
Arithmetic, Logic, and Integration

http://people.sc.fsu.edu/∼jburkardt/isc/week02/
lecture 04.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 20 May 2011

1 / 1

Arithmetic, Logic, and Integration

Introduction

Arithmetic Rules

Logic

Marching

Integration

Conclusion

Programming Assignment #1

2 / 1

INTRO: Arithmetic Rules

In the previous lecture, we introduced the idea of variables,
which were quantities with a name, a type, and a value.

Variables were set up with declaration statements, such as:

int x = 17;
float work, force, distance;

Values could be assigned as part of the declaration, or set later by
an assignment statement.

A typical assignment statement has the form

x = y + z;
work = force * distance;

Today we will look at some arithmetic rules for the formulas used
on the right hand sides of assignment statements.

3 / 1

INTRO: Logic

The variables we have discussed so far were numeric. The C++
numeric types we have discussed include int, float and double.

Sometimes, we want a variable to be able to store a logical value,
that is, to hold a value of true or false.

C++ includes the bool type for this purpose.

We will look at how logical variables can be declared, assigned, and
used.

In particular, we will introduce the if statement, which checks
whether a certain condition is true.

4 / 1

INTRO: Integration

From calculus, we know that the integral of a function f(x) from
a to b can be approximated by thinking of the integral as the area
under the curve.

So we can divide the interval [a,b] into subintervals, and using
each subinterval as a base, draw a rectangle that intersects the
curve, perhaps using the left or right endpoint, or the midpoint of
the subinterval, to determine how high to draw the rectangle.

Such a process can be automated. We will look at several ways to
estimate an integral this way.

Your homework programming assignment will require you to
compute a sequence of integral estimates, using more and more
subintervals.

5 / 1

INTRO: 3D Plots

For our lab exercise on Tuesday, we made a simple plot with
Gnuplot.

I was asked if we would also be doing 3D plots, and I said we
would, eventually.

However, if you are interested in looking into this right now, I have
put up a simple example on the web page.

The file surface grid.cpp will compute a table of values Z(X,Y),
which you can redirect to a file, say ”data.txt”.

If you start gnuplot, you can display the surface with the command

splot "data.txt" with lines

6 / 1

Arithmetic, Logic, and Integration

Introduction

Arithmetic Rules

Logic

Marching

Integration

Conclusion

Programming Assignment #1

7 / 1

ARITHMETIC: Assignment

A typical arithmetic calculation in C++ might be:

z = x + 42 * y;

C++ calls this line an example of an assignment statement.

It has the form

left value = right value;

where left value is the name of a variable, and right value is a
literal number, or a variable, or some kind of formula.

An assignment statement is an example of an executable
statement, that is, it describes an action to be carried out.

8 / 1

ARITHMETIC: Variable Values

We saw last time that variables must be set up in declaration
statements at the beginning of the program.

We saw that it was possible, but not required, to give a variable a
starting value as part of its declaration.

What about variables which are not given an initial value this way?
An assignment statement is one way to put a value into a variable.
The assignment statement overwrites any previous value stored in
the variable.

Another way for a variable to receive a value is for the user to
input the value. This is done with the cin input operator:

cout << "Enter the value of x: ";
cin >> x;

9 / 1

ARITHMETIC: Example Program

This example is called formula.cpp:

include <iostream>
using namespace std;
int main ()
{

int x = 12; <-- 3 Declaration statements
int y;
int z;

cout << "Enter the value of y: ";
cin >> y;
z = x + 42 * y;
cout << "Z = " << z << "\n";
return 0;

}

10 / 1

ARITHMETIC: Variable Values

Notice that the variables y and z don’t have a value when the
program begins. They are uninitialized.

There’s nothing wrong with an uninitialized variable, but until it
gets a value, you are not allowed to use it on the right hand side of
a formula.

If you try to do this anyway, you get an error. The compiler might
see the error, or else it will occur when you run the program. Let’s
modify the previous program and see what happens!

11 / 1

ARITHMETIC: Example Program

This example is called formula2.cpp:

include <iostream>
using namespace std;
int main ()
{

int x = 12;
int y;
int z;

z = x + 42 * y; <-- Y doesn’t have a value yet.
cout << "Enter the value of y: ";
cin >> y;
cout << "Z = " << z << "\n";
return 0;

}

12 / 1

ARITHMETIC: Output

Here is what I got when I ran the modified program:

OSX> ./a.out
Enter the value of y: 4
x = 12
y = 4
z = 12 = 12 + 42 * 4
OSX>

The final printout doesn’t make sense until you realize that, when
the formula was actually evaluated, y must have had the value 0,
not 4. In other words, the g++ compiler is silently initializing
variables to 0 for us.

Not every compiler does this, and you should not rely on it! But in
any case, remember that a formula is computed using whatever
values the variables happen to have at the moment the assignment
statement is executed.

13 / 1

ARITHMETIC: What Are the Values?

Try to fill in the values in the variables following each statement.
The variables are not initialized, so they start with values of “?”:

X Y Z
initial: |__?___|___?__|___?__|
x = 1; |______|______|______|
z = x + y; |______|______|______|
y = 3; |______|______|______|
z = x + y; |______|______|______|
x = x + 1; |______|______|______|
z = x + y; |______|______|______|
y = 2 * y; |______|______|______|
z = x + y; |______|______|______|

14 / 1

ARITHMETIC: Output

Here is how you should have filled out the table:

X Y Z
initial: | ? | ? | ? |
x = 1; | 1 | ? | ? |
z = x + y; | 1 | ? | ? | <-- Compiler might
y = 3; | 1 | 3 | ? | complain.
z = x + y; | 1 | 3 | 4 |
x = x + 1; | 2 | 3 | 4 |
z = x + y; | 2 | 3 | 5 |
y = 2 * y; | 2 | 6 | 5 |
z = x + y; | 2 | 6 | 8 |

15 / 1

ARITHMETIC: Operators

Simple arithmetic involves addition, multiplication, and so on.
How do we specify these operations in a C++ program?

Addition: people = children + adults;
Subtraction: workdays = 365 - holidays - sundays;
Multiplication: celsius = (fahrenheit - 32) * 5.0 / 9.0;
Division: average = (x1 + x2 + x3) / 3;
Remainder: leftover = 365 % 7;
Power: area = pi * pow (radius, 2);

The expression 365 % 7 returns the remainder when 365 is
divided by 7, namely 1. A integer n is even if (n % 2) is 0, and
it is odd if (n % 2) is 1.

The expression pow (radius, 2) means radius2. To use pow(),
you must include <cmath>. We will wait til later to talk more
about the rules for the power function.

16 / 1

ARITHMETIC: Integer versus Real Division

C++ makes a distinction between integer and real variables.

C++ also assumes that the result of the division operation
depends on the type of the variables used.

In the expression a/b, if the top and bottom are both literal
integers, integer variables, or formulas involving integer variables,
then the result will be rounded down to an integer value!

The expression 20 / 3 contains literal integers. It evaluates to 6.
The expressions 20.0 / 3.0 , 20.0 / 3 , and 20 / 3.0 all
contain at least one float, and hence evaluate to 6.666...

Similarly, 1/2 results in the value 0!

We will later see how to guarantee a real number result from
division when we want one.

17 / 1

ARITHMETIC: Precedence

Sometimes when we write a complicated formula, the result
could depend on the order in which we carry out the operations.

Even a simple formula like z = x + 42 * y could be evaluated two
different ways:

Do the addition first: (x + 42)
Then the multiplication: ((x + 42) * y)

Do the multiplication first: (42 * y)
Then addition: (x + (42 * y))

To avoid problems, there is a rule for how operators are evaluated.

18 / 1

ARITHMETIC: Precedence

Operators in parentheses () are evaluated first. In cases of nested
parentheses, the innermost pair of parentheses is evaluated first.

Multiplication *, division /, and the modulus or remainder function
% are applied next. If there are several such operators, they are
evaluated from left to right.

Addition + and subtraction - are applied last, and are evaluated
from left to right.

The most common thing people have trouble with is writing a
fraction correctly.

These rules will need to be extended later when we meet some new
operators.

19 / 1

ARITHMETIC: Precedence Examples

What happens, supposing a = 10, b = 20, c = 30 and d = 40?
This program is precedence.cpp:

m = a + b * c + d / 2;

n = (a + b * c) + d / 2;

o = (a + b) * (c + d) / 2;

p = (a + b * (c + d)) / 2;

q = a + (b * c) + (d / 2);

20 / 1

ARITHMETIC: Evaluate a polynomial

If we want to evaluate a polynomial ax2 + bx + c , the rules of
precedence allow us to write:

value = a * x * x + b * x + c;

Another legal form is:

value = a * pow (x, 2) + b * x + c;

Surprisingly, one more correct form is:

value = (a * x + b) * x + c;

21 / 1

ARITHMETIC: Evaluate a polynomial

Now suppose we want to write the fraction a(b−c)
d(e+f) .

Then which C++ statements below are correct?

1: a * b - c / d * e + f ; ________?
2: a * (b - c) / d * (e + f) ; ________?
3: a * (b - c) / (d * (e + f)); ________?
4: (a * (b - c)) / (d * (e + f)); ________?
5: (a * (b - c) / d * (e + f)); ________?

22 / 1

ARITHMETIC: Evaluate a polynomial

Suppose we want to write the fraction a(b−c)
d(e+f) .

Then which C++ statements below are correct?

1: a * b - c / d * e + f ; _Wrong__!
2: a * (b - c) / d * (e + f) ; _Wrong__!
3: a * (b - c) / (d * (e + f)); _OK_____!
4: (a * (b - c)) / (d * (e + f)); _OK_____!
5: (a * (b - c) / d * (e + f)); _Wrong__!

23 / 1

Arithmetic, Logic, and Integration

Introduction

Arithmetic Rules

Logic

Marching

Integration

Conclusion

Programming Assignment #1

24 / 1

LOGIC: The IF Statement

So far our C++ programs executed statements unconditionally,
in order. But an intelligent program might want to check before
some operations.

To divide x by y, I write:

z = x / y;

But y might be 0. So perhaps I might prefer to write

if y is not 0.0, then
z = x / y;

or, even better,

if y is not 0.0, then
z = x / y;

else
z = 0;

25 / 1

LOGIC: Logical Comparisons

C++ actually has if and else statements, and they can be used
to check a condition before carrying out statements.

Given numbers x and y, C++ can check these conditions:

if (x == y)... if x is equal to y then...
if (x != y)... if x is not equal to y then...
if (x < y)... if x is less than y then...
if (x <= y)... if x is less than or equal to y then...
if (x > y)... if x is greater than y then...
if (x >= y)... if x is greater than or equal to y then...

Be careful to avoid a statement like if (x = y) with just one equal
sign. It looks like you are checking for equality, but it’s a mistake,
and what’s worse, the compiler might not complain about it!

26 / 1

LOGIC: if (condition) statement

A comparison or condition is either true or false. An if statement
allows us to check a condition first, and then to carry out one or
more statements only if the condition is true.

if (condition) a single statement;

if (condition)
{

statement 1; <-- Only if condition is true
statement 2;
...

}

Even if I only have one statement, I always use the second form!

27 / 1

LOGIC: if/else statement

A combined if/else statement lets us do one thing if a condition
is true, and something else otherwise.

if (condition)
{

statement 1 for true case;
statement 2 for true case
...

}
else
{

statement 1 for false case;
statement 2 for false case
...

}

There are also more complicated versions, called if/elseif/else
28 / 1

LOGIC: Examples:

Suppose we have picked a random point in the plane, which has
coordinates (x,y). The point is inside the unit circle if, and only, if,
the square root of the sum of the squares of x and y is less than or
equal to 1.

We can express that test this way:

if (sqrt (x * x + y * y) <= 1.0)
{
cout << "(" << x << "," << y

<< ") is in the unit circle.\n";
}

Of course, I’ve had to surprise you yet again. sqrt() is how we
compute the square root function in C++. To use this function,
you must include <cmath>.

29 / 1

LOGIC: A Circle Program

This is the code CIRCLE.CPP

include <iostream>
include <cmath>
using namespace std;
int main ()
{

float x, y;
cout << "Enter (x,y): ";
cin >> x >> y;
if (sqrt (x * x + y * y) <= 1.0)
{
cout << "(" << x << "," << y

<< ") is in the unit circle.\n";
}
return 0;

}
30 / 1

LOGIC: Check Your Input!

By the way, the command cin >> x >> y will read x and y,
but only if you enter them the way the computer expects to see
them, that is, as two numbers separated by spaces.

What happens if you enter:

4 3 <--- This is fine!
4, 3
(4 3)
4. 3
4.0 3.0
3+1 8-5 <--- Really not what you’d expect!

This is why the program I entered on the web prints out (x,y) even
if it is not in the circle, so the user has a chance to notice if
something went wrong with the input.

31 / 1

Arithmetic, Logic, and Integration

Introduction

Arithmetic Rules

Logic

Marching

Integration

Conclusion

Programming Assignment #1

32 / 1

MARCH: Taking Steps

In many scientific applications, it is necessary to compute a
sequence of equally spaced values.

We might be:

plotting a function at equally spaced values of x;

computing a differential equation at successive values of t;

Last week, we needed to “march” from 0 to 20 by steps of 0.04, to
make a table of values of sin x .

When we are marching, we know where we start x1, where we
want to finish x2, and how many steps to take n or the size of the
steps dx.

33 / 1

MARCH: The for Statement

We still don’t officially know about the for statement, but we
need to use it for our first programming assignment.

for (x = initial value; check x; increment x)
{
statements;

}

The initial value initializes the counter variable x.

The check is a logical condition that must be true in order to
continue.

If the check is satisfied, the statements are carried out, and
then the counter is incremented.

34 / 1

MARCH: The FOR Statement

Case 1: Suppose we know the limits x1 and x2, and the size of
the steps dx.

Then our march will take the steps:

x1, x1+dx, x1+2dx, x2+3dx, ...

and we keep stepping as long as we are less than or equal to x2.

The following for statement will work:

for (x = x2; x <= x2; x = x + dx)
{
y = cos (x);
cout << x << " " << y << "\n";

}

35 / 1

MARCH: The FOR Statement

Case 2: Suppose we know the limits x1 and x2, and the number
of steps n.

Unless n is 1, we can always compute dx and go back to Case 1:

dx = (x2 - x1) / (n - 1);

Case 3: Otherwise, we can use an integer step counter i.

x = x1;
for (i = 1; i <= n; i++)
{
y = cos (x);
cout << x << " " << y << "\n";
x = x + dx;

}

36 / 1

MARCH: The FOR Statement

Case 4: If we know the number of steps, then instead of adding
dx repeatedly, we can compute the i-th x directly.

for (i = 1; i <= n; i++)
{
x = ((n - i) * x1 + (i - 1) * x2) / (n - 1);
y = cos (x);
cout << x << " " << y << "\n";

}

37 / 1

MARCH: 500 points or 501 points?

Often, you want your x values to be “nicely spaced”.

For the sine table we made last week, I first said I wanted 500
values between 0 and 20, but then I changed that to 501. Why
was that? The formula for dx from n is

dx = (x2 - x1) / (n - 1);

so using n = 500 results in a spacing of 20/499, whereas 501
points will be spaced by 20/500 = 0.04, a “nice” value.

In a similar way, if we want to divide an interval up into n
subintervals, then we typically define n+1 points to do this. To
divide [0,1] up into 10 subintervals, we use the 11 points 0, 0.1,
0.2, ..., 0.9, 1.0.

38 / 1

Arithmetic, Logic, and Integration

Introduction

Arithmetic Rules

Logic

Marching

Integration

Conclusion

Programming Assignment #1

39 / 1

INTEGRATION:

I have spent so much time on marching because it comes up in
many different ways in scientific computing.

Today, we will need marching because we are going to try to
estimate an integral. You may recall that the integral of a function
f(x) between a and b is the area under the curve.

If f(x) is a polynomial or a simple function, there may be a formula
for the area. But in scientific computing, we face a wide variety of
functions, and we will settle for a method that approximates lots of
integrals rather than getting the exact values for just a few.

40 / 1

INTEGRATION:

One way to estimate the integral of a function starts by dividing
the interval [a,b] into n equal subintervals, each of width dx,
picking a point x in each subinterval, computing the value of f(x)
at these points, summing the values and multiplying by dx.

For this simple procedure, we can distinguish three common
choices for x:

left rule: each subinterval uses its left endpoint;

center rule: each subinterval uses its midpoint;

right rule: each subinterval uses its right endpoint;

41 / 1

INTEGRATION: Example

Just to be clear about this procedure, let’s estimate the integral
of x2 from 1.0 to 3.0, using n=4 intervals and the left hand rule:

Our interval spacing is dx = (x2 - x1) / n = (3.0 - 1.0) / 4 =
0.5;

Our intervals are [1.0,1.5], [1.5,2.0], [2.0,2.5], [2.5,3.0].

42 / 1

INTEGRATION: Example

Let’s estimate the integral of x2 from 1.0 to 3.0, using n=4
intervals and the left hand rule:

Our spacing is dx = (x2 - x1) / n = (3.0 - 1.0) / 4 = 0.5;

Interval Left Point F(x) F(x)*dx

[1.0,1.5] 1.0 1.0 0.5
[1.5,2.0] 1.5 2.25 1.125
[2.0,2.5] 2.0 4.0 2.0
[2.5,3.0]. 2.5 6.25 3.125

6.750

The exact value is 8.666..., so our error was about 1.916.
Presumably, we could do better with more intervals!

43 / 1

INTEGRATION: Using More Intervals Helps!

44 / 1

INTEGRATION:

Suppose I want to approximate the integral of the sine of x from
x1=2 to x2=8, using n=60 intervals.

The distance I am traveling is x2 - x1 = 6.

The width of each interval, therefore, is dx = (x2 - x1) / n = 0.1.

The first interval goes from 2 to 2.1, the second from 2.1 to 2.2,
and so on until the 60th interval, from 7.9 to 8.0.

If I use the left rule, my x’s run from 2, 2.1, 2.2, up to 7.9.
If I use the center rule, my x’s run from 2.05, 2.15, 2.25, to 7.95.
If I use the right rule, my x’s run from 2.1, 2.2, 2.3, up to 8.0.

The only tricky thing is keeping track of your x values!

45 / 1

INTEGRATION:

Suppose I know x1 and x2;

Suppose the user inputs the value of n,

From x1, x2 and n I can compute dx.

Then initialize value to 0;

for x starting at x1, up to but not including x2, incrementing by dx
......compute the sine of x, multiply it by dx, and add it to value.

print value;

Can we sketch out a program on the board that would do this?

46 / 1

INTEGRATION: Variations

If we want to use the center rule, we start x at x1+dx/2.

If we want to use the right rule, we start x at x1+dx and we
integrate up to, and including, x2.

I have shown you for loops in which x was used as the marching
variable. Sometimes it is better to use an integer i, and to figure
out the value of x. I have already shown you some ideas about how
that works.

47 / 1

Arithmetic, Logic, and Integration

Introduction

Arithmetic Rules

Logic

Marching

Integration

Conclusion

Programming Assignment #1

48 / 1

Conclusion:

We’ve been introduced to the basic arithmetic operators, and
seen that parentheses can be helpful in correctly expressing
formulas.

We’ve seen how the C++ if and else statements can be used to
control whether we execute a group of statements, based on a
logical condition.

We’ve talked about how to use the for statement to march
through a set of values.

We’ve seen how an integral can be approximated using a sum that
can be computed with a for statement.

Again, I apologize for making you see and use the for statement
prematurely. We will get a chance to look at it more carefully very
soon!

49 / 1

Conclusion:

Read: Chapter 2.5 to 2.8.

Next Class: The if and while Control Statements

Assignment: Today’s Programming Assignment #1 is due in one
week, on Thursday, May 26.

You are allowed to ask me or Detelina for advice on the
programming assignment. You can ask anybody C++ questions,
but the work on your assignment should be your own.

50 / 1

Arithmetic, Logic, and Integration

Introduction

Arithmetic Rules

Logic

Marching

Integration

Conclusion

Programming Assignment #1

51 / 1

PROGRAM #1: Estimate an Integral

Consider the function f (x) = x2 + 2x − 3.

We wish to estimate the integral of f (x) for −4 ≤ x ≤ 5.

The antiderivative function is g(x) = x3

3 + x2 − 3x .

Therefore, the exact value of the integral is g(5)-g(-4) = 45.

Write a C++ program that estimates the value of this integral,
using n intervals and the left hand approximation.

Run your program with values of n equal to 1, 2, 5, 10, 20 and 40.

Turn in: a copy of your program, and a table with 6 lines. Each
line lists the value of n, your estimate for the integral, and the
error of that estimate.

Your program and table are due by class time, Thursday, May 26.
You can email it to Detelina or hand in a printed version.

52 / 1

