

Intro Math Problem Solving
October 24

Arrays: Review + New
The Normal Distribution
A Random Walk in 1D
A Random Walk in 2D

References

Chapter 6, Section 2 of our textbook discusses
these topics, and can be useful for comparison
and background to these notes.

"Insight Through Computing" is available as an
ebook on the library web site, and
“chapter6.pdf” is also in today's Canvas folder.

Brian Hayes has an interesting article on this
topic, called “How to Avoid Yourself”, available
in today’s Canvas folder as “self_avoidance.pdf”.

Vectors: Arrays of Numbers

Row and Column Vectors

Because this is an important distinction in
linear algebra, every MATLAB list is
either a row vector or a column vector.

We aren’t doing linear algebra yet, so
there are only a few important things
to say about the difference.

Initialize a row vector

a = [1, 2, 3];
b = [3 4 5]; <- Comma separators are optional

c = linspace (0.0, 10.0, 101);

In functions with (m,n) input, specify m=1 row and n=anything
columns:

d = zeros (1, 10);
e = ones (1, 5);
f = rand (1, 20);
g = randn (1, 100);
h = randi ([10, 20], 1, 5),

Initialize a column vector

a = [1; 2; 3]; <- semicolons must be used.

In functions with (m,n) input, specify m=anything
row1 and n=1 column:

d = zeros (10, 1);
e = ones (5, 1);
f = rand (20, 1);
g = randn (100, 1);
h = randi ([10,20], 5, 1);

An easy mistake

Many MATLAB functions with (m,n) input will
allow you to specify a single value (m) instead.

This looks like you’re defining a vector, but you’re
actually setting up an mxm matrix!

d = zeros (5); <- 5x5 matrix!
e = ones (6); <- 6x6 matrix!
f = rand (7); <- 7x7 matrix!
g = randn (8); <- 8x8 matrix!
h = randi ([10,20], 9); <- 9x9 matrix!

Transpose

We don’t need to do this yet, but you can convert a row vector to
column form, and vice versa, by using the transpose operator, which is
simply an apostrophe.

x = [1, 2, 3];

y = x’;
 y is
 [1;
 2;
 3]

z = y’;
 z is [1, 2, 3]

Recall Vector Functions

If x is a row or column vector, we can:

l = length (x);
xmax = max (x);
xmean = mean (x); <- average value
xmin = min (x);
xnorm = norm (x); <- sqrt of sum of squares.
xstd = std (x); <- standard deviation
xsum = sum (x);

Selecting Some of a Vector

Suppose x = [11, 12, 13, 14, 15, 16, 17, 18];

If we type “x(1)”, we see “11”.
But if we type “x(2:4)” we see “12, 13, 14”.

We can use the same “colon notation” that we have
used in “for” loops, but now we use it to specify a
portion of a vector.

You could even do “x(1:2:8)” to see 11, 13, 15, 17.

Selecting Some of a Vector

If x = [11, 12, 13, 14, 15, 16, 17, 18];

we can use colon indexing to examine or change portions of the
vector:

 x(2:4) = 7;
 x = [11, 7, 7, 7, 15, 16, 17, 18];

 x(4:5) = x(4:5) + 10;
 x = [11, 7, 7, 17, 25, 16, 17, 18];

 x(6:8) = x(1:3);
 x = [11, 7, 7, 17, 25, 11, 7, 7];

Using Logic on Vectors

How many entries of X are greater than 1? We can
answer this with a for loop.

But another way creates a logical vector.

 x = [1.2, 0.7, 2.3, 1.5, -1.0];

 is_greater_than_1 = (x > 1);
 is_greater_than_1 will be [1, 0, 1, 1, 0];

 how_many = sum (is_greater_than_1);
 how_many will be 3.

OR / AND for Vectors

We have been using || and && for OR and AND
operations.

However, just like the DOT operators, we have
to do something slightly different when
working with vectors.

We have to use | instead of ||, and & instead
of &&, when making logical expressions
involving vectors!

 i = (0.0 < x & x < 1)
 j = (x == 0 | y == 0)

More Logic Examples

x = [1.2, 0.7, 2.3, 1.5, -1.0];

small = (abs (x) <= 1); small is [0,1,0,0,1];
positive = (0.0 < x); positive is [1,1,1,0];
between12 = (1 <= x & x <= 2);
 between12 is [1,0,0,1,0].

.

A practical example

In a tournament, a loss is -1, a win is +1. Our
score is the sum of wins and losses. How many
times were we exactly even (score=0)?

 score = [0,1,2,1,0,-1,0,-1,0,1];

 i = (ahead == 0)
 i is [1,0,0,0,1,0,1,0,1,0];

 times = sum (i) = 4 times in the tournament.

FINDing Values

Instead of asking whether each entry of a vector satisfies some
condition, we might want a list of the locations of all such entries.
The FIND command will do this.

 x = [1.2, 0.7, 2.3, 1.5, -1.0];
 i = find (x > 1);

Then i is [1, 3, 4] because x(1), x(3) and x(4)
are greater than 1.

Moreover, typing “x(i)” will print exactly those values:
 1.2, 2.3, 1.5

When you index a list, the index itself can be a list!

More FIND Examples

x = [1.0347, 0.7269, -0.3034, 0.2939, -0.7873,
 0.8884, -1.1471, -1.0689, -0.8095, -2.9443]

i = find (abs (x) <= 1); i = [2, 3, 4, 5, 6, 9];
j = find (0.0 < x); j = [1, 2, 4, 6]
k = find (1 <= x & x <= 2); k = [1, 7, 8]
l = find (x == 0); l = [];

.

Using FIND

You can use FIND to find the parts of a vector you are interested in, and then
print, or sum, or otherwise work with just that set.

x = [1.0347, 0.7269, -0.3034, 0.2939, -0.7873,
 0.8884, -1.1471, -1.0689, -0.8095, -2.9443]

j = find (0.0 < x); j = [1, 2, 4, 6]

>> x(j)

ans =

 1.0347
 0.7269
 0.2939
 0.8884

Quiz

x = [0, 1, 2, 1, 2, 3, 2, 1, 0, -1, -2, -1, 0, 1];

Without using FOR or IF/ELSE, write MATLAB
expressions that:

A) count the number of x values equal to 1;
B) list the locations of x values equal to 1;
C) count the number of x values equal to 0;
D) list locations of x values less than 0, print them;
E) count x values equal to 1 OR 3;
F) count x values NOT equal to 1;

Quiz Answers

A) count the number of x values equal to 1:
 i = (x == 1); num = sum (i);
B) list the locations of x values equal to 1:
 j = find (x == 1);
C) count the number of x values equal to 0:
 i = (x == 0); num = sum (i);
D) list the locations of x values less than 0 and print:
 j = find (x < 0); x(j)
E) count x values equal to 1 OR 3:
 i = (x == 1) || (x == 3); num = sum (i);
F) count x values NOT equal to 1:
 i = (x ~= 1); num = sum (i);

Adding Values to a Row Vector

If X is a row vector, we add entries to it separated
by COMMAS:

 x = [1, 2, 3];
 y = [4, 5];

 x = [x, 99]; x is now [1,2,3,99];
 x = [48, x]; x is now [48,1,2,3,99];
 x = [x, y]; x is now [48,1,2,3,99,4,5]
 y = [y, y, y]; y is now [4,5,4,5,4,5]

Adding Values to a Column Vector

If X is a column vector, we add entries to it,
separated by SEMICOLONS;

 x = [1; 2; 3];
 y = [4; 5];

 x = [x; 99]; x is now [1;2;3;99];
 x = [48; x]; x is now [48;1;2;3;99];
 x = [x; y]; x is now [48;1;2;3;99;4;5]
 y = [y; y; y]; y is now [4;5;4;5;4;5]

Adding Values by Index

Another way to add values to a list is to pick an index (location) and store
the new value there.

Suppose we have a fever, and from time to time we take our temperature.
We could plan to store these values in a list called “temp”, but we don’t
know how many times we will take the measurements.

Then we need two things, a list “temp” and a current index “k”, which
starts at 0. Every time we take a measurement, we do two things:

 k = k + 1;
 temp(k) = current thermometer reading.

MATLAB allows us to create a list that grows as we need it.

Growing List Example

temp(1) = 98.6;
length (temp)
temp

temp(2) = 99.1;
length (temp)
temp

temp(4) = 101.1
length (temp)
temp <- What will be in temp(3)?

Growing List

We will need this growing list example to
follow a random walker who moves from
one numbered location to another.

Each time the walker takes a step, we
want to add the new location to our
growing list.

When we are done, we will have a list of
all the places the walker visited.

The Normal Distribution

The Normal Distribution

We have already seen that MATLAB has a random
number generator function randn() which generates
normal, rather than uniform, random numbers.

To begin with, let’s compute 5 samples of each type:

x1 = rand(1,5):
 0.8147 0.9058 0.1270 0.9134 0.6324

x2 = randn(1,5)
 -1.3077 -0.4336 0.3426 3.5784 2.7694

RAND vs RANDN

We note that the rand() values are between
0 and 1, while the randn() values are more
spread out, and include negative values.

But we see why the word “uniform” is used
for rand if we compute a histogram of
10,000 values from each function:

x1 = rand(1,10000); histogram (x1);
x2 = randn(1,10000); histogram (x2);

histogram(x1) vs histogram(x2)

Sampling Different Kinds of Events

Uniform random numbers are useful when
describing events for which each outcome is
thought to be equally likely. We use randi()
when there are only a limited number of
choices (integer between a and b), and rand()
when there is a range (real number between 0
and 1).

Normal random numbers are useful when there is
a most likely or average outcome, and the
likelihood of other outcomes depends on being
close to the average.

The Normal Distribution

In the mathematical theory of probability, there
is a function, called the normal probability
distribution function or normal pdf, which
indicates the likelihood of any event.

We think of an “event” as a number x.
“mu”, the mean, is the most likely outcome.
“sigma”, the standard deviation, measures how

far away from the mean most outcomes will be.
The most common values are mu=0, sigma=1.

The Normal Distribution

The Normal PDF is then:

normal_pdf.m

x = linspace (-4, +4, 101);
y = normal_pdf (x, 0, 1);
plot (x, y, 'linewidth', 3)
grid on
xlabel ('<-- X -->')
ylabel ('<-- PDF(X) -->')
title ('Normal PDF, \mu=0,\sigma=1', 'Fontsize', 24)
print ('-djpeg', 'normal_pdf.jpg')

function value = normal_pdf (x, mu, sigma)
 value = exp (- (x - mu) .^2 / 2.0 / sigma^2) ...
 / sqrt (2.0 * pi * sigma^2);
 return
end

The Standard Deviation

The quantity “sigma”, or standard
deviation, gives a measure of how
spread out the sample values will be
from a normal distribution.

In particular, it estimates that about
34% of the values will be within one
sigma below the mean, and 34% will be
within one sigma above the mean.

We can test this with an experiment.

The Standard Deviation

For RANDN, Mu = 0, Sigma = 1

x = randn (1, 1000);

i1 = (-1.0 <= x & x <= 0.0);
i2 = (0.0 <= x & x <= 1.0);

n1 = sum (i1); (n1 is 337)
n2 = sum (i2); (n2 is 354)

How would we count the items that are between 1 and 2
standard deviations away, and about how many should
we expect to find?

Random doesn’t mean patternless!

We have discussed the normal pdf because
we are about to look at a random process
for which some behaviors will start to
match the pattern we have seen for
normal random numbers.

This means that even when a process is
random, there may be features of it
which are predictable, or have a pattern,
at least if we think in terms of averages.

A Random Walk in 1 Dimension

Why Random Walks?

A random walk seems like a peculiar thing to study.
However, it models a real physical situation,
“Brownian motion”, noticed by Robert Brown in 1827,
watching grains of pollen suspended in water, that
randomly jiggled.

The puzzle wasn’t fully solved until Albert Einstein
explained this by the collision of the pollen with
individual water molecules whose velocities had a
random variation.

From this, Einstein was able to show that a particle in
Brownian motion would tend to drift away from its
original position with a predictable variation.

Rules for a Random Walk in 1D

Consider a sidewalk of numbered squares; perhaps
numbered x=-N to x=+N;

 We put a walker on some square, perhaps the one
labeled "x=0";

The walker takes a series of steps, each randomly
chosen to the left (x=x-1) or right (x=x+1).

The walk stops at the boundary: (x=-N or x=+N).
We keep track of each step in an array "track".

We need a "growing list" for random walk

In a "random walk", we start at a given
location, and then make random moves
until we reach a boundary or a goal.

If we wish to list the steps involved in the
random walk, we don't know in advance
how many steps are involved.

MATLAB allows us to start a list, and just
keep adding one more element to it, until
we decide we have completed the walk.

Simulate 1 Random Walk
function track = walker_1d (n) <- User specifies N, the size of "sidewalk"

 x = 0;
 k = 1; track(k) = x; % <- Begin the list

 while (abs (x) < n) % <- Stop at boundary.

 i = randi ([1, 2]); % <- Randomly choose 1 or 2.

 if (i == 1)
 x = x - 1;
 else
 x = x + 1;
 end

 k = k + 1; track(k) = x; % <- Add this step to list.

 end

 return
end

Random Walk of 150 Steps

How Was That Plot Drawn?

How did I make the plot of the 1D random
walk?

I know there were 150 steps.
I can draw red barrier lines.
If TRACK(I) = X, I want to draw a blue dot

at location (X, I).
I want to draw a line connecting each

consecutive pair of dots.
Could you do this?

Was 150 Steps Typical?

In the previous example, it took 150 steps for the
random walker to get 10 units away from the start.

But it’s possible to reach that spot by taking just 10
steps. If we try this experiment many times,
someone should actually make it that fast.

A single random experiment gives us an answer, but it
won’t be repeatable. The answer we can look for,
however, is what the typical or average number of
steps might be.

To do that, we can simply try a reasonably large number
of experiments, record the length of each, and
report the average.

Seek Average for N=10 random walk

function average = walker_1d_average (n, m)

%% WALKER_1D_AVERAGE averages the length of a random walk on [-N,+N].
%
% It is assumed the walker starts at 0, and randomly steps left or
% right until reaching -N or +N. The number of steps taken is the
% length of the walk.
%
% This program takes M random walks, and reports the average length.
%
 average = 0.0;

 for i = 1 : m
 track = walker_1d (n);
 average = average + length (track) - 1;
 end

 average = average / m;

 return
end

Estimated Average for N = 10 is about 97

n = 10;
m = 1000;
average = walker_1d_average (n, m)
fprintf (‘Averaging over %d walks\n’, m);
fprintf (‘The sidewalk runs from %d to %d\n’, -n, n);
fprintf (‘The average walk takes %g steps\n’, average);

Averaging over 1000 walks
The sidewalk runs from -10 to 10
The average walk takes 96.9940 steps

How Does the Average Depend on N?

When N = 10, the average number of steps is
about 97, or almost 100, which happens to
be 10^2.

We might hope that this relationship is
correct, and for any value of N, the average
number of steps is N^2.

Before trying to prove an idea like this, it’s
worth trying to see if the evidence
supports it. So we will look at a range of N
values and estimate the walk lengths.

walker_1d_averages.m

m = 1000;
fprintf ('Averages are based on %d trials.\n', m);

fprintf ('\n');
fprintf (' N Average length\n');
fprintf ('\n');

for n = 1 : 20
 average(n) = walker_1d_average (n, m);
 fprintf (' %2d %f\n', n, average(n));
end
x = 1:20;

plot (x, average, 'b.', x, x.^2, 'r-', 'LineWidth', 3, 'MarkerSize', 50);
grid on
xlabel ('<-- Walk Width -->');
ylabel ('<-- Average Steps -->');
title ('Steps taken in random walks', 'Fontsize', 24);
print ('-djpeg', 'walker_1d_averages.jpg');

Average "Escape" Time is N^2

 N Average length

 1 1.000000
 2 3.990000
 3 8.914000
 4 15.970000
 5 25.732000
 6 36.710000
 7 50.714000
 8 64.234000
 9 78.724000
 10 99.902000
 11 119.124000
 12 150.124000
 13 167.358000
 14 188.682000
 15 229.628000
 16 258.818000
 17 289.834000
 18 331.768000
 19 379.750000
 20 399.604000

Watch Many Walkers Over Time

Instead of watching one walker, consider
1,000, all starting at 0. As time passes,
they spread out. Although their steps
are random, the overall pattern is
regular, and can be approximated by the
normal probability function:

Bin That Data!

We don’t want to plot 1000 walker tracks. We won’t
see any pattern.

But suppose instead we make boxes (technically
called bins) labeled -41 through +41, and, at any
time, count how many walkers were occupying that
position.

At the first time, all the walkers are at position 0.
At the second time, about half are at 1, and half at

-1.
After that, we assume that they gradually spread

out, and we may see a pattern in this behavior.

1000 Walkers after 50 Steps

The Normal Distribution

How was that plot drawn?

Each walker can be in any location from -41 to +41.
Each entry of my “bins” array counts how many walkers

are at a specific location.
bins(1) counts the walkers at -41:
 i = (x == -41)
 bins(1) = sum (i)

Once I have the bins set, I call MATLAB’s bar()
plotting command:

 bar (-41:41, bins);

Walkers track Locations

If we have 1 walker, it makes sense to create a list
"track()" that lists the sequence of locations visited.
 At any one time, we know a single number, "x".

If we have 1000 walkers, then we might create 1000
lists called "track1" ... "track1000". These lists will
have different lengths. At any one time, we will
have up to 1000 active walkers to keep track of.

Following a large number of walkers can become a
difficult task to manage!

Locations Count Walkers

Instead of each walker keeping a sort of diary of
where it is, we could have each location report how
many walkers are there.

In the plots we looked at a moment ago, there were
1000 walkers, but 81 locations.

If we set up a list of length 81, we can count the
number of walkers in location -40, -39, -38, ..., -1, 0,
+1, ..., 38, 39, 40.

In other words, the bins we used for plotting could
perhaps also be used for computing.

A Random Walk in 2D

Rules for a Random Walk in 2D

Consider a checkerboard of numbered squares, indexed
by (X,Y). -N <= X,Y <= +N.

 We put a walker on some square, perhaps the one
labeled "(0,0)";

The walker repeatedly chooses the next step at random:
north, south, east or west;

To step North, for instance, we move from (X,Y) to
(X,Y+1).

The walk stops at the boundary, where X or Y reaches
the value -N or +N.

We keep track of each step in arrays (growing lists)
"xtrack" and "ytrack".

walker_2d.m
function [xtrack, ytrack] = walker_2d (n)

 x = 0; y = 0;
 k = 1; xtrack(k) = x; ytrack(k) = y;

 while (abs (x) < n && abs (y) < n)

 i = randi ([1, 4]);

 if (i == 1)
 y = y + 1;
 elseif (i == 2)
 y = y - 1;
 elseif (i == 3)
 x = x + 1;
 else
 x = x - 1;
 end

 k = k + 1; xtrack(k) = x; ytrack(k) = y;

 end

 return
end

A Typical Random Walk in the Square

Step Lengths Pull Away From N^2

Try Random Walks in Diamond

Diamond Walk Lengths Go Below N^2

Try Walks in Circle

Walk Lengths Closely Match N^2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

