
Using the Lab

http://people.sc.fsu.edu/∼jburkardt/isc/week01/
lecture 02.pdf

..........
ISC3313:

Introduction to Scientific Computing with C++
Summer Semester 2011

..........
John Burkardt

Department of Scientific Computing
Florida State University

Last Modified: 09 May 2011

1 / 1

Introduction to Scientific Computing with C++

Introduction

Logging In

Directories

Compile and Run

Exercise: Create and Run a C++ Program

Conclusion

2 / 1

INTRO:

Today we will not have a regular lecture, because your instructor
is out of town on a business trip.

Today we will concentrate on helping you explore the lab
computers, and the software programs installed there.

We will have you go through some simple exercises:

logging in;

setting up your directory;

downloading a file using the browser;

editing a C++ program;

compiling a C++ program;

running an executable program;

We end with an in-class exercise that you must complete for credit.

3 / 1

Introduction to Scientific Computing with C++

Introduction

Logging In

Directories

Compile and Run

Exercise: Create and Run a C++ Program

Conclusion

4 / 1

LOGIN: Local Access

Students in this class can log into any computer in this lab.

You may also use the hallway computers on the fourth floor of
Dirac Science Library, from 8-5 every weekday.

The lab computers and hallway computers have a single, shared file
system. It doesn’t matter which machine you log into; you will
always have access to the same set of files.

To log in, you need to use your FSU ID and password.

Try it now! If you are unable to log in, please let us know!

5 / 1

LOGIN: Remote Access

You may find it useful to be able to move files between the lab
machines and your home computer.

You can access your files from your computer at home or another
lab, using programs such as

ssh for interactive use;

sftp to transfer files.

For instance, if your computer uses the Unix system, and you run
the ssh program from a terminal window, you can type:

ssh pamd.sc.fsu.edu

which will let you access your files on our system.

Windows users can get the free putty program for remote access.

6 / 1

Introduction to Scientific Computing with C++

Introduction

Logging In

Directories

Compile and Run

Exercise: Create and Run a C++ Program

Conclusion

7 / 1

DIRECTORIES: The Visual Interface

The lab computers run a version of the Linux operating system,
which includes a convenient visual interface.

You will see items on the top menu bar, including:

Applications,
Accessories

Terminal for command line interface;

Text Editor to create and modify files.

Programming

KDevelop C/C++ an IDE for C++ programming;

Places
System

logout from the system;

8 / 1

DIRECTORIES: Use the Browser to Get a File

You will also have icons on the left side, such as:

Web browser

Home for storing and organizing files;

Trash for deleting files.

Double click on the browser to start it, then go to
http://people.sc.fsu.edu/∼jburkardt/isc

Move to the Week 1 subdirectory.

Select the hello.cpp program.

Then, from the browser’s File menu, choose Save page as. The
default name and location are fine. Choose OK. The file will be
saved to the Desktop.

Choose Quit from the browser’s menu.

9 / 1

DIRECTORIES: Store the File in a Directory

Double click on the Home icon, which should open up your
home directory. There’s probably almost nothing there right now.
We want to put your file there, but in a separate subdirectory.

From the Edit menu item on your Home Directory window, choose
Create New... and then Folder. When asked for a name for the
folder, type week1. You should now see the image of a folder in
your Home Directory window.

Locate hello.cpp on your Desktop, and drag to the week1 folder.

When you “let go” of the file, you will be asked if you want to
copy or move the file. Choose move.

Click on the week1 folder, so you see the file hello.cpp there.

This suggests some of the ways in which the visual interface can
be used to view your folders and files, to create new folders and to
move files around.

10 / 1

DIRECTORIES: Using the Command Line Interface

While the visual interface is easier to use, there are times when
it is necessary to use what is called the command line interface.

This involves running the Terminal program, which opens a
command window. You type your commands in the window. The
terminal program uses the same file system as the visual interface.
What the visual interface calls folders we will now call directories.

You start in your home directory. You can use commands to move
to a new directory, to get a list of files in a directory, to create new
directories, and to move or copy files.

The commands we will use are known as unix commands; these
commands are very common across almost all computer systems
these days, except for Windows PC’s.

11 / 1

DIRECTORIES: Open a Terminal in Home Directory

The terminal program is available from the
Applications/Accessories menu.

The terminal always has a present working directory, that is, the
directory (or folder) where it is working. When the terminal
program begins, it starts in your home directory. Because
everything is done with words, not pictures, your home directory
can be identified by a long complicated name. We can always ask
the terminal program to give the name of its present working
directory with the pwd command:

pwd
/panfs/panasas1/users/jburkardt

Luckily, we rarely need to type this long name in. And there is a
shortcut name for your home directory: $HOME.

12 / 1

DIRECTORIES: Listing Directories and Files

Since we don’t have a visual interface, we need a command to
“see” what’s in the current directory. The ls command will “list”
the files it sees, as well as any subdirectories:

ls
week1

You probably don’t have any files in your home directory, so all we
see is the subdirectory we created with the visual interface.

Since week1 is a directory, we can use the ls command to take a
peek inside it:

ls week1
hello.cpp

and sure enough, the file you copied earlier shows up.

13 / 1

DIRECTORIES: Making Directories

We already created the week1 directory with the visual interface.

We can make subdirectories with the command line interface as
well. Let’s create a folder for next week’s work now, using the
mkdir command:

mkdir week2

Now the ls command will display two directories:

ls
week1 week2

14 / 1

DIRECTORIES: Moving Down to a New Directory

The cd command (change directory) is used to move from one
directory to another in the command line interface.

If we are moving down, that is, into a subdirectory of the current
directory, we just type the (short) name of our destination:

pwd
/panfs/panasas1/users/jburkardt

ls
week1 week2

cd week1
pwd
/panfs/panasas1/users/jburkardt/week1

ls
hello.cpp

15 / 1

DIRECTORIES: Moving Up to a New Directory

A directory can only have one directory “above” it. The
abbreviation .. (two dots) indicates this directory.

Let’s take a journey up from week1 to home, down to week2, back
up again to home, and finally back to week1:

pwd
/panfs/panasas1/users/jburkardt/week1

cd ..
pwd
/panfs/panasas1/users/jburkardt

cd week2
pwd
/panfs/panasas1/users/jburkardt/week2

cd ..
cd week1
pwd
/panfs/panasas1/users/jburkardt/week1

16 / 1

Introduction to Scientific Computing with C++

Introduction

Logging In

Directories

Compile and Run

Exercise: Create and Run a C++ Program

Conclusion

17 / 1

COMPILE: Finally, Let’s Compile!

One reason for the command line interface is that it’s a simple
way to compile and run programs.

The compiler for C++ on our system is called g++.
Its full name is the Gnu C++ compiler.

The short and simple command to compile hello.cpp is:

g++ hello.cpp

If no errors occurred, we have a new file in our directory, the
executable program a.out. We can run this by the command:

./a.out
Hello, world!

18 / 1

COMPILE: Renaming a Program

You can change the name of a program (or any file) with the mv
command.

Every time we use the compiler to make an executable program, it
will be called a.out by default. So it might make sense to issue the
following command:

mv a.out hello

This way, if we compile another program, we won’t lose the ”Hello,
world!” program. Moreover, the name of the program reminds us
of what it does. To run the renamed program, we would say:

./hello
Hello, world!

19 / 1

COMPILE: Saving Program Output

Most programs print some kind of message to the user’s screen.
In C++, output to the user’s screen is called standard output.

Sometimes, it is useful store program output in a file. You might
want to mail it to someone, print it out, or save it for reference.

This is easy to do, using the output redirection operator, which
is the “greater than” sign >.

If we issue the ls command, for instance, we can save the results by

ls > my_files.txt

and if we have renamed our ”Hello, world!” program, we can save
its output by

./hello > hello.txt

20 / 1

COMPILE: Saving Program Output

You can also save program output using the visual interface.

1 Run the program as usual.
2 Use the mouse to select the output on the screen.
3 Under the Edit menu on the Terminal, select Copy.
4 Start an editor (such as kedit or gedit and under the Edit

menu, select Paste.

./hello
Hello, world!

gedit hello.txt
(Now cut and paste the output on the screen into the empty file.

Then save and close the file.)

21 / 1

Introduction to Scientific Computing with C++

Introduction

Logging In

Directories

Compile and Run

Exercise: Create and Run a C++ Program

Conclusion

22 / 1

PROGRAM: Edit a Program

It is too soon to expect you to create a C++ program on your
own. However, we can go through the motions, by entering the
text of a program that has already been written.

It’s possible you have used an IDE (Interactive Development
Environment) for doing programming, which is a more visual way
to work on code.

But to start with, we will look at the simplest technique, using the
same kind of text editor you would use to write a letter.

23 / 1

PROGRAM: Edit a Program

You can start up an editor in the Terminal:

Type pwd to make sure you are in the week1 directory.

Type kedit add ints.cpp to start the editor;

Type in the lines on the next page, then save and exit.

or, using the Visual Interface:

Choose Applications / Accessories / Text editor

A blank window opens up; type in the lines on the next page.

Choose the editor Menu item File/Save;

Name the file add ints.cpp, and use Browse for other
folders to save it in the week1 directory.

Exit the editor

24 / 1

PROGRAM: Edit a Program

include <iostream>
using namespace std;

int main ()
{

int number1, number2, number3;

cout << "Enter first integer: ";
cin >> number1;
cout << "Enter second integer: ";
cin >> number2;

number3 = number1 + number2;

cout << "The sum is " << number3 << "\n";
} 25 / 1

PROGRAM: Compile and Run Your Program

Using the terminal application in the week1 directory, compile
your program:

g++ add ints.cpp

If any errors occurred, you may have to go back into the editor and
try to correct them.

Now run your program, with the following input:

./a.out
Enter first integer: 123456789
Enter second integer: 987654321
The sum is _______

This is the end of the in-class exercise. To get credit, please show
Detelina your computer screen with the results, or save the output
and email it to her at dks10d@fsu.edu

26 / 1

Introduction to Scientific Computing with C++

Introduction

Logging In

Directories

Exercise: Create and Run a C++ Program

Conclusion

27 / 1

CONCLUSION:

When you work on the lab computers, you need to become
familiar with the visual interface and the terminal interface.

We have learned some basic Unix commands today:

cd to change directories

ls to list files;

mv to rename a file;

pwd to report the present working directory;

and how to start some programs from the command line:

./a.out, a user program with the default name of a.out

g++, the compiler

kedit, the editor;

28 / 1

