
First C++ Programs

http://people.sc.fsu.edu/∼jburkardt/isc/week02/
lecture 03.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 17 May 2011

1 / 1

First C++ Programs

Introduction

The HELLO Program

Add Integers

Output Redirection

Conclusion

In Class Exercise #2

2 / 1

INTRO: A Closer Look at HELLO and ADD INTS

We have seen that a basic C++ program includes some initial
material we don’t understand, and a main function, which seems
to be where the action is.

We saw how we could put a print statement inside the main
function to say “Hello”, and in the lab exercise, you typed in a
program to add two integers.

Today we’ll summarize some of the C++ features we have already
been using, and try to understand the rules they follow.

3 / 1

INTRO: Numeric Computations, Variables, Formulas

We will especially want to understand calculations with numbers.

When we want a computer to carry out a numeric computation,
the text of the program contains formulas such as:

x = y + z;

The symbols in the formula refer to variables, that is, names for
numbers. We will look at rules for the names of variables, the
kinds of numbers they can hold, and the way they can be
combined in formulas.

We will also find out the rules for doing arithmetic, and for
checking whether certain conditions are true or not.

4 / 1

INTRO: Numeric Computations, Variables, Formulas

We will also look at how input commands can be read from a
file, and how output data can be written to a file, using the simple
idea of redirection.

We saw that the C++ operators cout and cin can write messages
and numbers to the screen, or accept input from the keyboard.

cout << "Enter second integer: "; <-- (output)
cin >> number2; <-- (read input from keyboard)

In the lab exercise, you were encouraged to save your output with
a command like

./a.out > results.txt

We will look at when it makes sense to do this, and reasons why
you might also want to have the program read input from a file,
rather than having you type it in.

5 / 1

First C++ Programs

Introduction

The HELLO Program

Add Integers

Output Redirection

Conclusion

In Class Exercise #2

6 / 1

HELLO: The Source Code

The hello program is stored in the file hello.cpp

include <cstdlib>
include <iostream>

using namespace std;

int main ()
{

cout << "Hello, world!" << endl;
return 0;

}

7 / 1

HELLO: # include <iostream>

When you write a program in the C++ language, there are
many tools available to help you. The include statements request
tools that you expect to use in your program.

Include statements are an example of preprocessor statements:
they begin with a # sign, which means the preprocessor “rewrites”
those lines. In this case, it replaces the request to include material
by the text of the material.

If your program gets input from the user or prints output, you want
to include the tools in iostream, such as:

cout: for “standard” output;

cin: for “standard” input;

cerr: for output that can’t be ignored or redirected;

endl: for the end-of-line marker;
(you can also use \n for this purpose);

8 / 1

HELLO: # include <cstdlib>

The cstdlib contains so many useful tools that I usually include
it in my programs, even though in some very simple programs it
may not be needed.

DO THIS NOW: Does hello.cpp actually need cstdlib?

By including the cstdlib, we are able to use things like

atof() and atoi(), which extract real or integer numbers from
a string;

exit(), which terminates a program early;

qsort(), which sorts a list;

rand(), which returns random numbers;

9 / 1

HELLO: using namespace std;

When we use an include statement to access C++ tools, the
names come with a prefix of std:: which is meant to indicate
where they came from, and to avoid conflict with any names we
were already using.

So, strictly speaking, the printing line in our program should read:

std::cout << "Hello, world!" << \n;
...or....
std::cout << "Hello, world!" << std::endl;

But the statement

using namespace std;

means that we promise not to use any variable names that are the
same as the names in the include files; in exchange for that
promise, we can drop the std:: prefix.

10 / 1

HELLO: The Main Function

A program can include several functions, but must always have
one called main. That is where the program will start.

The declaration line int main () announces the beginning of a
function whose name is main. The int indicates that the result
returned by the function will be an integer. The parentheses ()
hold the input; in this case, there isn’t any.

int main ()
{

cout << "Hello, world!" << endl;
return 0;

}

(The main function is always required to return an integer, and
usually that integer is zero. Things get more interesting when we
add more functions.)

11 / 1

HELLO: The Main Function

After the declaration line comes the body of the function, which
must begin and end with a pair of curly brackets: { and }.

The body of this function contains statements. Each statement
ends with a semicolon. When the program is executed, the first
statement is carried out, then the next one and so on. The
statement return 0 means that the computation is complete, and
that the value that the function should return is the integer 0.

int main ()
{

cout << "Hello, world!" << endl;
(room for many more statements here)
return 0;

}

12 / 1

HELLO: The Shortest C++ Program

The wc command (which stands for “word count”), will report
the number of lines, words, and characters in a file.

Let’s measure the size of hello.cpp:

wc hello.cpp
10 23 128 hello.cpp

So this particular version of the Hello program uses 128 characters.

We already saw that some lines were not needed in the file. What
is the smallest possible C++ program you can make, by cutting
things out of hello.cpp?

The answer will show us the simplest C++ program.

13 / 1

HELLO: The Shortest C++ Program

The simplest program I came up with looks like this:

main(){}

for a count of 9 characters (because we include the carriage return
at the end).

This is a perfect outline of the simplest C++ program: a main
program, with () for input, and {} to contain statements.

14 / 1

First C++ Programs

Introduction

The HELLO Program

Add Integers

Output Redirection

Conclusion

In Class Exercise #2

15 / 1

ADD: How Do We Store Data?

When you fill out a tax form, you often are told to enter numbers
in box 1, 2 and 3. Then take the sum of boxes 1 and 2, multiply
by 5% and put that in box 4, and so on. Each box is a place where
we can store the next piece of data or the result of a calculation.

With a form, we only expect to fill in a box once. However, if we
wanted to reduce the number of boxes we needed, we could reuse
them, as long as the previous result was no longer needed. A
program is going to need boxes of some kind to store data.

And what will the data look like? The simplest data would simply
be literal values. That is, if we need to multiply two numbers, we
“literally” place those values in the program:

cout << " My tip should be " << 0.20 * 17.54 << "\n";

16 / 1

ADD: How Do We Store Data?

But in a complicated calculation, where the same number may
be used many times, it’s handy to replace the literal values by
symbolic names. Then we can use the formula for any case we run
into. In particular, the values we need to multiply may not be
known when we write the program, but rather be calculated by the
program when it runs.

tip = rate * bill;

So now tip, rate and bill are like the boxes in a form; they can
hold values. Probably, we need to put values into rate and bill,
but then the value of tip can be determined from those values.

Let us look at how C++ enables us to set up “boxes” for data, put
numbers into them, combine them, and print them out.

17 / 1

ADD: Variable Names

In C++, quantities used to store values are called variables.

The first property of a variable is its name, such as x or rate or
profit or b12. The name essentially sets aside a box where we can
put values, or get them back.

A variable name must begin with a letter.

It can contain letters, digits or underscores.

It should not be longer than 31 characters.

C++ reserves certain keywords which cannot be used as names.
These include words such as and, bool, false, float, int, new,
true and other words that have special meaning.

You might expect that cout is a keyword. It’s not, because it’s not
part of the fundamental set of C++ names. It only comes in if we
include <iostream>, and even then, it has a prefix of std::
(unless we “promise” not to create a variable called cout).

18 / 1

ADD: Variable Types

The second property of a variable is its type.

Numeric variables can be integer, real or complex. We will start
out working with integers, whose C++ type is called int and single
precision real numbers, whose type is float. When we need more
digits of precision, we will look at the double type.

If a variable is declared to be an integer, it can only hold whole
number values. The storage for an int is limited. This means that
on the computer, an int is limited to values between
-2,147,483,648 and +2,147,483,647.

Later, we will see a bool type for logical variables, a char type for
single characters, and a string type for strings of text.

19 / 1

ADD: Variable Types

The third property of a variable is its value. A variable is a place
for storing values, but it is possible that no value has been assigned
to it yet. Such a variable is called uninitialized.

A variable is typically given a value by an assignment statement; it
can also be given an initial value when its name and type are
declared.

If a variable is declared to be a float, then it can hold real number
values, such as 3.14159265. We can assign the variable x to have
this value using the statement

x = 3.14159265;

We can also use scientific notation for numbers very large or small.

y = 1.23E+6; <-- y = 1.23 * 1,000,000 = 1,230,000.
z = 4.7E-5; <-- z = 4.7 * 0.00001 = 0.000047

20 / 1

ADD: Accuracy

Because the storage for a float is limited, a float never has more
than about 8 digits of accuracy. A double can have about 16 digits.

This means that arithmetic is only approximately accurate,
especially when you are adding relatively small y to a number x.
And if y is really small, adding it to x will make no difference at all!

To see the gory details, let’s declare a float variable, set it to
1.23456789, and add smaller and smaller values to it.

Normally, cout will only print about 6 digits of a number, but we
want to see more. We can force cout to print more digits by using
an include statement to add the <iomanip> library, and then
using the setprecision(12) function to ask for 12 digits of output.

21 / 1

ADD: ADD SMALL.CPP

include <iostream>
include <iomanip>

using namespace std;

int main ()
{

float x, y, z;
x = 1.23456789;
cin >> y;
z = x + y;
cout << setprecision(12) << x

<< " + " << y << " = " << z << "\n";
return 0;

}
22 / 1

ADD: Declarations and Executables

Your numeric C++ program includes two types of statements:

declarations assign type, name, possible initial values;

executables, evaluate formulas using the variables, or print;

int main ()
{

float bill = 17.54; <-- (3 Declarations)
float rate = 0.20;
float tip;

tip = rate * bill; <-- (3 Executables)
cout << " My tip should be " << tip << "\n";
return 0;

}

23 / 1

First C++ Programs

Introduction

The HELLO Program

Add Integers

Output Redirection

Conclusion

In Class Exercise #2

24 / 1

REDIRECT: The Output Redirection Command

The ”standard output” from the C++ operator cout, such as
the string ”Hello, world!”, normally appears on your screen.

When you run a program, you have the option of redirecting all the
standard output to a file, using the symbol >:

./a.out > file.txt

C++ includes a second output operator, cerr, or ”standard error”,
whose output cannot be redirected. This is typically used for
important error messages, or other information that should always
go to the screen. But otherwise, it can be used the same as cout:

cerr << "Hello, world!\n";

Text printed by cerr appears on the screen, even when you try to
redirect it.

25 / 1

REDIRECT: The Sine Function

We can use the cout and cerr operators, and the Unix
redirection symbol, to create a program that values of the sine
function, writes them to a file, and tells the user that it was
successful.

A good start for a plot is to make a table. Each “wiggle” of a sine
curve has length 2π ≈ 6.28, so to make sure we see about 3
wiggles, we’ll plot over the range 0 ≤ x ≤ 20.

Most line graphs can be plotted with about 500 data points. So
we need to generate that many equally spaced x values, compute
the corresponding sine value, and print the pair of values.

The sine function is only available to us if we include the library
<cmath>. Then, for any value x, we can compute the sine by a
statement like:

y = sin (x);

26 / 1

REDIRECT: The FOR Statement

To compute 500 equally spaced values between 0 and 20, I’ll use
the C++ for command, which we haven’t officially talked about
yet (so you’re not responsible for it yet!).

The for statement will count from 0 to 500 (so I’ll actually use 501
points!). If I start x at 0.0, and then add 0.04 each time, then 500
steps later I will be at x = 20. Thus, the for loop allows me to do
something many times, while only writing the statements once.

x = 0.0;
for (i = 0; i <= 500; i = i + 1) <-- Repeat statements
{ in brackets 501 times.

y = sin (x); i=i+1 can also be
cout << x << " " << y << "\n"; written "i++"
x = x + 0.04;

}
cerr << "Program wrote 501 points to the file.\";

27 / 1

REDIRECT: Execution, with Output to the Screen

If we compile and run sine table.cpp, we get our table:

./a.out
0 0
0.04 0.0399893
0.08 0.0799147
...
19.9601 0.89593
20.0001 0.912977
Program wrote 501 points to file.

Notice that both cout and cerr sent output to the screen.

(Also notice that 0.04 added 500 times gives me 20.0001, because
of computer inaccuracies!)

28 / 1

REDIRECT: Execution, with Output Redirected to a File

But now let’s redirect the program output to a file:

./a.out > sine_table.txt
Program wrote 501 points to file.

The useful message still prints to the screen, because cerr output
can’t be redirected. But we used cout for all the data, so that all
went to the file.

You can examine the file using gedit or kedit from the program
menu, or any of these terminal commands:

gedit sine_table.txt <-- starts an editor
kedit sine_table.txt <-- starts an editor
more sine_table.txt <-- types out 20 lines at a time.

Terminate with ’q’

29 / 1

REDIRECT: Interactive Display

The reason we want our data in a file is that there are programs
that can make a plot of it.

In particular, if the file sine table.txt contains two columns of
data separated by spaces (it does), then we make a nice plot by
starting the gnuplot command and telling it to look at the file:

gnuplot
set title "Sine Curve" <-- label the plot
set grid <-- draw grid
set style data linespoints <-- mark data points.
plot "sine_table.txt" using 1:2 <-- X in column 1,

Y is column 2
quit <-- end gnuplot

30 / 1

REDIRECT: The GNUPLOT Display

31 / 1

REDIRECT: Save Graphics to File

If we wanted to save our graph to a file, use:
the set term command to pick the kind of file,
the set output command to name it.

gnuplot
set term png <-- create PNG file
set output "sine_table.png" <-- name of PNG file
set title "Sine Curve"
set grid
set style data linespoints
plot "sine_table.txt" using 1:2
quit

To view the image:

eog sine table.png

32 / 1

REDIRECT: Redirecting Input

You can also redirect the input to a program. Instead of reading
from the keyboard, you can tell a program to read a file. This
might seem a very strange thing to do.

But let’s suppose we’re not good at typing interactively, or we
have a bad memory. Suppose we put all the commands to gnuplot
into a file called gnu input.txt.

Then to make the plot, all we have to do is start up gnuplot, but
tell it to get the commands from the file, not from us. As long as
the last command is quit, gnuplot will do what we asked and then
terminate gracefully:

gnuplot < gnu_input.txt

33 / 1

REDIRECT: Redirecting Input

The best thing about this approach is that the next time you
need to graph a function, you can simply find the gnu input.txt
file, change the name of the data file you want to plot, and run
gnuplot with the same input file as before.

Of course, once you get the plot, you might want to change some
details, such as the title, or the style of plotting, but having a way
to save your input commands and reuse them can be a big help!

If you don’t have a way of displaying simple graphics on your own
computer, you might be interested in installing gnuplot.

More information is available at http://www.gnuplot.info/

34 / 1

First C++ Programs

Introduction

The HELLO Program

Add Integers

Output Redirection

In Class Exercise #2

Conclusion

35 / 1

CONCLUSION: Summary

Today, I think I’ve repeated some of the points made last week
about the structure of a simple C++ program, but I wanted to
make sure that I explained to you why every line in the programs
was where it was.

We’ve also begun to understand how a C++ program must define
variables, in order to do numeric computing.

We looked at how a C++ program can write its output to the
screen, which can be redirected to a file, which is one way to
create graphical output.

Along the way, we’ve accidentally seen for statements, the cerr
output operator, the include libraries <iomanip> and <cmath>,
and the operator setprecision(12) for getting more digits of
output. We will have a chance later to try to examine these topics
more carefully.

36 / 1

Conclusion: Open Lab

Detelina has open lab hours Wednesday from 11:00 to 12:15.

Although we don’t have any programming homework assignments
yet, this might be a good time to come in and ask for a
demonstration of some of the software Detelina knows about, such
as NetBeans.

Detelina can also help you install software on your machine similar
to what we have in the lab.

37 / 1

Conclusion: Coming up

Reading: Deitel and Deitel, Chapter 2.1-2.4

Thursday: Arithmetic, Logic, Integration

Thursday: First Programming Homework will be assigned.

38 / 1

First C++ Programs

Introduction

The HELLO Program

Add Integers

Output Redirection

Conclusion

In Class Exercise #2

39 / 1

EXERCISE: Create Sine Table and Plot It

For today’s in class exercise, I would like you to

Type in the sine table program;

Compile and run the program, and redirect the data to a file.

Use the gnuplot program to view the data.

40 / 1

EXERCISE: Remember the Steps!

I suggest that you create a directory called week2.

You can use an editor such as kedit or gedit to type in the file
sine table.cpp, which you should store in the week2 directory.

Start a terminal program, and then issue commands like this:

cd week2
g++ sine_table.cpp
./a.out > sine_table.txt

41 / 1

EXERCISE: The Whole Program

include <iostream>
include <cmath>
using namespace std;
int main ()
{

int i;
float x, y;
x = 0.0;
for (i = 0; i <= 500; i = i + 1)
{
y = sin (x);
cout << x << " " << y << "\n";
x = x + 0.04;

}
cerr << "Wrote 501 points to file.\n";
return 0;

}

42 / 1

EXERCISE: Using GNUPLOT

Once your data file has been created, start the gnuplot program
to display the data:

gnuplot
set title "Sine Curve" <-- label the plot
set grid <-- draw grid
set style data linespoints <-- mark data points.
plot "sine_table.txt" using 1:2 <-- X in column 1,

Y is column 2
quit <-- end gnuplot

43 / 1

EXERCISE: Reporting

Once you get the plot to display, please let Detelina know so she
can give you credit for the exercise!

That’s all for today!

44 / 1

