

Intro Math Problem Solving
November 2

Lightening A Dark Image
Repairing A Damaged Image
Finding Edges in an Image
Homework #9

Reference

Chapter 12, Section 4 of our textbook
“Insight Through Computing” discusses
the way black-and-white and color
image data is stored and manipulated.

.

Lighten a Dark Image

Dark Image

Many photographs are taken in bad light, or have
been badly developed.

Darkened images, in particular, are hard for the
eye to interpret, whereas lighter shades are
easier to "read".

For this photograph, we can display how the dark
and light shades have been used by counting
how many times each gray shade was used,
between 0 and 255.

In other words, we want a bar plot or histogram.

Convert Back and Forth

When working with image data, sometimes it
will be easier to make a "double" copy of the
uint8 array, and then use any numerical
operations we want, and at the end, convert
the whole array back to uint8 format:

 A = double (I); % <- copy I
 ... % <- work on A
 I = uint8 (A); % <- replace I with results

Why So Dark?

A histogram of the gray levels will show how
often each shade is used. However,
MATLAB's hist() command will only accept
"double" information, and it must be a vector:

I = imread ('snap.png');
G = double (I); <- Convert to double
[m, n] = size (G);
gvec = reshape (G, m * n, 1); <- Column vector
hist (gvec, 256); <- histogram

RESHAPE: Matrix -> Vector

MATLAB’s histogram plotting command hist(g,n) expects the
input to be a 1D vector of type “double”, but we want to
histogram all the data in an image (a 2D matrix of type
uint8).

We have seen before how to use the double() function to
convert the uint8 data to the right type.

We introduce MATLAB’s reshape() command:
 a_new = reshape (a_old, m_new, n_new);
which copies data in the MxN object A_OLD into the M_NEW

x N_NEW object A_NEW. We can easily copy the matrix
data into a vector shape.

RESHAPE Examples

A = [11, 12, 13;
 21, 22, 23]; <- 2x3 matrix
b = reshape (A, 1, 6); <- 1x6 row vector
b <- [11, 21, 12, 22, 13, 23];

C = reshape (A, 3, 2); <- 3x2 matrix
C <- [11, 22;
 21, 13;
 12, 23];

Heavy use of Darkest Grays

Lighten the Levels

We are hardly using the lighter gray levels in the
picture. Most of the picture information is
presented in dark grays. Our eye has trouble seeing
the details. A better picture would spread the
information out.

Here are two ways we can try:
1) Double all grays between 0 and 127;
 Grays above 127 become 255;

2) Gray -> sqrt(Gray/255) * Gray;

Doubling

I = imread ('snap.png');
i1 = (I < 128);
i2 = (128 <= I);
I2(i1) = 2 * I(i1); % <- Double the darks
I2(i2) = 255; % <- Lights -> White
imshow (I2);

Lightening by Doubling

Sqrt

I = imread ('snap.png');
G = double (I);
G = sqrt (G / 255) * 255;
I3 = uint8 (G);
imshow (I3);

Lighten by Sqrt

Compare Double vs Sqrt

Dark, Medium, Light

We can separate the dark, medium and light sectors:

I = imread ('snap.png');
i1 = (I < 25);
i2 = (25 <= I & I < 100);
i3 = (100 <= I);

I2 = I;
I2(i1) = 0;
I2(i2) = 127;
I2(i3) = 255;
imshow (I2);

3 shades: Black, Medium Gray, White

Repairing Damaged Images

1458-by-2084

 150 149 152 153 152 155
 151 150 153 154 153 156
 153 151 155 156 155 158
 154 153 156 157 156 159
 156 154 158 159 158 161
 157 156 159 160 159 162

 Just a Bunch of Numbers

1458-by-2084

 150 149 152 153 152 155
 151 150 153 154 153 156
 153 2 3 156 155 158
 154 2 1 157 156 159
 156 154 158 159 158 161
 157 156 159 160 159 162

 Dirt!

Note how the
“dirty pixels”
look out of place

Can We Filter Out the “Noise”?

1458-by-2084

 150 149 152 153 152 155
 151 150 153 154 153 156
 153 ? ? 156 155 158
 154 ? ? 157 156 159
 156 154 158 159 158 161
 157 156 159 160 159 162

 Idea

Assign “typical”
neighborhood
gray values to
 “dirty pixels”

Getting Precise

“Typical neighborhood gray values”

Could use
Median

Or
Mean

radius 1 radius 3

We’ll look at “Median Filtering” first…

Median Filtering

Visit each pixel.

Replace its gray value by the median
of the gray values in the “neighborhood”.

Using a radius 1 “Neighborhood”

6

7

6

7

6

7

7

6

6

6

7

6

7

0

7

7

6

6

Before After

0
6
6
6
6
7
7
7
7

How to Visit Every Pixel

m = 9

n = 18

for i=1:m
 for j=1:n
 Compute new gray value for pixel (i,j).
 end
end

i = 1

j = 1

Original:

Filtered:

Replace with the median of the values under the window.

i = 1

j = 2

Original:

Filtered:

Replace with the median of the values under the window.

i = 1

j = 3

Original:

Filtered:

Replace with the median of the values under the window.

i = 1

j = n

Original:

Filtered:

Replace with the median of the values under the window.

i = 2

j = 1

Original:

Filtered:

Replace with the median of the values under the window.

i = 2

j = 2

Original:

Filtered:

Replace with the median of the values under the window.

i = m

j = n

Original:

Filtered:

Replace with the median of the values under the window.

What We Need…

(1) A function that computes the median
value in a 2-dimensional array C:

 m = medVal(C)

(2) A function that builds the filtered
image by using median values of radius r
neighborhoods:
 B = medFilter(A,r)

Computing Medians

21 89 36 28 19 88 43x :

x = sort(x)

19 21 28 36 43 88 89x :

n = length(x); % n = 7
m = ceil(n/2); % m = 4
med = x(m); % med = 36

If n is even, then use : med = (x(m) + x(m+1))/2

Median of a 2D Array C

function med = medVal(C)

 [p,q] = size(C);

 x = reshape (C, 1, p*q);

% x = sort (x);

% middle = ceil ((p * q) / 2)

% med = x(middle);

 med = median (x);

 return

end

Medians vs Means

A =
 150 151 158 159 156
 153 151 156 155 151
 150 155 152 154 159
 156 154 152 158 152
 152 158 157 150 157

Median = 154 Mean = 154.2

Medians vs Means

A =
 150 151 158 159 156
 153 151 156 155 151
 150 155 0 154 159
 156 154 152 158 152
 152 158 157 150 157

Median = 154 Mean = 148.2

Back to Filtering…

m = 9

n = 18

for i=1:m
 for j=1:n
 Compute new gray value for pixel (i,j).
 end
end

Window Inside…

m = 9

n = 18

New gray value for pixel (7,4) =

 medVal(A(6:8,3:5))

Window Partly Outside…

m = 9

n = 18

New gray value for pixel (7,1) =

 medVal(A(6:8,1:2))

Window Partly Outside…

m = 9

n = 18

New gray value for pixel (9,18) =

 medVal(A(8:9,17:18))

function B = medFilter(A,r)
% B from A via median filtering
% with radius r neighborhoods.

[m,n] = size(A);
B = A;
for i=1:m
 for j=1:n
 C = pixel (i,j) neighborhood
 B(i,j) = medVal(C);
 end
end

The Pixel (i,j) Neighborhood

iMin = max(1,i-r)

iMax = min(m,i+r)

jMin = max(1,j-r)

jMax = min(n,j+r)

C = A(iMin:iMax,jMin:jMax)

r = 1 r = 2

Am

n

I = imread (‘glassware_noisy.png’)

I2 = MedianFilter (I);

What About Using the Mean
instead of the Median?

Replace each gray value with the average gray
value in the radius r neighborhood.

Bits of noise don’t get removed, just smeared
around. They are still visible.

I3 = MeanFilter (I)

Why it Fails

 150 149 152 153 152 155
 151 150 153 154 153 156
 153 2 3 156 155 158
 154 2 1 157 156 159
 156 154 158 159 158 161
 157 156 159 160 159 162

85 86
87 88

The mean does not
capture representative
values.

Finding Edges

What is an Edge?

Near an edge, grayness values
change abruptly

 200 200 200 200 200 200
 200 200 200 200 200 100
 200 200 200 200 100 100
 200 200 200 100 100 100
 200 200 100 100 100 100
 200 100 100 100 100 100

General plan for showing the edges in in image

• Identify the “edge pixels”
• Highlight the edge pixels

– make edge pixels white; make everything else black

 200 200 200 200 200 200
 200 200 200 200 200 100
 200 200 200 200 100 100
 200 200 200 100 100 100
 200 200 100 100 100 100
 200 100 100 100 100 100

General plan for showing the edges in in image

• Identify the “edge pixels”
• Highlight the edge pixels

– make edge pixels white; make everything else black

 200 200 200 200 200 200
 200 200 200 200 200 100
 200 200 200 200 100 100
 200 200 200 100 100 100
 200 200 100 100 100 100
 200 100 100 100 100 100W H I T E

BLACK

BLACK

The Rate-of-Change-Array

Suppose A is an image array with integer
values between 0 and 255

B(i,j) be the maximum difference between
A(i,j) and any of its eight neighbors.

The Rate-of-Change-Array

Suppose A is an image array with integer
values between 0 and 255

Let B(i,j) be the maximum value in

 A(max(1,i-1):min(m,i+1),...
 max(1,j-1):min(n,j+1)) - A(i,j)

Neighborhood of A(i,j)

Rate-of-change example

59

90

58

60

56

62

65

57

81
Rate-of-change at
middle pixel is 30

Be careful! In “uint8 arithmetic”
 57 – 60 is 0

function Edges(jpgIn,jpgOut,tau)
% jpgOut is the “edge diagram” of image jpgIn.
% At each pixel, if rate-of-change > tau
% then the pixel is considered to be on an edge.

A = rgb2gray(imread(jpgIn));
[m,n] = size(A);
B = uint8(zeros(m,n));
for i = 1:m
 for j = 1:n

 B(i,j) = ?????

 end
end

Built-in function to
convert to grayscale.
 Returns 2-d array.

Recipe for rate-of-change B(i,j)
% The 3-by-3 subarray that includes

% A(i,j) and its 8 neighbors

Neighbors = A(i-1:i+1,j-1:j+1);

% Subtract A(i,j) from each entry

Diff= abs(double(Neighbors)– ...

 double(A(i,j)));

% Compute largest value in each column

colMax = max(Diff);

% Compute the max of the column max’s

B(i,j) = max(colMax);

function I2 = rgb_edges(I,tau)
% I2 is the “edge diagram” of image I.
% At each pixel, if rate-of-change > tau
% then the pixel is considered to be on an edge.

A = rgb2gray(I);
[m,n] = size(A);
I2 = A;
for i = 1:m
 for j = 1:n

 I2(i,j) = ?????

 end
end

function I2 = rgb_edges(I,tau)
% I2 is the “edge diagram” of image I.
% At each pixel, if rate-of-change > tau
% then the pixel is considered to be on an edge.

A = rgb2gray(I);
[m,n] = size(A);
I2 = A;
for i = 1:m
 for j = 1:n
 Neighbors = A(max(1,i-1):min(i+1,m), ...
 max(1,j-1):min(j+1,n));
 I2(i,j)=max(max(abs(double(Neighbors)– ...
 double(A(i,j)))));

 end
end

“Edge pixels” are now identified; display them with maximum
brightness (255)

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 90 90
1 1 1 90 90 90
1 1 90 90 90 90
1 1 90 90 90 90

0 0 0 0 0 0
0 0 0 89 89 89
0 0 89 89 0 0
0 89 89 0 0 0
0 89 0 0 0 0
0 89 0 0 0 0

A

I2(i,j)
0 0 0 0 0 0
0 0 0 255 255 255
0 0 255 255 0 0
0 255 255 0 0 0
0 255 0 0 0 0
0 255 0 0 0 0

if B(i,j) > tau
 B(i,j) = 255;
end

threshold

function I2 = rgb_edges(I,tau)
% I2 is the “edge diagram” of image I.
% At each pixel, if rate-of-change > tau
% then the pixel is considered to be on an edge.
A = rgb2gray(I);
[m,n] = size(A);
I2 = A;
for i = 1:m
 for j = 1:n
 Neighbors = A(max(1,i-1):min(i+1,m), ...
 max(1,j-1):min(j+1,n));
 I2(i,j)=max(max(abs(double(Neighbors)– ...
 double(A(i,j)))));
 if I2(i,j) > tau
 I2(i,j) = 255;
 end
 end
end

I = imread (‘charlie.jpg’)

I2 = rgb_edges (I, 15)

Threshhold
= 40

Threshhold = 20

Threshhold = 30

Homework #9

hw047: Read a PNG file containing a grayscale image of Saturn, change to
white all the pixels in a wide strip along the border of the image, and save
the modified image to a JPG file.

hw048: Read a PNG file containing a grayscale image of a scene from the
movie "Casablanca"; copy Ingrid Bergman's head and use it to replace the
heads of Humphrey Bogart and Dooley Wilson; save the image as a JPG file.

hw049: Read a JPG file which is a photograph of a person. Make a new JPG
file which only displays pixels that closely match a particular shade of the
person's face.

Homework #9 is due by midnight, Friday November 10th.

Homework #8 is due by tomorrow night.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

