
More About WHILE Loops

http://people.sc.fsu.edu/∼jburkardt/isc/week04
lecture 07.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 30 May 2011

1 / 1

More About WHILE Loops

Introduction

Counting with WHILE Statements

Reading Input with WHILE Statements

The DO...WHILE Statement

The Fibonacci Sequence

Lab Exercise #4

2 / 1

INTRO: Schedule

Read:

Sections 3.7, 3.8, 3.9, 3.10

Next Class:

FOR Loops

Assignment:

Today: in-class lab exercise #4

Thursday: Programming Assignment #2 is due.

3 / 1

INTRO: Today’s Topics

Today we will spend some time looking at examples of how the
while statement can be used.

We’ll start by looking at how useful a counter variable can be,
which keeps track of how many times the loop has been carried
out.

Then we will consider three ways of using a while statement to
add an unspecified number of values. The last way will also work
for reading data from a file.

Our in-class lab exercise will have you use a while statement to
compute some of the numbers in the Fibonacci sequence.

4 / 1

More About WHILE Loops

Introduction

Counting with WHILE Statements

Reading Input with WHILE Statements

The DO...WHILE Statement

The Fibonacci Sequence

Lab Exercise #4

5 / 1

COUNT: How Many Times Has This Loop Run?

The while statement doesn’t know how many times it repeats
the statements in the loop, unless you tell it.

The easiest way to do this is to define a counter variable of type
int, perhaps called step, which is initialized to zero, and increased
by 1 (or “incremented”) at the beginning of the loop.

Sometimes the counter variable is useful as a label (we use it in the
output of the popcorn calculation).

Also, since a while statement is a loop, you might accidentally
have a loop which runs forever. If you limit the maximum number
of steps to some large value, you will be able to stop the program,
and report where the problem occurred.

6 / 1

COUNT: Watch for Too Many Iterations!

sqroot check.cpp:

x = 700.0;
h = 700.0;
w = 1.0;
error = 700.0 - h * h;
step = 0;
while (0.000001 < fabs (error)) <-- Seek small error.
{
step = step + 1;
if (100 < step) <-- Too many steps!
{
cerr << "Too many steps!\n";
exit (1); <-- Quit right now!

}
h = (h + w) / 2.0;
w = x / h;
error = 700.0 - h * h;

}
cout << "Square root estimate is " << h << "\n"; 7 / 1

COUNT: Run the Loop Exactly N Times

Another way to use the counter variable is if you simply want to
repeat the loop a specific number of times.

To run the loop 10 times, the while statement can simply check
whether the value of step is less than 10.

8 / 1

COUNT: Add 7 Values

lunch.cpp:

day = 0;
total = 0.0;
while (day < 7) <-- How many days done so far?
{
day = day + 1;
cout << "Enter amount for lunch on day " << day << ": ";
cin >> lunch;
total = total + lunch;

}
cout << "This week’s lunch bill: " << total << ".\n";

9 / 1

COUNT: Seek a Certain Number of Wins

A different kind of counter is used something like a fishing limit,
because each time you run the loop, you might, or might not, get
something you want. You start out with nothing, and you want to
carry out the loop repeatedly until you’ve had a given number of
successes, when you can stop.

We could still keep a loop counter as well, to let us know how
many times we tried.

In that case, we initialize the counter (let’s call it wins) to zero,
but inside the loop you only increase it when you win, or find what
it is you are looking for.

10 / 1

COUNT: Play til You Win 10 Times

three heads.cpp:

int coin1, coin2, coin3, tries, wins;

float cost;

//

// Flip 3 coins, get three heads to win.

//

tries = 0;

cost = 0.0;

wins = 0;

srand (time (0));

while (wins < 10)

{

tries = tries + 1;

cost = cost + 0.25; <-- Costs 25 cents a game.

coin1 = rand (); <-- Random integers.

coin2 = rand ();

coin3 = rand ();

if (coin1 % 2 == 1 && coin2 % 2 == 1 && coin3 % 2 == 1)

{

win = win + 1;

}

}

cout << "Winning " << wins << " times, I spent $" << cost << "\n";

11 / 1

More About WHILE Loops

Introduction

Counting with WHILE Statements

Reading Input with WHILE Statements

The DO...WHILE Statement

The Fibonacci Sequence

Lab Exercise #4

12 / 1

INPUT: Add Unknown Number of Values

You might want to write an interactive program that computes a
sum, but unlike the lunch.cpp program, you might want to use it
in cases were more than 7 numbers are involved.

It is natural to have the program read a number, add it to the
total, and try to read the next one, until something tells the
program the summing is done and it’s time to print the total.

It’s easy to have the program read a number over and over; we
simply put a cin statement inside a while loop.

But how do we tell the while loop when the input is complete?

13 / 1

INPUT: Three Ideas

Here are several ideas we could try so that we can write a
program that will add as many numbers as we want:

1 the user first enters n, the number of values to be summed;

2 or, a special value of -1 (for instance) is used as a signal that
the input is complete;

3 or, the user does something to signal that the input is done.

14 / 1

INPUT: 1: User Enters N

sum counter.cpp

cout << "How many numbers to add?: ";
cin >> n;

sum = 0.0;
step = 0;

while (step < n)
{
cin >> x;
sum = sum + x;
step = step + 1;

}
cout << "Sum of " << n << " numbers is " << sum << "\n";

15 / 1

INPUT: 2: User Enters Special Value

sum minus.cpp

cout << "Enter values, end with -1\n";

sum = 0.0;
n = 0;
cin >> x; <-- Have to read once here!

while (x != -1.0) <-- then check for -1
{
sum = sum + x; <-- then add
n = n + 1;
cin >> x; <-- now get next number

}
cout << "Sum of " << n << " numbers is " << sum << "\n";

16 / 1

INPUT: End of File

The bad thing about using -1.0 as a special value is that we
have to remember what the special value is, and we’re in trouble if
-1.0 is actually one of the numbers we want to add.

A better solution is available. The special character CTRL-D is
called the eof or ”end of file” signal. Instead of using a -1.0 value,
we can use CTRL-D. This always works, and it will have an extra
benefit!

If we just performed an input operation with cin, then the special
function cin.eof() is true if the program detected an end of file,
but false if we actually read a value.

So our while condition is changed to

while (! cin.eof ())

17 / 1

INPUT: User Enters CTRL-D

sum eof.cpp

cout << "Enter values, end with CTRL-D\n";

sum = 0.0;
n = 0;
cin >> x; <-- Have to read once here!

while (!cin.eof ()) <-- check for end of file
{
sum = sum + x; <-- then add
n = n + 1;
cin >> x; <-- now get next number

}
cout << "Sum of " << n << " numbers is " << sum << "\n";

18 / 1

INPUT: End-of-File Works for Files

I mentioned a mysterious ”extra benefit” of using the eof
function instead of a special input value like -1.

The benefit is that, if the program reads input from a file instead o
from the user, when it reaches the end of the file, the cin
command will get an eof signal just as though an interactive user
had typed CTRL-D.

In other words, we can use the same program to sum the numbers
in a file:

sum_eof < grades.txt

19 / 1

More About WHILE Loops

Introduction

Counting with WHILE Statements

Reading Input with WHILE Statements

The DO...WHILE Statement

The Fibonacci Sequence

Lab Exercise #4

20 / 1

DO/WHILE: Variation on the WHILE Statement

We have learned about the while statement, which allows us to
repeat statements using the following form:

initialization;
while (condition to check)
{

statements to be repeated;
}

The standard while statement checks the condition before carrying
out the statements.

We are using a while statement in our second homework
programming assignment, for instance, to check whether we have
reached the value 1.

21 / 1

DO/WHILE:

The do...while statement is almost the same as the while
statement, except that the condition is checked after the
statements are executed:

initialization;
do
{

statements to be repeated;
}
while (condition to check); <-- semicolon required here!

22 / 1

DO/WHILE:

Since the do...while statement is so closely related to the while
statement, in a sense, it’s not really necessary, just convenient.

Moreover, to use the do...while statement, you have to be very
careful to put a semicolon at the end of the final while. This
means it’s easy to use the statement incorrectly!

One feature of the do...while statement is that the statements
inside the loop will always be executed at least once.

I don’t need you to learn very much about the do...while, but I
want you to be familiar with it.

Let’s look at how some examples we’ve done before might be
rewritten this way.

23 / 1

DO/WHILE: Square Root with WHILE

square root while.cpp:

h = x;
w = x / h; <-- Same as in loop
error = x - h * h; <-- Same as in loop
while (0.001 < fabs (error))
{
h = (h + w) / 2.0;
w = x / h;
error = x - h * h;

}

24 / 1

DO/WHILE: Square Root with DO...WHILE

square root do while.cpp:

h = x; <-- only one initialization

do
{
w = x / h;
error = x - h * h;
h = (h + w) / 2.0;

}
while (0.001 < fabs (error)); <-- Pesky semicolon!

25 / 1

More About WHILE Loops

Introduction

The Increment Operator

Counting with WHILE Statements

Reading Input with WHILE Statements

The DO...WHILE Statement

The Fibonacci Sequence

Lab Exercise #4

26 / 1

FIBONACCI: Homework from 1202 AD

In the year MCCII, Leonardo Fibonacci published one of the
earliest mathematics textbooks, in which he suggested that
Europeans should try using the latest discovery from India and the
Arabs, called the decimal system.

His book was full of examples of how to compute interest rates,
balance accounts and convert currency using the decimal system.

One homework exercise in the book told the story of a boy who
bought a pair of baby rabbits on New Year’s Day. One month
later, the rabbits were old enough to reproduce, and a month after
that, a new pair was born.

A month after that, the first pair had another pair of babies,
although the second pair was only just becoming old enough to
reproduce, so now there were three pairs.

A month later, there were 5 pairs.
27 / 1

FIBONACCI: Homework from 1202 AD

Counting the pairs of rabbits each month, we have the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Each month, the population increases by births to all the rabbits
who have just turned two months old. Why did October’s 21 pairs
become November’s 34? Because in September we had 13 pairs,
and so two months later, we get exactly 13 new pairs added.

Once you see the pattern, it’s easy to write a formula:

F(next month) = F(this month) + F(last_month);
= population + pregnant;

Of course, being mathematical rabbits, they always reproduce
exactly on schedule, always have two babies, one of each sex, and
never die!

28 / 1

FIBONACCI: Homework from 1202 AD

On paper, it’s easy to compute the Fibonacci sequence.

But in a computer, what do we do? It’s easy to see that we have
to add two numbers to get the next one. But if we want to
compute 100 values, does that mean we have to define 100
variables, called, perhaps, f1, f2, f3, ..., f100?

Certainly, we could do it that way, but it would mean we had to
type a lot of declaration statements. And our program would be
very long.

f1 = 1;
f2 = 2;
f3 = f2 + f1;
f4 = f3 + f2;
...

29 / 1

FIBONACCI: Homework from 1202 AD

The formula for the next value essentially says:

next = current + old;

That uses just three variables. We only need three variables, if we
are willing to move the values around as we go!

Old Cur Nex
old = 1; (1 ? ?)
current = 1; (1 1 ?)
next = current + old; (1 1 2) <--Computed F3
old = current; (1 1 2)
current = next; (1 2 2)
next = current + old; (1 2 3) <--Computed F4
old = current; (2 2 3)
current = next; (2 3 3)
next = current + old; (2 3 5) <--Computed F5

30 / 1

FIBONACCI: Homework from 1202 AD

If you think about it, we have exactly the form of a while loop:

old = 1; <-- initialization
current = 1;
step = 0;
while (condition?) <-- repetition condition
{

next = current + old; <-- statements to repeat
old = current;
current = next;
step = step + 1; <-- Count the steps

}

The only thing missing is a repetition condition. We might
continue as long as step is less than 10, for instance.

31 / 1

FIBONACCI: Homework from 1202 AD

The program we have outlined can compute an unlimited
number of Fibonacci numbers, but it only uses three variables. If
we had had to declare a variable for every single Fibonacci number,
we could never have written this program!

An important point of this exercise is that a variable is just a place
to store a result. As soon as you don’t need that result any more,
the variable can be re-used. Many computations involve stepping
forward in a very long sequence, but really only need to keep track
of the most recently calculated values.

You can carry out such a calculation using just a few variables; the
price you pay, though, is that you have to (carefully!) move the
data from the next variable to the current variable to the old
variable yourself. And if you do this incorrectly, your program will
fail.

32 / 1

More About WHILE Loops

Introduction

Counting with WHILE Statements

Reading Input with WHILE Statements

The DO...WHILE Statement

The Fibonacci Sequence

Lab Exercise #4

33 / 1

EXERCISE 1: Print the Fibonacci Sequence

Write a C++ program that can compute and print out the
elements of the Fibonacci sequence up to the 20th number.

In particular, your first five lines of output should be

1 1
2 1
3 2
4 3
5 5

... ...

34 / 1

EXERCISE 1: Program Outline

include <stuff>
using namespace std;
int main ()
{

declarations;
initialization;
print first values;
while (?)
{

statements to repeat;
print new value;

}
return 0;

}

35 / 1

EXERCISE 2: First Number Over 10,000

Make a new copy of your first program. Modify the program so
that the user enters a number n, and your program computes the
elements of the Fibonacci sequence until it finds the first element
that is equal to or bigger than n.

Print the step and the Fibonacci number when this happens.

In particular, if the user types 100, your program might print out:

Fibonacci number 12 is 144 which is bigger than 100.

Once you get your program working, try to compute the first
Fibonacci number bigger than 10,000. (When you enter the value
10,000 into the computer, don’t use a comma!)

Once you have computed this value, please show your work to
Detelina so you can get credit for the exercise!

36 / 1

