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 Turning Lights Out with Linear Algebra

 MARLOW ANDERSON
 Colorado College

 Colorado Springs, CO 80903

 TODD FEIL
 Denison University

 Granville, OH 43023

 The game Lights Out, commercially available from Tiger Electronics, consists of a
 5 x 5 array of 25 lighted buttons; each light may be on or off. A move consists of

 pushing a single button. Doing so changes the on/off state of the light on the button
 pushed, and of all its vertical and horizontal neighbors. Given an initial configuration
 of lights which are turned on, the object is to turn out all the lights.

 A complete strategy for the game can be obtained using linear algebra, requiring
 only knowledge of Gauss-Jordan elimination and some facts about the column and
 null spaces of a matrix. All calculations are done modulo 2.

 We make some initial observations.

 1. Pushing a button twice is equivalent to not pushing it at all. Hence, for any given
 configuration, we need consider only solutions in which each button is pushed
 no more than once.

 2. The state of a button depends only on how often (whether even or odd) it and its
 neighbors have been pushed. Hence, the order in which the buttons are pushed
 is immaterial.

 We will represent the state of each light by an element of Z2, the field of integers
 modulo 2; 1 for on, and 0 for off. We will denote the state of the light in the ith row

 and jth column by bi j, an element of Z2, and the entire array by a 25 x 1 column
 vector b, with entries ordered as follows:

 b = (bI,I, bI,2,- , bl,5, b2, 1, b55 5)

 (T stands for transpose). We will call such a vector a configuration of the array.
 Pressing a button changes the configuration vector by adding to b a vector that has

 l's at the location of the button and its neighbors and O's elsewhere. The order of
 pushing buttons makes no differences, so we may represent a strategy by another
 25 X I column vector x, where xi is 1 if the (i,j) button is to be pushed, and 0
 otherwise.

 If we start with all the lights out and configuration b is obtained by strategy x, then

 b 1 =XI1, +X1,2 +X2,1,

 b1,2 = X1,I + X1,2 + X1,3 + X2,2,

 b1,3 = xI2 + X1,3 + X1,4 + X2,3-
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 More generally, it is straightforward to check that the result b of the strategy x is the
 matrix product Ax = b, where A is the 25 X 25 matrix:

 B I 1 0 0

 I B I 0

 A= 0 I B I 0
 0 0 I B I

 O O O I B)

 here I is the 5 x 5 identity matrix, 0 is the 5 X 5 matrix of all zeros, and B is the
 matrix

 I I 0 0 0
 1 1 1 0 0

 B= 0 1 1 1 0

 O 0 1 1 1

 O O 0 1 1

 Note that B is a symmetric matrix, and so A is symmetric too.
 Given an arbitrary configuration b, we will say that b is winnrable if there exists a

 strategy x to turn out all the lights in b. The key observation is as follows:

 If a set of buttons is pushed to create a configuration, then starting with
 that configuration and pressing the samne set of buttons will turn the lights
 out.

 That is, to find a strategy to turn out all the lights in b, we need to solve b = Ax. Thus,
 a configuration b is winnable if and only if it belongs to the column space of the
 matrix A; we denote the latter by Col( A).

 To analyze Col(A), we perform Gauss-Jordan elimination on A. This would be
 tedious to perform by hand, but is easier using any computer algebra system capable
 of handling matrices with entries from Z2; Maple or Mathematica will do the job.
 Gauss-Jordan will yield RA = E, where E is the Gauss-Jordan echelon form, and R is
 the product of the elementary matrices which perform the reducing row operations.
 The matrices R and E are rather formidable, and not particularly illuminating. We
 will not display them here but invite the reader to calculate them using a favorite
 computer algebra system.

 Having done this calculation, we see that the matrix E is of rank 23, with two free

 variables X5,4 and x5,5 in the last two columns. Indeed, the last two columns of E are
 (O, 1, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,O, 1,O, 1,O, 1, 1,O,0) T

 and

 (1,0,1,0,1,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1, ,O)T

 Now A is a symmetric matrix, and so Col(A) equals the row space of A, denoted
 Row( A). But Row( A) is the orthogonal complement of the null space of A (denoted
 Null( A)), which in turn equals Null(E). So, to describe Col( A), we need only
 determine a basis for Null(E).

 Since E is in Gauss-Jordan echelon form, it is easy to find an orthogonal basis for
 Null(E) by examining the last two columns of E:

 __> = (nl 1, 1, 1, 0, 1, nl 1, nl 1, 1, 1, 0,1, n 1, 1, nl , nl, 1, 1, n T

This content downloaded from 198.82.230.35 on Wed, 08 Nov 2017 18:43:31 UTC
All use subject to http://about.jstor.org/terms



 302 MATHEMATICS MAGAZINE

 and

 n2= (1,O,1,,1,1,0,1,O,1,O,0,O,O,O,1,O,1,O,1,1,O,10,O,1)T

 Putting this together, we have the following:

 THEOREM 1. A configuration b is winnable if and only if b is perpendicular to the
 two vectors nc arnd n2'

 Therefore, to see if a configuration is winnable, we simply compute the dot product
 of that configuration with n' and n2. For example, consider the configurations below
 (which we have shaped as 5 X 5 arrays):

 0 1 0 00 (1 0 0 1 0

 o 0 1 00 0 0 1 0 0
 f= 0 1 0 1 0 = 0 1 1 0 1.

 0 1 1 0 1 0 1 0 0 0
 I 0 0 0 0 I 0 0 0 0

 Then f is winnable, while g is not (g is not perpendicular to n2).
 Since the dimension of the null space is 2, and the scalar field is Z2, it follows from

 this theorem that of the 225 possible configurations, only one-fourth of them are
 winnable. Furthermore, if b is a winnable configuration with winning strategy x, then
 x+ n, x + `2 and x + n- + n2 are also winning strategies.

 Suppose now that b is a winnable configuration. We would like to find one of the
 four strategies x for which Ax'= b. But since we need only find one solution, we may

 as well set the two free variables x5,4 and x55 equal to zero. In this case x= 137 So,
 x= Ex5 = RAx = Rb. Explicitly, we have a winning strategy given by x = Rb. We thus
 have the following theorem:

 THEOREM 2. Suppose that b is a winnable configuration. Then the four winning
 strategies for b are

 Rb, Rb + ni, Rb + n2, Rb + n + n2'

 We observed above that the configuration f is winnable. To find a winning strategy,
 we compute Rf (where we reshape f as a column vector):

 Rf = (0,0, ,1, 0,0,0,0,0, 1,0,0,0,0, 1,0, 1,,0,0,0, O,,0,0,0)T.

 This theorem gives our solutions in closed, computable form. Admittedly, this
 computation is tedious to do by hand, preserving the game's appeal. We can do better
 than completing the entire computation, if we proceed algorithmically. For suppose
 we only compute the strategy for the first row (that is, the first five entries in the
 column Rb). We then carry out these moves; Theorem 2 says that no more moves in
 the first row are necessary. We then look to see if there are any lights on in the first
 row. The only way to turn these out, using moves in the last four rows, is to push the
 button immediately below each light which is on. Having now determined a strategy
 for the first two rows, we then move on to each successive row in the same way.

 Lights Out can be generalized to an n X n array of lights. One can proceed in a
 manner similar to the way we solved the 5 X 5 case. What is interesting is the
 dimension of the null space of the corresponding matrices for various values of n
 (we call these n2 x n2 matrices An); the table below summarizes the results.
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 Of course if the dimension of the null space is zero, every configuration is winnable
 and the solution unique (if no buttons are pressed more than once). We haven't spent
 any time trying to solve some of these larger puzzles, but they must be very difficult!

 Dimension Dimension

 n of Null(A,,) n of Null(A,,)
 2 0 12 0

 3 0 13 0

 4 4 14 4
 5 2 15 0

 6 0 16 8

 7 0 17 2

 8 0 18 0

 9 8 19 16

 10 0 20 0
 11 6 21 0

 A further natural generalization is to consider Lights Out on a torus; that is, lights
 on the top row are considered neighbors of lights on the bottom row, and likewise for

 the leftmost and rightmost columns. This "wrap around" changes the matrices A,I, of
 course. (We leave this as an exercise for the reader.) Here are some corresponding
 results for the game on tori of various sizes:

 Dimension Dimension

 n of Null(An) n of Null(A,,)
 2 0 12 16

 3 4 13 0

 4 0 14 0

 5 8 15 12

 6 8 16 0

 7 0 17 16

 8 0 18 8

 9 4 19 0

 10 16 20 32

 11 0 21 4
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