain number of times, but there
might be unpredictable warnings that tell us we must quit early.

C++ provides the break statement, which indicates that the
current loop should be terminated. This works for the for and
while and do...while statements, and will also be useful in the
switch statement that we will see later.

23 / 1

BREAK: Use in a FOR Loop

A typical way the break statement is used might be:

for (i = 0; i < n; i++)
{

statements;

if (condition)
{

cout << "Surprise! Bad (or good) thing happened!\n";
break;

}

more statements;
}

24 / 1

BREAK: Use in a WHILE Loop

And the break can be used in a while or do...while as well:

while (condition)
{

statements;

if (some other condition)
{

cout << "Surprise! Bad (or good) thing happened!\n";
break;

}

more statements;
}

25 / 1

BREAK: The Weight Limit Problem

truck for.cpp

limit = 3000; truck = 2000; solution = -1;

for (bricks = 1000; 0 <= bricks; bricks--)
{
if (truck + 5 * bricks <= limit)
{

solution = bricks;
break; <-- Leave the for loop now!

}
}
... <-- Come here after break or normal exit.
if (solution != -1)
{
cout << "We can carry " << solution << " bricks.\n";

}
26 / 1

BREAK: The Arrow Problem

For the weight limit problem, the only reason we wanted to stop
the loop was because we got what we wanted.

However, we might also need to stop a loop because we realize it
doesn’t make sense to go further.

If an arrow starts at (0,0), with horizontal and vertical velocities vx
and vy, a formula for its position after t seconds might be:

x =vx ∗ t;

y =vy ∗ t − 16 ∗ t ∗ t;

We could track this position with a for loop for time t = 0, 1, 2,
..., but we would want to stop the loop if y becomes negative.

27 / 1

BREAK: The Arrow Problem

arrow.cpp

vx = 100;
vy = 100;
for (t = 0; t <= 20; t++)
{
x = vx * t;
y = vy * t - 16 * t * t;
cout << t << " " << x << " " << y << "\n";

if (y <= 0.0 && 0.0 < t) <-- Why do we check t?
{

cout << "The arrow landed by " << t << "seconds.\n";
break;

}
}

28 / 1

FOR Loops

Introduction

The Increment Operator

The FOR Statement

Examples

The BREAK and CONTINUE Statements

When does COS(X)=X?

Homework Program #3

29 / 1

COS(X)=X: Plot COS(X) and X

Between 0 and 1, there is a value of x for which cos(x)=x:

30 / 1

COS(X)=X: Plot F(X)=COS(X)-X

If we plot, f(x)=cos(x)-x, we seek the place where the function
changes from positive to negative:

31 / 1

COS(X)=X: Plot F(X)=COS(X)-X

Suppose I was able to compute a table of the values of cos(x)-x
between 0 and 1:

X Cos(X) Cos(X)-X

--- ---- ----

0.0 1.00 1.00

0.1 0.99 0.89

0.2 0.98 0.78

0.3 0.95 0.65

0.4 0.92 0.52

0.5 0.87 0.37

0.6 0.82 0.22

0.7 0.76 0.06 <-- last positive value

0.8 0.69 -0.10 <-- first negative value

0.9 0.62 -0.27

1.0 0.54 -0.45

From this information, I know two things:

the answer, to one decimal place, is x=0.7...

the answer is between 0.7 and 0.8;

32 / 1

COS(X)=X: Plot F(X)=COS(X)-X

If I can make a table from 0 to 1, I can just as easily make a
table from 0.7 to 0.8. It might look like this:

X Cos(X) Cos(X)-X

--- ---- ----

0.70 0.76 0.06

0.71 0.75 0.04

0.72 0.75 0.03

0.73 0.74 0.02

0.74 0.73 -0.01

0.75 0.73 -0.02

0.76 0.72 -0.03

0.77 0.71 -0.05

0.78 0.71 -0.06

0.79 0.70 -0.08

0.80 0.69 -0.10

What two things does this table tell us?

What do we do if we want more accuracy?

33 / 1

FOR Loops

Introduction

The Increment Operator

The FOR Statement

Examples

The BREAK and CONTINUE Statements

When does COS(X)=X?

Homework Program #3

34 / 1

ASSIGNMENT #3: Find X so that COS(X)=X

Write a C++ program which will help us search for the value of x
for which cos(x)=x.

The program should be interactive. It should allow the user to
enter two numbers, xlo and xhi.

The program should evaluate and print x, cos(x) and cos(x) - x
at 11 equally spaced points from xlo and xhi.

This means that, if xlo= 0 and xhi= 1, your program should print
something like this:

0.0 1.00 1.00

0.1 0.99 0.89

0.2 0.98 0.78

0.3 0.95 0.65

0.4 0.92 0.52

0.5 0.87 0.37

0.6 0.82 0.22

0.7 0.76 0.06 <-- last positive value

0.8 0.69 -0.10 <-- first negative value

0.9 0.62 -0.27

1.0 0.54 -0.45

35 / 1

ASSIGNMENT #3: Steps to the Answer

From the output, the value x we are seeking must be between 0.7,
where cos(x)=x is positive, and 0.8, where it becomes negative.

So we know the first decimal place of the answer, x = 0.7... and
that we should run the program again, this time with xlo = 0.7
and xhi = 0.8.

This will give us the second digit of the answer. Suppose we see
that the change occurs between 0.77 and 0.78. If that is the
answer (it isn’t!) then we would next call the program with xlo =
0.77 and xhi = 0.78.

Each time we call the program, we will be able to figure one more
digit of accuracy in our answer.

36 / 1

ASSIGNMENT #3: Program Outline

I suggest you use a for loop to evaluate the function between xlo
and xhi, perhaps something like this:

for (x = xlo; x <= xhi; x = x + dx)
{

cout << " " << x
<< " " << cos (x)
<< " " << cos (x) - x << "\n";

}

Since you are calling the cos() function, what extra include
statement do you need?

In order to increment x in the for loop, we use the variable
dx. We want to take exactly 10 steps from xlo to xhi. How
do we compute dx?

37 / 1

ASSIGNMENT #3: Details of Assignment

Start your program with the input values xlo = 0 and xhi = 1.

Use the results from your program to determine, one by one, at
least 4 or 5 digits of the answer. (At some point, you won’t be
able to continue because you don’t print enough digits, or you are
using float arithmetic, which only has 6 or 7 digits of accuracy.)

Send to Detelina, by email or printout:

your program’s estimate of the value x for which x = cos(x);

a copy of your program.

The program and output are due by Thursday, June 9.

38 / 1

