

Intro Math Problem Solving
October 31

"Black and White" (grayscale) images
Saving Graphics in a File
Image Read, Show and Write
Working with UINT8 Data
Lighten a Dark Image
Repairing Damaged Images

Final Project

Next week, details of the final project will show
up on Canvas. It will look something like a
homework set, except somewhat longer and
harder. If you look now, you will see just a
brief description of the tasks.

The final project should be turned in by midnight,
12 December, our last class meeting day.

If you prefer to do a personalized final project,
you must tell me so before November 16th
(last class before Thanksgiving break).

Reference

Chapter 12, Section 4 of our textbook
“Insight Through Computing” discusses
the way black-and-white and color
image data is stored and manipulated.

.

Object -> Table -> Numbers

 Pictures as Arrays

When a camera takes a “black and white” picture
of some figure, it is encoded as a 2D array,
which might be called “A”.

The entries of A are numbers. Typically,

 0 <= A(i,j) <= 255
 (black) (white)

Values in between correspond to different levels
of grayness. A “black and white” picture is
more properly called a “grayscale” image.

Need to Compress Information

Each entry of the matrix A corresponds to a
single “pixel” in the image (a square picture
element of a single color).

A typical computer image might have
dimension 480x640, but a good camera
might create images of 4672x3104 cells, so
a single picture may have 12 million pixels.

Therefore, most computer images use some
kind of compression to reduce the amount
of computer memory needed.

Images using Shades of Gray

Suppose we have a grid of pixels of
various shades of gray.

It seems natural to try to store this
information as a MATLAB matrix.

Your eye is often not a good judge of
levels of grayness, but let’s try to take
a black-and-white Mario image, create
the corresponding matrix, and see if we
have recreated the image.

Portrait of Mario in Gray

Choose Numbers for Grays

We can guess we need about 7 shades of gray:
 grays = floor (linspace (0, 255, 7))
We can make a table with an index, name, and value.

 i i/255 [R,G,B]

0: black 0 0.00 [0.00, 0.00, 0.00]
1: very dark 43 0.17 [0.17, 0.17, 0.17]
2: dark gray 85 0.33 [0.33, 0.33, 0.33]
3: half gray 127 0.50 [0.50, 0.50, 0.50]
4: light gray 170 0.67 [0.67, 0.67, 0.67]
5: very light 212 0.84 [0.84, 0.84, 0.84]
6: white 255 1.00 [1.00, 1.00, 1.00]

Our Color Specification is Simple

for i = 1 : m
 for j = 1 : n

 k = MARIO_GRAY(i,j);

 g = k / 6;
 color = [g, g, g];

 a = j - 1;
 b = j;
 c = m - i + 1;
 d = m - i;
 fill ([a, b, b, a], [c, c, d, d], color);

 end
end

Our “Computed” Mario is Pretty Good

Modified Gray Scale

We chose evenly spaced gray levels.
 grays = floor (linspace (0, 255, 7))

But the eye is better at distinguishing
light grays than darks ones. Try a new
scale using the square roots of old values:

 gray2 = sqrt (grays)
 0.00 0.40 0.57 0.70 0.81 0.91 1.00
Now most of the grays have moved towards

white, that is, they have gotten lighter.

Compare Linear and SQRT Grays

Convert RGB to Gray Images

Suppose we have an RGB image and we want to
create a grayscale version automatically? For
each colored pixel, we need to replace [R,G,B]
by [g,g,g] where g is an appropriate gray value.

One choice is a uniform average of R, G, and B.
 g = (R+G+B)/3.
Because of properties of the eye, a better

choice is a weighted average (more green,
less blue);

 g = 0.299*R + 0.587*G + 0.114*B.

Uniform vs Weighted RGB Average

Saving Graphics in a File

Graphics Information

Most graphics information can be thought of as a 2D color
image using an MxN array of pixels whose R, G and B values
are stored.

In the interest of saving space, various methods can be used to
compress the information, but it still can be understood in
terms of a matrix of colors.

The R, G, B values are usually integers, mostly commonly
between 0 and 255. (When we work with MATLAB, we often
need to convert these to real numbers between 0 and 1.)

In a black-and-white (grayscale) image, only one color value is
stored, or each pixel has equal R, G and B values.

There are many formats for saving graphics information to a
file. We will look at one of the simplest, for grayscale images.

The PGM Format

PGM: Portable Grayscale Map (Text
version)

Line #1: P2
Line #2: Width(N) Height(M)
Line #3: 255 (assuming 0-255 scale)
Line #3+1: row 1 values
...
Line #3+M: row M values

mario.pgm

P2

13 16

255

 255 255 255 85 85 85 85 85 85 255 255 255 255

 255 255 85 85 85 85 85 85 85 85 85 85 255

 255 255 127 127 127 170 170 170 0 170 255 255 255

 255 127 170 127 170 170 170 170 0 170 170 170 255

 255 127 170 127 127 170 170 170 170 0 170 170 170

 255 255 255 170 170 170 170 170 0 0 0 0 255

 255 255 255 170 170 170 170 170 170 170 170 255 255

 255 255 85 85 43 85 85 85 85 255 255 255 255

 255 85 85 85 43 85 85 43 85 85 85 255 255

 85 85 85 85 43 43 43 43 85 85 85 85 255

 170 170 85 43 212 43 43 212 43 85 170 170 255

 170 170 170 43 43 43 43 43 43 170 170 170 255

 170 170 43 43 43 43 43 43 43 43 170 170 255

 255 255 43 43 43 255 255 43 43 43 255 255 255

 255 127 127 127 255 255 255 255 127 127 127 255 255

 127 127 127 127 255 255 255 255 127 127 127 127 255

Advantages of File Storage

We created a Mario image with MATLAB, but to share it
with a remote friend, we'd have to send the MATLAB
program, and hope the friend had MATLAB installed.

A graphics file allows different users on different
computer systems with different software to share
graphics information.

The graphics information can also be created by one
program, and then modified by another. For instance, a
weather satellite might create an image of the ocean.
The graphics data can be processed by a program that
searches for evidence of hurricane formation. Multiple
images like this could be joined to form an animation.

Many Image File Formats

While the simple PGM format is probably new to you,
you know about JPEG/JPG, PNG, TIFF, BMP and GIF
formats. These all represent different ideas for
efficiently storing the MxN pixel color information.

PDF and PS/EPS are related, but more complicated
formats that concentrate on storing text, or images
represented as a sequence of line segments.

ImageMagick is one example of a program that allows
you to display graphics information from most of
these formats, or to convert it from one format to
another.

MATLAB: Image Read and Write

We know how to create graphics images inside of
MATLAB.

However, MATLAB has many tools for image
processing; to apply them to photographs and
images we created elsewhere, it's necessary to
be able to import images, display them, modify
them, and then export them again.

Let's begin with the command to import:
I = imread ('filename')

The imread() function can handle most common
image file formats.

I = imread ('mario.pgm')

>> I = imread ('mario.pgm')

I =

 16×13 uint8 matrix

 255 255 255 85 85 85 85 85 85 255 255 255 255

 255 255 85 85 85 85 85 85 85 85 85 85 255

 255 255 127 127 127 170 170 170 0 170 255 255 255

 255 127 170 127 170 170 170 170 0 170 170 170 255

 255 127 170 127 127 170 170 170 170 0 170 170 170

 255 255 255 170 170 170 170 170 0 0 0 0 255

 255 255 255 170 170 170 170 170 170 170 170 255 255

 255 255 85 85 43 85 85 85 85 255 255 255 255

 255 85 85 85 43 85 85 43 85 85 85 255 255

 85 85 85 85 43 43 43 43 85 85 85 85 255

 170 170 85 43 212 43 43 212 43 85 170 170 255

 170 170 170 43 43 43 43 43 43 170 170 170 255

 170 170 43 43 43 43 43 43 43 43 170 170 255

 255 255 43 43 43 255 255 43 43 43 255 255 255

 255 127 127 127 255 255 255 255 127 127 127 255 255

 127 127 127 127 255 255 255 255 127 127 127 127 255

IMREAD: 4 Facts

1) The command "I = imread ('filename')" looks for
the named graphics file, and creates a
corresponding matrix.

2) Because this is a grayscale image, we only see one
RGB value; Color images will be more complicated.

3) We usually want a semicolon on this command, to
avoid seeing all that data.

4) This is a "uint8" array, literally an array of
"unsigned integers using 8 bits", or simply, integer
values between 0 and 255. This fact has
important consequences for us.

IMSHOW: Display an Image

Now that "I" is a matrix containing the
grayscale image data, we can use
MATLAB's imshow() command to view it;

 imshow (I)
Sadly, MATLAB displays our image exactly,

namely a tiny image of 16 rows and 13
columns, which is almost impossible to see!

.

imshow (I) (after zooming in!)

Image Blowup

To make our image visible, MATLAB's zoom function is
not very helpful! (Try it!)

Instead, we can "blow up" our image by replacing each
single pixel by a block of the same value:

 AABB
A B -- x2 --> AABB
C D CCDD
 CCDD
We'll replace each pixel by a 32x32 block:
 I32 = gray_blowup (I, 32);

imshow (I32)

gray_blowup.m

function A2 = gray_blowup (A1, f)

 [m, n] = size (A1);
 A2 = uint8 (zeros (f*m, f*n));

 for i = 1 : m
 ilo = (i - 1) * f + 1;
 ihi = i * f;
 for j = 1 : n
 jlo = (j - 1) * f + 1;
 jhi = j * f;
 A2(ilo:ihi,jlo:jhi) = A1(i,j); % <- 1 A1 pixel becomes FxF A2 block
 end
 end

Simple manipulations

Since I is a matrix, we can matrix operations on it:

 Let's reverse video:
 I2 = 255 – I:

And flip the picture from left to right:
 I3(1:16,1:13) = I2(1:16,13:-1:1);

Use the "gray_blowup" routine to make the plot visible.
 I4 = gray_blowup (I3, 32);

Reverse Video + Flip Left/Right

IMWRITE: Save New Image to File

To save a graphics image to a file, use the imwrite() function:

 imwrite (I3, 'mario.jpg')

To save as a (text) PGM file, we have to say something like:

 imwrite (I3, 'mario.pgm', 'Encoding', 'ASCII')

The last two inputs keep MATLAB from writing a compressed binary file
that we can't easily type out.

Interactive alternative: any MATLAB image being displayed also has a menu
 FILE / Save As / ...
that allows you to save the image in a variety of formats.

318-by-250

 49 55 58 59 57 53
 60 67 71 72 72 70
 102 108 111 111 112 112
 157 167 169 167 165 164
 196 205 208 207 205 205
 199 208 212 214 213 216
 190 192 193 195 195 197
 174 169 165 163 162 161

 Working with UINT8 Data

Working with UINT8 Data

Up to now, the numeric data we have been working
with has all been classified as what MATLAB calls
type "double"; in other words, real numbers that
are stored using 64 bits.

MATLAB's default graphics arrays are of a new
type, "uint8" which we have seen consist of
integers between 0 and 255.

We need to understand the differences in
arithmetic associated with uint8 data.

We also need to know how to convert between uint8
and double data, and when this is necessary.

Some Operations Are OK

When A=imread('filename') is called to read a grayscale
file, the matrix A it creates is typically of type uint8.

Copying A creates a new uint8 array:
 B = A;
We can set entries to integers between 0 and 255:
 A(5,4) = 77; A(1:16,1) = 255; A(2:5,1:8) = 8;
We can use logical indices:
 I = (A >= 127);
 A(I) = 127;
But A cannot store real numbers, or integers outside

the range of 0 to 255.

Integers Become Doubles

Working with data from the A matrix, some
operations produce uint8 values, some produce
doubles:

 max(A) -> uint8 vector
 mean(A) -> double vector
 median(A) -> uint8 vector
 sqrt(A) -> double vector
 (we did this for our gray values earlier)
 sum(A) -> double vector (why?)
 (A(1,2) + A(1,3)) / 2 -> double value

RESHAPE: Matrix -> Vector

We will shortly be in a situation where we
need to use MATLAB’s histogram plotting
command hist(g). This command expects
the input to be a vector (a 1D list), but we
want to histogram all the data in a matrix G
(a 2D table).

We use MATLAB’s reshape() command:
 a_new = reshape (a_old, m_new, n_new);
which copies the data in the mxn object a_old

into the m_new x n_new object a_new.

RESHAPE Examples

A = [11, 12, 13;
 21, 22, 23]; <- 2x3 matrix
b = reshape (A, 1, 6); <- 1x6 row vector
b <- [11, 21, 12, 22, 13, 23];

C = reshape (A, 3, 2); <- 3x2 matrix
C <- [11, 22;
 21, 13;
 12, 23];

Two Things to Watch out For

When we operate on numbers in a uint8
array, there are two things to worry about:

1) range: values might be less than 0 or
greater than 255;

 A(1,2) + A(1,3) could be more than 255

2) precision: values might not be integers;
 (A(1,2) + A(1,3)) / 2

Range Issues

We may be able to deal with range issues by truncation. The
uint8() function will take care of this:

Every result greater than 255 is replaced by 255:

 A(1,1) = uint8 (A(1,2) + A(1,3));
 255 <-- uint8 (170 + 158);

Every result less than 0 becomes 0:

 A(8,9) = uint8 (A(3,3) – A(3,8));
 0 <-- uint8 (127 – 170);

Precision Issues

The uint8() function will also take any value that is not an integer
and convert it to the nearest integer in the range [0,255];

 A(3,7) = uint8 ((A(2,7) + A(4,7)) / 2);
 44 <-- uint8 ((49 + 40) / 2);

 A(4,8) = uint8 (sqrt (A(4,8)));
 9 <-- uint8 (sqrt (89));

 A(1:13,8) = uint8 (mean (A(1:13,8)))
 74 <-- uint8 (73.752);

Convert Back and Forth

When working with image data, sometimes it
will be easier to make a "double" copy of the
uint8 array, and then use any numerical
operations we want, and at the end, convert
the whole array back to uint8 format:

 A = double (I); % <- copy I
 ... % <- work on A
 I = uint8 (A); % <- replace I with results

Lighten a Dark Image

Dark Image

Many photographs are taken in bad light, or have
been badly developed.

Darkened images, in particular, are hard for the
eye to interpret, whereas lighter shades are
easier to "read".

For this photograph, we can display how the dark
and light shades have been used by counting
how many times each gray shade was used,
between 0 and 255.

In other words, we want a bar plot or histogram.

Why So Dark?

A histogram of the gray levels will show how
often each shade is used. However,
MATLAB's hist() command will only accept
"double" information, and it must be a vector:

I = imread ('snap.png');
G = double (I); <- Convert to double
[m, n] = size (G);
gvec = reshape (G, m * n, 1); <- Column vector
hist (gvec, 256); <- histogram

Heavy use of Darkest Grays

Lighten the Levels

We are hardly using the lighter gray
levels in the picture. Here are two
ways we can try:

1) Double grays between 0 and 127;
 Grays about 127 become 255;
2) Gray -> sqrt(Gray/255) * Gray;

Doubling

I = imread ('snap.png');
i1 = (I < 128);
i2 = (128 <= I);
I2(i1) = 2 * I(i1);
I2(i2) = 255;
imshow (I2);

Lightening by Doubling

Sqrt

I = imread ('snap.png');
G = double (I);
G = sqrt (G / 255) * 255;
I3 = uint8 (G);
imshow (I3);

Lighten by Sqrt

Dark, Medium, Light

We can separate the image into dark, medium and light
sectors:

I = imread ('snap.png');
i1 = (I < 25);
i2 = (25 <= I & I < 100);
i3 = (100 <= I);
[m,n] = size (I);
I2 = uint8 (zeros (m, n));
I2(i1) = 0;
I2(i2) = 127;
I2(i3) = 255;
imshow (I2);

3 shades: Black, Medium Gray, White

Repairing Damaged Images

Salt and Pepper Noise

A common kind of damage to photographs or
graphics files involves “salt and pepper noise”,
in which the correct grays of many pixels have
been lost, and replaced by random values, some
of which may be light (white) or dark (pepper).

The damage can be so severe that the eye
cannot make out the original image.

But often, there is enough information to
recover an approximation of the original image,
using a technique called “filtering”.

Filtering

To filter out our noise, we assume that in the
original image, the information changed
smoothly; thus, in the gray scale matrix, we’d
generally expect to see that neighboring matrix
entries had similar values.

If a pixel was replaced by a random noise value,
then we’d expect that this value would “stick
out”, and probably be noticeably larger or
smaller than most of the neighboring values.

This suggests that we could automatically detect
most such cases. But can we “repair” them?

Perhaps Two Noisy Pixels Here?

 157 170 166 166 160 160 157 153
 159 166 166 166 163 163 157 154
 161 160 160 166 164 164 158 160
 163 158 160 158 166 245 158 164
 165 158 154 147 146 157 159 159
 166 169 27 159 146 150 154 159
 166 166 166 159 146 148 154 167
 165 165 166 166 157 155 153 160

Automatic Repair Strategies

 NW -- N – NE 164 164 158
 W— P — E 166 245 158
 SW— S -– SE 146 147 159

Mean-filter: replace each pixel by the mean
of the 3x3 neighborhood. P -> 167.

Median-filter: replace each pixel by the
medial of the 3x3 neighborhood. P -> 159.

Automatic Repair Strategies

 NW -- N – NE 158 154 147
 W— P — E 169 27 159
 SW— S -– SE 166 166 159

Mean-filter: replace each pixel by the mean
of the 3x3 neighborhood. P -> 145.

Median-filter: replace each pixel by the
medial of the 3x3 neighborhood. P -> 159.

Mean versus Median

The properties of the median guarantee
that it will pick an extreme value, and
won’t be much influenced by one. If
most of the pixel values are correct,
and close, it will pick one of those.

The mean will always include the influence
of an extreme value, and the result may
be larger or smaller than all the correct
pixel values.

Mean vs Median for 5 values

Data Mean Median

1,2,3,4,5 3 3
0,8,8,8,8 6.4 8
3,5,5,7,1000 204 5
0,1,2,2,255 52 2

gray_medianfilter.m

function I2 = gray_medianfilter (I1)

 [m, n] = size (I1);
 P = double (I1);
 P2 = P;
 for i = 2 : m - 1
 for j = 2 : n - 1
 P2(i,j) = median (... <- replace by “mean” to get mean filter.
 [P(i+1,j-1), P(i+1,j), P(i+1,j+1), ...
 P(i, j-1), P(i, j), P(i, j+1), ...
 P(i-1,j-1), P(i-1,j), P(i-1,j+1)]);
 end
 end
 I2 = uint8 (P2);

 return
end

Mean vs Median

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

