
  

Intro Math Problem Solving
November 7

Contour and Surface Plots
A Temperature Field Contour
Slicing the Data
A Model of Cooling
Animating Time Data



  

Final Project

I have posted information about the final project 
in the Canvas directory final_project.  It  looks 
something like a homework set, except 
somewhat longer and harder.  

The final project should be turned in by midnight, 
12 December, our last class meeting day.

If you prefer to do a personalized final project, 
you must tell me so before November 16th   
(last class before Thanksgiving break).  
Suggested topics are in the projects directory.



  

Reference

Chapter 7, Section 2 and 3 of our textbook 
“Insight Through Computing” discuss the way 
way a temperature problem can be set up on a 
grid of points, and displayed with a contour  
plot.

 

.



  

Contour and Surface Plots



  

Contours: 3D data on 2D Paper

The first contour maps were used to record the variations in 
elevation in mountainous areas.  Starting from a standard 
“flat” map, careful measurements of height were made over 
the regions.  All points at a height of 100 feet were 
connected by a curve, then 200 feet, 300 feet, and so on. 

The resulting map gave enough information to determine how 
to cross a mountain, or follow a stream bed, or find high 
points.

If we think of the underlying “flat map” as using (X,Y) 
coordinates, then the contour map is giving us a way to 
record a Z coordinate of height.  



  

No Labels, Labels, Colors, Filled



 

Contours for any old function

The MATLAB plot() command helps us visualize 
simple functions of the form y=f(x), but we need a 
way to visualize functions of two variables: 
                       z = f(x,y)

Think of z as an elevation, that depends on the 
coordinates x and y.  We can draw contours of the 
“hills” and “valleys” of this function.  
Our eyes will be able to understand this information 
and register any patterns that emerge.



 

MATLAB Contours

MATLAB includes functions contour(), contour3(), 
contourf(), and surf() for these plots, along with 
useful functions like colorbar() and clabel().  

If the data is on an x, y grid, we prepare by setting:

x = linspace ( xlo, xhi, n );  % <- vector of x’s

y = linspace ( ylo, yhi, m ); % <- vector of y’s

[ X, Y ] = meshgrid ( x, y ); % <-  X and Y matrixes

Z = f(X,Y);     % <- Create matrix of Z values.



 

Example Data Setup

m = 49;

n = 49;

x = 1:n;

y = linspace ( 1, m, m );

[ X, Y ] = meshgrid ( x, y );

Z = peaks ( X, Y );   % <- Built in MATLAB function



 

Example plots 1, 2, 3, 4

% Make a basic contour plot.

contour ( X, Y, Z )

title ( 'contour(X,Y,Z)','FontSize', 24 )

%  Request 20 contour levels.

contour ( X, Y, Z, 20 )

title ( 'contour(X,Y,Z,20)','FontSize', 24 )

%  Request labels for contour lines.

[ C, h ] = contour ( X, Y, Z );

clabel ( C, h )

title ( '[C,h]=contour(X,Y,Z); clabel(C,h)','FontSize', 12 )

%  Include a color bar.

contour ( X, Y, Z, 15 )

colorbar()

title ( 'contour(X,Y,Z,15); colorbar','FontSize', 24 )



 

Examples 1, 2, 3, 4



 

Example plots 5, 6, 7, 8



 

A Temperature Field Contour



 

Display a field of temperatures T(X,Y)

(0,0) (6,0)

(0,4) (6,4)



 

A Temperature Field

Suppose that in the rectangle [0,6] x [0,4], we 
placed two heat sources at (1,3) and (5,1),  and 
let the heat spread across the region over time.

Suppose that the resulting temperature distribution 
has the form

T(x,y) = 100 e^(-0.4*(     (x-1)^2+0.7*(y-3)^2 ) )

          +    80 e^(-0.2*( 2*(x-5)^2+1.5*(y-1)^2) )

Can we display this temperature field?



 

Visualize temperature distribution—contour plot

(0,0) (6,0)

(0,4) (6,4)



 

Contour Procedure

Choose n values for vector of values x over [0,6];

Choose m values for vector of values y over [0,4];

Create arrays X and Y over [0,6] x [0,4].

Evaluate function T(X,Y) to get "Z" array.

Call contour() or contour3() or contourf() or surf().

Optional calls to colorbar() or clabel().



 

Choosing N and M

The region is 6 wide by 4 tall.

To define a grid of squares, we would use 

  n = multiple of 6 + 1; (width)

  m = multiple of 4 + 1; (height)

Remember why we have to add 1!

(0,0) (6,0)

(0,4) (6,4)



 

Set grid: X and Y

% x and y are vectors, simple lists.

%

xvec = linspace ( 0.0, 6.0, n );

yvec = linspace ( 0.0, 4.0, m );

%

%  X and Y are tables or matrices!

%

[ X, Y ] = meshgrid ( xvec, yvec );



 

temperature_grid.m

function [ X, Y ] = temperature_grid ( k )

%% temperature_grid defines arrays X and Y for the temperature problem.

%

%  K controls the fineness of the grid.

%

  xvec = linspace ( 0.0, 6.0, k*6+1 );

  yvec = linspace ( 0.0, 4.0, k*4+1 );

  [ X, Y ] = meshgrid ( xvec, yvec );

  return

end



 

[X,Y] = MESHGRID(x,y)?

y=4 | 0,4  1,4  2,4  3,4  4,4  5,4  6,4

y=3 | 0,3  1,3  2,3  3,3  4,3  5,3  6,3

y=2 | 0,2  1,2  2,2  3,2  4,2  5,2  6,2

y=1 | 0,1  1,1  2,1  3,1  4,1  5,1  6,1

y=0 | 0,0  1,0  2,0  3,0  4,0  5,0  6,0

    +--^----^----^----^----^----^----^--

      x=0  x=1  x=2  x=3  x=4  x=5  x=6



 

[X,Y] = MESHGRID(x,y)?

     0  1  2  3  4  5  6

     0  1  2  3  4  5  6

X =  0  1  2  3  4  5  6

     0  1  2  3  4  5  6

     0  1  2  3  4  5  6

     4  4  4  4  4  4  4

     3  3  3  3  3  3  3

Y =  2  2  2  2  2  2  2

     1  1  1  1  1  1  1

     0  0  0  0  0  0  0



 

temperature.m

Formula:

  T(x,y) = 100 e^(-0.4*(     (x-1)^2+0.7*(y-3)^2 ) )

            +    80 e^(-0.2*( 2*(x-5)^2+1.5*(y-1)^2) )

Function:

  function T = temperature ( X, Y )

  % X, Y, and T can be arrays, so use dot operators!

    arg1 = -0.4 * (         ( X-1.0) .^ 2 + 0.7 * (Y-3.0) .^ 2 );

    arg2 = -0.2 * ( 2.0 * (X-5.0) .^ 2 + 1.5 * (Y-1.0) .^ 2 );

    T = 100.0 * exp ( arg1 ) + 80.0 * exp ( arg2 );

    return

  end



 

Simple Contour Plot

k = 2;

[X,Y] = temperature_grid ( k );

T = temperature ( X, Y );

contour ( X, Y, T, 25 );   % <- 25 contour lines

colorbar ( );



 

temperature contour plot



 

Specifying the Contour Levels

contour(X,Y,Z) will use 10 contour levels, equally 
spaced between Zmin and Zmax.

contour(X,Y,Z,25) will use 25 such levels.

You can pick your own vector of contour levels:

  cvec = linspace ( 20.0, 40.0, 11 );

  contour(X,Y,Z,cvec);



 

20 <= Contours <= 40 



 

Simple Surface Plot

k = 2;

[X,Y] = temperature_grid ( k );

T = temperature ( X, Y );

surf ( X, Y, T );

colorbar ( );



 

temperature surface plot



 

Slicing the Data



 

Slicing the Data

The contour plot suggests that the temperature field has peak values at (1,3) 
and (5,1).  

We can make "slices" of the data to see this more closely:

Let x go from 0 to 6, while y = 3, and plot.

      xvec = linspace ( 0.0, 6.0, 101 );   <- xvec is a row vector

      yvec = 3.0 * ones ( 1, 101 );          <- make yvec a row vector = 3

      zvec = temperature ( xvec, yvec ); 

      plot ( xvec, zvec );

      



 

Plotting T(X,3)



 

Sample T(X,Y) along a Line

We can interactively select a slicing line  temperature_contour ( );

  figure ( 1 )

  k = 2;

  [X,Y] = temperature_grid ( k );

  T = temperature ( X, Y );

  temperature_contour ( X, Y, T )

  [ x1x2, y1y2 ] = ginput ( 2 );

  figure ( 2 )

  xvec = linspace ( x1x2(1), x1x2(2), 101 );

  yvec = linspace ( y1y2(1), y1y2(2), 101 );

  zvec = temperature ( xvec, yvec );

  plot ( xvec, zvec, 'Linewidth', 3 );:



 

Our Slicing Line



 

Temperature along the Line



  

A Model of Cooling



  

How Temperature Settles Down

Our 6x4 rectangle had a specified temperature 
distribution given by the function T(X,Y).  This 
distribution included some two "hot spots".  

In our experience, hot spots tend to spread and 
settle down.  

Can we come up with a MATLAB model of 
temperature that starts with our given distribution 
T(X,Y), and then behaves like real physical 
objects for which hot spots cool down?



  

The Boundary Problem

Physical objects are in contact with the outside 
world.  The boundary of our rectangle must be 
touching other objects with a given temperature, 
and this contact will affect the results.

To simplify the problem, we will assume that the 
boundary of the rectangle is bathed in ice water, 
and so has a temperature of 0 degrees Celsius.

Our grid will not involve boundary nodes, where the 
temperature will always be 0, and interior nodes 
where we expect cooling to occur.

Let's define this new temperature field.



  

temperature2.m

function T = temperature2 ( X, Y )

  arg1 = -0.4  * (      (X-1.0) .^ 2 + 0.7 * (Y-3.0) .^ 2 );

  arg2 = -0.2 * ( 2.0 * (X-5.0) .^ 2 + 1.5 * (Y-1.0) .^ 2 );

  T = 100.0 * exp ( arg1 ) + 80.0 * exp ( arg2 );

  T(1,:) = 0.0;         % <- T(1,1:n) = 0;

  T(end,:) = 0.0;     % <- T(m,1:n) = 0;

  T(:,1) = 0.0;         % <- T(1:m,1) = 0;

  T(:,end) = 0.0;     % <- T(1:m,n) = 0

  return

end



  

T(:,end) = 0?

We can set an entire MxN matrix T to 0 by writing 

       T = 0;        or       T = zeros(m,n);

or even using a FOR loop.

But to set row i to zero, we can write

       T(i,1:n) = 0;       or       T(i,:) = 0

To set column j to zero, we can write

       T(1:m,j) = 0;       or      T(:,j) = 0

To set the last row or last column to zero:

       T(end,:) = 0;      T(:,end) = 0;

":" means "everything in this dimension";

"end" means "last row" or "last column";



  

Surface Plot with Zero Boundary



  

Contour Plot with Zero Boundary



  

A Cooling Model

We simulate the cooling process by setting the 
temperature to the initial field, and calling that time 
step 0.

Then we model the temperature at time steps = 1, 2, 
3, ... (without specifying the units of time.)  

Our model of cooling uses the following rule:

To find the temperature at any interior node, average 
the temperatures of the four neighbors at the 
previous time.



  

New Blue = Average Old Reds

                            i-1,j

                   O        O          O

                               |

           i,j-1  O------ O --------O  i,j+1

                               |           

                   O        O          O

                           i+1,j



  

Cooling with a FOR Loop

Told = T;

for i = 2 : m – 1

  for j = 2 : n – 1

    T(i,j) = 0.25 * (  Told(i-1,j) ...  (west)

                           + Told(i+1,j) ... (east)

                           + Told(i,j-1) ...  (south)

                           + Told(i,j+1) );  (north)

  end

end



  

Cooling with Colons

function T = cooling ( T )

  Told = T;

  [ m, n ] = size ( T );

  T(2:m-1,2:n-1) = 0.25 * (  Told(1:m-2,2:n-1) ..  (west).

                                        + Told(3:m,2:n-1) ...    (east)

                                        + Told(2:m-1,1:n-2) ...(north)

                                        + Told(2:m-1,3:n) );    (south)

  return

end



  

What Do We Do With Our Data?

If we run our program, we can see the maximum temperature decreases, but that 
doesn’t tell us very much!

Step  0, 0 <= T <= 100.04

Step  1, 0 <= T <= 97.9448

Step  2, 0 <= T <= 95.9389

Step  3, 0 <= T <= 94.0168

Step  4, 0 <= T <= 91.6163

Step  5, 0 <= T <= 88.7641

Step  6, 0 <= T <= 85.6495

Step  7, 0 <= T <= 83.0865

Step  8, 0 <= T <= 80.9457

Step  9, 0 <= T <= 78.7251

Step 10, 0 <= T <= 76.4688



  

Animating Time Data



  

Animate a Plot Sequence

A table of data overloads our brain, but our eye can spot 
patterns if we convert the data to a plot.

In the same way, having a sequence of plots can 
overwhelm our brain, but if we can add animation, then 
the skills we use to live in the world can help us see 
patterns in the moving data.

We will look at a simple technique for animating a 
sequence of contour or surface plots associated with our 
cooling problem.

Our basis tools are a for loop and the pause command.



  

Display a Contour Sequence

for step = 0 : 10

  if ( step == 0 )

    [ X, Y ] = temperature_grid ( 4 );

   T = temperature2 ( X, Y );

  else

    T = cooling ( T );

  end

  temperature_contour ( X, Y, T );

  pause ( 1 );         <- Wait 1 second, before moving on.

end



  

Step 20 in Contour Sequence



  

Step 20 in Surf Sequence



  

Scaling Problem

As the contour and surface animations proceed, we notice 
that the scale on the colorbar keeps changing.  Although 
the temperature is decreasing, the scale is updated so 
that the current highest temperature shows as red.

In the surface plot, the vertical scale keeps adjusting so 
that the “peaks” are kept high.

Since the temperature is cooling, we may instead want to 
use a fixed scale for all the images.

Then we will see things turn “blue” or go flat.



  

Define and Use a Fixed Scale

To use a fixed scale, we compute the initial temperature 
field T, and record the minimum and maximum values at 
this starting time:

      tmin = min ( min ( T ) );

      tmax = max ( max ( T ) );

Then we call caxis ( [tmin,tmax] ), which tells the colorbar 
to reference these original values, rather than using the 
minimum and maximum observed at the current step.



  

Displaying Scaled Contours

 for step = 0 : stepmax

    if ( step == 0 )

      [ X, Y ] = temperature_grid ( 4 );

      T = temperature2 ( X, Y );

      tmin = min ( min ( T ) );

      tmax = max ( max ( T ) );

    else

      T = cooling ( T );

    end

    title_string = sprintf ( 'Temperature, Step %d', step );

    temperature_contour_scale ( X, Y, T, tmin, tmax, title_string );

    pause ( 1 );

  end



  

temperature_contour_scale.m

function temperature_contour_scale ( X, Y, T, tmin, tmax, title_string )

  contour ( X, Y, T, 25, 'LineWidth', 3 );

  colorbar ( );

  colormap ( jet );

  caxis ( [ tmin, tmax ] );       % <- Color bar scale based on TMIN, TMAX

  

  title ( title_string, 'Fontsize', 24 );

  return

end



  

Step 20, Scaled Contours



  

Step 20, Scaled Surface
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