

Intro Math Problem Solving
October 26

Random Walk in 2D
Working With Data in a 2D Matrix
Storing Mario in a 2D Matrix
A Cellular Automaton
The Game of Life
The Mandelbrot Set
Lights Out
Homework #8

Office Hours

Friday (tomorrow): VERY SHORT
 Newman Library, 2:00-2:30
Monday: Regular
 Torgersen 3050, 2:00-4:00
Wednesday: A little short
 Torgersen 3050: 2:00-3:30
Friday: Regular
 Newman Library, 2:00-3:30

A Random Walk in 2D

Rules for a Random Walk in 2D

Consider a checkerboard of numbered squares, indexed
by (X,Y). -N <= X,Y <= +N.

 We put a walker on some square, perhaps the one
labeled "(0,0)";

The walker repeatedly chooses the next step at random:
north, south, east or west;

To step North, for instance, we move from (X,Y) to
(X,Y+1).

The walk stops at the boundary, where X or Y reaches
the value -N or +N.

We keep track of each step in arrays (growing lists)
"xtrack" and "ytrack".

walker_2d.m
function [xtrack, ytrack] = walker_2d (n)

 x = 0; y = 0;
 k = 1; xtrack(k) = x; ytrack(k) = y;

 while (abs (x) < n && abs (y) < n)

 i = randi ([1, 4]);

 if (i == 1)
 y = y + 1;
 elseif (i == 2)
 y = y - 1;
 elseif (i == 3)
 x = x + 1;
 else
 x = x - 1;
 end

 k = k + 1; xtrack(k) = x; ytrack(k) = y;

 end

 return
end

A Typical Random Walk in the Square

Look for Average Behavior

As in the 1D case, the length of a random
walk in 2D is unpredictable. But we can
seek the average number of steps taken
on a board of dimensions [-N,N]x[-N,N].

It would be interesting to see if we find
a pattern similar to what we saw in 1D,
that the number of steps is related
somehow to N^2.

Step Lengths Pull Away From N^2

Try a Diamond Shape

The data for the square seems to
separate from the N^2 curve.

Perhaps we could fix this problem by
changing the rules for how we
terminate the walk in 2D. Instead of
stopping when |X| or |Y| reaches N, we
could stop when |X| + |Y| reaches N.

This actually changes the region to a
DIAMOND shape.

Try Random Walks in Diamond

Diamond Walk Lengths Go Below N^2

What about a CIRCLE?

A third choice for terminating the walk is to
stop when N <= sqrt(X^2+Y^2). This is the
same as using a CIRCLE for the boundary.

Notice that each of our three rules is a
generalization, for 2D, of the distance
function in 1D.

Mathematicians have explored the different
geometries associated with these three
rules, known as the max norm, the l1 norm,
and the Euclidean norm.

Length Norms in 2D

If P=(x,y) is a point in 2D, there are several different
norms we can use to measure the length of P, that is,
the distance of P from the origin. The one we think
is natural is the Euclidean norm.

Euclidean or “2” norm:
 ||P|| = sqrt (x^2 + y^2) = norm (P, 2) = norm (P);
Max or “infinity” norm:
 ||P|| = max (abs(x), abs(y)) = norm (P, Inf);
Manhattan or “1” norm:
 ||P|| = abs(x) + abs(y) = norm (P, 1);

Distance Norms in 2D

If P1=(x1,y1) and P2 = (x2,y2) are points in 2D, then the same
norms can be used to measure the distance between P1 and P2.

Euclidean or “2” norm:
 ||P1-P2|| = sqrt ((x1-x2)^2 + (y1-y2)^2)
 = norm (P1-P2, 2) = norm (P1-P2);
Max or “infinity” norm:
 ||P1-P2|| = max (abs(x1-x2), abs(y1-y2))
 = norm (P1-P2, Inf);
Manhattan or “1” norm:
 ||P1-P2|| = abs(x1-x2) + abs(y1-y2)
 = norm (P1-P2, 1);

Examples

P = [1, 2];
norm(P) = sqrt(1+4) = 2.2361;
norm(P,1) = 1 + 2 = 3;
norm(P,Inf) = max(1,2) = 2;

P1 = [1, 2], P2 = [3, 7];
norm(P1-P2) = sqrt(2^2+5^2) = 5.3852
norm(P1-P2,1) = 2+5 = 7;
norm(P1-P2,Inf) = 5;

Try Walks in Circle

Walk Lengths Closely Match N^2

Conclusions

By estimating the average walk lengths in 1D, and then
trying to transfer the results to 2D, we have
"discovered" that the Euclidean norm seems to be the
right way to measure distance for this problem.

If we moved to a 3D random walk, our region would be a
sphere, instead of a rectangular box or diamond.

This actually makes sense for the physical problems
modeled by random walks, such as Brownian motion,
diffusion of ink in water, and the way that heat is
transmitted in a sheet of metal.

Working With Data in a 2D Matrix

2D Arrays in MATLAB

In MATLAB, an array is a kind of variable that has a shape (M rows and N
columns), which allows it to store M*N values.

To access a particular value in the array, we specify a row I, and a column

J, where 1 <= I <= M and 1 <= J <= N.
If the array is named "A", then we access an entry by an expression like

"A(I,J)".

It is possible to index matrix entries with a single number K, which runs
from 1 to M*N. K starts at A(1,1), runs down the

 first column, then the second, and so on.

Note that many MATLAB programmers use a capital letter to represent
an array, leaving lower case letters for scalars (numbers) and vectors
(row vectors or column vectors).

Matrix Functions

[m, n] = size (A);

A = zeros (m, n);
A = ones (m, n);
A = rand (m, n);
A = randn (m, n);
A = randi ([a, b], m, n);

A = [11, 12, 13; 21, 22, 23; 31, 32, 33; 41, 42, 43];

A = [11, 12, 13;
 21, 22, 23;
 31, 32, 33;
 41, 42, 43];

Matrix Functions

The transpose of a matrix is created using the same
apostrophe or ' sign that we used to convert a row vector
to a column vector:

A = [11, 12, 13;
 21, 22, 23;
 31, 32, 33;
 41, 42, 43]; a 4x3 matrix

A' = [11, 21, 31, 41;
 12, 22, 32, 42;
 13, 23, 33, 43]; a 3x4 matrix

Some surprises

max(), mean(), min(), std() and sum() return the maximum, mean, minimum,
standard deviation and sum of each column of the matrix.

 A = [11, 12, 13;
 21, 22, 23;
 31, 32, 33;
 41, 42, 43];

max(A) is [41, 42, 43];
min(A) is [11, 12, 13];
sum(A) is [104, 108, 112];

max(max(A)) is 43;
sum(sum(A)) is 324;

How would you get the maximum of each ROW of A?

Add a row or column

A = [11, 12;
 21, 22];

A2 = [A; [31, 32]]
 is [11, 12;
 21, 22;
 31, 32];

A3 = [A, [13;23]];
 is [11, 12, 13;
 21, 22, 23];

Colon Operations

A = [11, 12, 12;
 21, 22, 23;
 31, 32, 33];

A(2,3) is 23; <- a number
A(2,1:2) is [21, 22]; <- a row vector
A(2:3,3) is [23; 33]; <- column vector!
A(2:3,1:2) is [21, 22; <- a submatrix
 31, 32];

Moving Data with Colon Operators

We can copy a row of A into a row vector:
 x = A(2,1:3);

We can copy a column vector into a column of A:
 y = [101;201;301];
 A(1:3,1) = y;

We can overwrite the first two rows of A with the
last two rows:

 A(1:2,1:3) = A(2:3,1:3);

Logical Operators

Just as we did with vectors, we can specify a logical
condition, and make a copy of a matrix with a 1 where the
condition is true, 0 elsewhere

A = [11, 12, 12;
 21, 22, 23;
 31, 32, 33];

I = (mod (A, 3) == 0)
I is [0, 1, 0;
 1, 0, 0;
 0, 0, 1];

The FIND function

The find() function can be used on a matrix, and its results
can be used to index the matrix. However, instead of
(I,J) indexing, find() returns a single index K that runs
through the matrix a column at a time.

 A = [11, 12, 12; Numbering: 1 4 7
 21, 22, 23; 2 5 8
 31, 32, 33]; 3 6 9

k = find (mod (A, 10) == 2)
 k is [4, 5, 6]
 A(k) is [12, 22, 32].

Storing MARIO in a 2D Matrix

Storing Mario

The image of Mario can be stored in a matrix. It is already marked up into 16
rows and 13 columns. There are 7 colors in the picture. We can use values
0 through 6 to reference them:

 0: white = [1.0, 1.0, 1.0]
 1: black = [0.0, 0.0, 0.0]
 2: red = [1.0, 0.0, 0.0]
 3: blue = [0.0, 0.0, 1.0]
 4: yellow = [1.0, 1.0, 0.0]
 5: beige = [1.0, 0.8, 0.6]
 6: brown = [0.8, 0.4, 0.0]

Find [R,G,B] codes for colors like “beige” at
 https://www.w3schools.com/colors/colors_picker.asp
Probably need to divide each value by 255.

https://www.w3schools.com/colors/colors_picker.asp

Define the Mario Matrix

MARIO = [...
 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0;
 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0;
 0, 0, 6, 6, 6, 5, 5, 5, 1, 5, 0, 0, 0;
 0, 6, 5, 6, 5, 5, 5, 5, 1, 5, 5, 5, 0;
 0, 6, 5, 6, 6, 5, 5, 5, 5, 1, 5, 5, 5;
 0, 6, 6, 5, 5, 5, 5, 5, 1, 1, 1, 1, 0;
 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 0, 0;
 0, 0, 2, 2, 3, 2, 2, 2, 2, 0, 0, 0, 0;
 0, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 0, 0;
 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 0;
 5, 5, 2, 3, 4, 3, 3, 4, 3, 2, 5, 5, 0;
 5, 5, 5, 3, 3, 3, 3, 3, 3, 5, 5, 5, 0;
 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 0;
 0, 0, 3, 3, 3, 0, 0, 3, 3, 3, 0, 0, 0;
 0, 6, 6, 6, 0, 0, 0, 0, 6, 6, 6, 0, 0;
 6, 6, 6, 6, 0, 0, 0, 0, 6, 6, 6, 6, 0];

We need to draw colored boxes

To recreate the image of Mario, we just
have to make a plot of 16 rows and 13
columns of rectangles, each one filled
with the appropriate color. There’s a
MATLAB function to do this:

 fill (x, y, color)
where x and y are the corners of the

shape we are filling with color.

Draw cells one by one
for i = 1 : m
 for j = 1 : n

 k = MARIO(i,j); % <- Get the color index

 if (k == 0)
 color = [1.0, 1.0, 1.0];
 elseif (k == 1)
 color = [0.0, 0.0, 0.0];
 elseif (k == 2)
 color = [1.0, 0.0, 0.0];
 elseif (k == 3)
 color = [0.0, 0.0, 1.0];
 elseif (k == 4)
 color = [1.0, 1.0, 0.0];
 elseif (k == 5)
 color = [1.0, 0.8, 0.6];
 elseif (k == 6)
 color = [0.8, 0.4, 0.0];
 end

 FILL CELL(I,J) WITH COLOR BY CALLING FILL IN THE RIGHT WAY!

 end
end

(X,Y) coordinates of cell (I,J)?

Note that the (X,Y) coordinate system used by
fill() is very different from the (I,J)
coordinate system used in the matrix MARIO!

As I gets bigger, we move down the matrix. As
X gets bigger, we move right, so I is more like
the Y coordinate, but moving down when Y
moves up!

The J coordinate moves right, like X does.
So we have to remember to plot entry (I,J) we

used (X,Y) coordinates like (J,M-I).

The box forming cell (I,J)

|
| (J-1,M-I+1)---------(J,M-I+1)
| | |
Y | Cell (I,J) |
| | |
| (J-1,M-I)-----------(J,M-I)
|
+---------------- X ----------------->

How to call FILL()

for i = 1 : m
 for j = 1 : n

 k = MARIO(i,j);

 if (k == 0)
 color = [1.0, 1.0, 1.0];
 MORE COLOR STUFF...
 end

 a = j - 1;
 b = j;
 c = m - i + 1;
 d = m - i;

 fill ([a, b, b, a], [c, c, d, d], color);

 end
end

Our Version of Mario

Get Credit for One Homework Problem

We will solve the tasks on the following page.
Refer to the program “mario.m” available in

today’s Canvas directory.
Suggest a change to the program that will

carry out the desired task.

If I choose your solution, you can skip ONE
problem in homework #7 OR homework #8,
and get full credit for it. (But remind me in
your homework submission!)

Matrix Practice

1: Change Mario’s eye color to GRAY.
2: Change Mario’s pants to ORANGE.
3: Give Mario a PURPLE belt.
4: Change RED to MAROON.
5: Change just one button to CYAN.
6: Put Mario behind BLACK bars.
7: Change the background to PALE BLUE.
8: Place Mario in 4 rows of GREEN water.
9: Can you flip Mario so he looks left?

Another Challenge for You

A Cellular Automaton

Cellular Automatons

A cellular automaton is a grid of cells, each of
which has a “state” (which might be a number or
color.)

On each time step, the cellular automaton updates
the state of all the cells, according to a set of
rules based on the state of neighbor cells.

In the simplest case, the grid is a simple row
vector, the state of each cell is “black” or
“white”, and each cell makes its decision based
on its current state, and that of its left and
right neighbors.

Example State Rule

 0,0,0,1,0,0,0 -> 0 (don’t change)
0: 0,0,0 -> 0 0,0,0,1,0,0,0 -> 0
1: 0,0,1 -> 1 0,0,0,1,0,0,0 -> 1
2: 0,1,0 -> 1 0,0,0,1,0,0,0 -> 1
3: 0,1,1 -> 1 0,0,0,1,0,0,0 -> 1
4: 1,0,0 -> 1 0,0,0,1,0,0,0 -> 0
5: 1,0,1 -> 0 0,0,0,1,0,0,0 -> 0 (don’t change)
6: 1,1,0 -> 0 So new grid is
7: 1,1,1 -> 0 0,0,1,1,1,0,0

Work Out 10 Steps

 0: 0 0 0 1 0 0 0
0: 0,0,0 -> 0 1: _,_,_,_,_,_,_
1: 0,0,1 -> 1 2: _,_,_,_,_,_,_
2: 0,1,0 -> 1 3: _,_,_,_,_,_,_
3: 0,1,1 -> 1 4: _,_,_,_,_,_,_
4: 1,0,0 -> 1 5: _,_,_,_,_,_,_
5: 1,0,1 -> 0 6: _,_,_,_,_,_,_
6: 1,1,0 -> 0 7: _,_,_,_,_,_,_
7: 1,1,1 -> 0 8: _,_,_,_,_,_,_
 9: _,_,_,_,_,_,_
 10: _,_,_,_,_,_,_

Cellular Automaton: Advance One Step

function row_next = ca_step (row)

 n = length (row);

 row_next = zeros (1, n);

 for i = 2 : n - 1

 if ((row(i-1) == 0 && row(i) == 0 && row(i+1) == 1) || ...
 (row(i-1) == 0 && row(i) == 1 && row(i+1) == 0) || ...
 (row(i-1) == 0 && row(i) == 1 && row(i+1) == 1) || ...
 (row(i-1) == 1 && row(i) == 0 && row(i+1) == 0))
 row_next(i) = 1;
 else
 row_next(i) = 0;
 end

 end

 return
end

Print 0’s and 1’s
000000000000000000000000000000000000000100

00000000000000000000000000000000000000111000000000000000000000000000000000000000

00000000000000000000000000000000000001100100000000000000000000000000000000000000

00000000000000000000000000000000000011011110000000000000000000000000000000000000

00000000000000000000000000000000000110010001000000000000000000000000000000000000

00000000000000000000000000000000001101111011100000000000000000000000000000000000

00000000000000000000000000000000011001000010010000000000000000000000000000000000

00000000000000000000000000000000110111100111111000000000000000000000000000000000

00000000000000000000000000000001100100011100000100000000000000000000000000000000

00000000000000000000000000000011011110110010001110000000000000000000000000000000

00000000000000000000000000000110010000101111011001000000000000000000000000000000

00000000000000000000000000001101111001101000010111100000000000000000000000000000

00000000000000000000000000011001000111001100110100010000000000000000000000000000

00000000000000000000000000110111101100111011100110111000000000000000000000000000

00000000000000000000000001100100001011100010011100100100000000000000000000000000

00000000000000000000000011011110011010010111110011111110000000000000000000000000

00000000000000000000000110010001110011110100001110000001000000000000000000000000

00000000000000000000001101111011001110000110011001000011100000000000000000000000

00000000000000000000011001000010111001001101110111100110010000000000000000000000

00000000000000000000110111100110100111111001000100011101111000000000000000000000

00000000000000000001100100011100111100000111101110110001000100000000000000000000

00000000000000000011011110110011100010001100001000101011101110000000000000000000

00000000000000000110010000101110010111011010011101101010001001000000000000000000

00000000000000001101111001101001110100010011110001001011011111100000000000000000

00000000000000011001000111001111000110111110001011111010010000010000000000000000

Print * for 1, Blank for 0
 *

 ** *

 ** ****

 ** * *

 ** **** ***

 ** * * *

 ** **** ******

 ** * *** *

 ** **** ** * ***

 ** * * **** ** *

 ** **** ** * * ****

 ** * *** ** ** * *

 ** **** ** *** *** ** ***

 ** * * *** * *** * *

 ** **** ** * * ***** *******

 ** * *** **** * *** *

 ** **** ** *** ** ** * ***

 ** * * *** * ** *** **** ** *

 ** **** ** * ****** * * *** ****

 ** * *** **** **** *** ** * *

 ** **** ** *** * ** * * * *** ***

 ** * * *** * *** ** * *** ** * * * *

 ** **** ** * *** * * **** * * ** ******

 ** * *** **** ** ***** * ***** * * *

 ** **** ** *** * ** * * ** * ***** ***

 ** * * *** * ** * **** ** * ** ** * ** *

 ** **** ** * *** * * * *** **** * ** * ** * ****

 ** * *** **** **** ** ** *** * * **** * * *

Store Data in Array and Plot

To make a nicer plot, we can create an
array CA, which contains the last M
rows of the output.

In order to take the NEXT step, we need
to copy rows 2 through M of CA into
rows 1 through M-1, and then compute a
new row M.

CA(1:M-1,1:N) = CA(2:M,1:N);
CA(M,1:N) = ca_step (CA(M-1,1:N));

Setting the Cellular Automaton Matrix

m = 40;
n = 40;

for k = 0 : 100

 if (k == 0)
 ca = zeros (m, n);
 ca(m,20) = 1;
 else
 ca(1:m-1,:) = ca(2:m,:);
 ca(m,:) = ca_step (ca(m-1,:));
 end

 REST OF LOOP PLOTS BLACK OR WHITE BOXES, SIMILAR TO MARIO

end

After 38 steps

Wrap Around Boundary

As it stands, the first and last cells just sit at
the value “0” forever.

We could make things more interesting by using
a “wrap around” condition. In that case, the
cell 1 neighborhood would be:

 cell(n) cell(1) cell(2)
and the cell N neighborhood would be
 cell(n-1) cell(n) cell(1)
and this means cell(1) and cell(n) can change too.

The Game of Life (Next Time)

The Mandelbrot Set (Next Time)

Lights Out (Next Time)

Homework #8

HW044: Write a function that uses logical vectors
and find() to analyze a vector.

HW045: Write a function that estimates how many
times a random walk will visit the square labeled 0.

HW046: Write a function that tracks the frequency

of each possible score when tossing N dice M times,
and creates a bin plot of the results.

Homework #7 is due Friday night!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

