
Insight Through
Computing

Intro Math Problem Solving
October 10

Question about Accuracy
Rewrite Square Root Script as a Function
Functions in MATLAB
Road Trip, Restaurant Examples
Writing Functions that Use Lists
Functions with Multiple Outputs
Control and Memory
Projects

Insight Through
Computing

Question

For homework problem hw032, we needed to
check the child's age every year, to see
when the expected weight reached 1,000
pounds. But the weight jumps to
considerably more than 1,000.

“I tried taking tiny steps of 0.0001 year at a
time, and I came very close to hitting 1,000
pounds exactly. But I could not figure out
how to print the weights at the whole
number years...I got no printout at all!”

Insight Through
Computing

10,000 steps of size 0.0001 =/= 1.0
Instead of advancing age 1 year at a time, let’s take tiny steps to catch the jump to 1000 pounds better.
We still want some output, maybe once every year, but not at every tiny step! We see the 1,000 pound jump, but the

weights at whole number ages do not print out!

age = 1.0;
next_age = 1.0;

while (true)

 if (age == next_age) <- Print weight at whole number ages, 1, 2, 3, ...
 fprintf ('Weight at age %d = %g\n', age, weight);
 next_age = next_age + 1;
 end

 weight = 2.20462 * exp (0.175571 * age + 2.197099);
 if (weight >= 1000.0)
 fprintf ('Reached 1,000 pounds at age %g\n', age);
 break;
 end

 age = age + 0.0001; <- Take tiny steps in age, to see more detail.

end

Insight Through
Computing

Real Numbers Aren’t Accurate
>> x = 1;
>> dx = 1/3;
>> x = x + dx;
>> x = x + dx;
>> x = x + dx <- x = 1 + 1/3 + 1/3 + 1/3 so it should equal 2, right?

x = 2.0000 <- Well that looks right!

>> x == 2.0 <- Ask if x equals 2: 1 means yes and 0 means no!

ans = logical 0 <- What's going on?

>> format long <-- Print x to lots of digits! It looks OK, but it's lying!
>> x

x = 2.000000000000000

>> x – 2.0 <- Subtract 2 from x, and expect 0...

ans = -2.220446049250313e-16

So x is more like 1.9999999999999

Insight Through
Computing

Moral: Use Integer Fractions

If we base our age on whole numbers, like i /10000, we can be sure not to have
accuracy problems.

i = 10000; Start at age = 1.←

while (true);
 age = i / 10000;
 weight = 2.20462 * exp (0.175571 * age + 2.197099);
 if (mod (i, 10000) == 0)
 fprintf (‘X = %g, Weight = %g\n’, age, weight);
 end
 if (weight >= 1000.0)
 fprintf (“Exceeded 1000 pounds at age %g\n’, age);
 break;
 end
 i = i + 1; ready for next step.←

end

Insight Through
Computing

MATLAB Functions

In Mathematics, we think of a function as a rule that takes an input value
(or sometimes several input values) and returns an output value; we might
write “y(x) = sin(x)” or “y = sin(x)”.

We’ve seen that MATLAB allows us to use many familiar mathematical

functions, using a language similar to mathematics:
 y = sin(x); y = abs(x); y = max(x1,x2); y = rand();

In the expression “y=sin(x)” we say “x is the input” and “y is the output”.

The most common pattern is 1 input, 1 output, but we also have:
 big = max (x1, x2) 2 inputs, 1 output;←
 [x,y] = ginput(); 0 inputs, 2 outputs;←

 plot (xlist, ylist); 2 inputs, 0 outputs;←

Insight Through
Computing

Computing SQRT with a Script

MATLAB allows the user to create new functions
to carry out computations that arise frequently.

We already know how to write scripts.
Let’s look at the differences between a script and

a function, to see the advantages of that
approach.

We will suppose that we want to compute the
square root of any positive number x, and that
we will employ our simple averaging technique
that we talked about in our very first class.

Insight Through
Computing

sqrt_script.m

% Estimate square root of number.
% The number must be named A.
% The answer will be stored in “RESULT”.

L = A;
for k = 1 : 10
 W = A/L;
 L = (L+W)/2;
end
RESULT = L;

Insight Through
Computing

Using sqrt_script.m

Assuming the file sqrt_script.m is in our
MATLAB directory, we can use it by
setting A, invoking the script, and then
looking at the value in RESULT:

 A= 2017.0;
 sqrt_script;
 fprintf (‘sqrt(%f) is %f\n’, A, RESULT);

Insight Through
Computing

Disadvantages:

Notice that:

A) the input must be stored in the variable A. We can’t ask for the square
root of “B”, and we can’t ask for the square root of an expression like
(C+1)/2 or the number 2017.

B) the output must go into the variable RESULT;

C) running the script will create or modify variables “k” and “L”. If our
program was already using variables of that name, now they’ve been
changed.

D) To understand all the effects of the script, we have to be able to see
every line of the script, since each line is creating or setting variables,
which might affect our calculation.

Insight Through
Computing

Side Effects of sqrt_script

k = 99;
W = 17.0;
A= 2017.0;
sqrt_script;
fprintf (‘sqrt(%f) is %f\n’, A, RESULT);

fprintf (‘Is k still 99? k = %d\n’, k);
fprintf (‘Is W still 17? W = %g\n, W);

Insight Through
Computing

sqrt_function.m

function y = sqrt_function (x) ← The function declaration
%
%% SQRT_FUNCTION estimates the square root of number.
%
% X, input, is the number whose square root is desired.
% Y, output, is the estimated square root of X.
%
 L = x;
 for k = 1 : 10
 W = x/L;
 L = (L+W)/2;
 end
 y = L;

 return
end

Insight Through
Computing

NO Side Effects of sqrt_function

k = 99;
W = 17.0;
A= 2017.0;
script_sqrt;
fprintf (‘sqrt(%f) is %f\n’, A, RESULT);

fprintf (‘Is k still 99? k = %d\n’, k);
fprintf (‘Is W still 17? W = %g\n, W);

Insight Through
Computing

What has changed?

function RESULT = sqrt_function (A) Declaration←

 L = A;
 for k = 1 : 10
 W = A/L;
 L = (L+W)/2;
 end
 RESULT = L;

 return Exit←
end

Insight Through
Computing

What's the difference?

A function promises to perform a specific
calculation.

The header specifies input and output
variables, but these names are just
"pseudonyms"; the user can choose other
names.

All other activities of the function are
hidden, and have no effect on the user
who calls it.

Insight Through
Computing

The Declaration Statement

function RESULT = sqrt_function (A)
The function declaration, or header

statement says three things:
1) the name of the function:

“sqrt_function”;
2) the “temporary” names of input: “A”;
3) the “temporary” names of output:

“RESULT”.

Insight Through
Computing

Names Don’t Matter Now!

Instead of using variables with particular names, the function header just looks for
input in the input parentheses. Inside the function, the input will be called “A”
and the output “RESULT”, but you are free to use any names you want.

you: side = sqrt_function (area)
 || ||
header: RESULT = sqrt_function (A)

you: value = sqrt_function (2017)
 || ||
header: RESULT = sqrt_function (A)

you: sqrt_function (2017) RESULT will print, but is not stored.←

 || ||
header: RESULT = sqrt_function (A)

Insight Through
Computing

Some Rules for Functions

The name of the function should match the name of the file it is stored in.
 function a = rectangle_area (width, height)
should be stored as “rectangle_area.m”

A function can have 0, 1 or several inputs. A zero-input function has empty
parentheses:

 x = rand ();

A function can have 0, 1 or several output values. It there is more than one output
value, square brackets must be used:

 function [s, c] = trig_functions (angle)

In MATLAB, some functions are specified in such a way that they can be called with 0,
1, or several arguments. Note, for example, the rand() and plot() functions:

 x = rand; x = rand(); x = rand(1); x = rand(1,5);
 plot (xlist, ylist); plot (xlist, ylist, 'r-'); plot (xlist, ylist, 'LineWidth', 2);

Insight Through
Computing

A Function Hides its Work

The function cannot “see” any values in the user
program, except for the input values. It gives
those values temporary names.

The function may set up more temporary variables as
it computes.

When the function is done, the output value is
returned to the user, and all the function’s variable
names and data “disappear”.

We say that a function "doesn't have side effects":
interaction is limited to the inputs and outputs only.

Insight Through
Computing

Define and Use a New Function

The cost of a road trip depends on:
* your car’s mileage (miles per gallon);
* distance traveled (miles);
* cost of a gallon of gas ($ per gallon).

Create a function “road_trip_cost()” that
calculates the cost in $.

Insight Through
Computing

road_trip_cost.m

function cost = road_trip_cost (mpg, miles, gas_price)

 gallons = miles / mpg;
 cost = gallons * gas_price;

 return
end

Note that the variable "gallons" is created inside this
function, and disappears when the function is done.

Insight Through
Computing

Use the function:

header:
 function cost = road_trip_cost (mpg, miles, gas_price)

mpg = 25.5;
miles = 1230;
gas_price = 2.35;
cost = road_trip_cost (mpg, miles, gas_price); same names←

rate = 25.5;
distance = 1230;
charge = 2.35;
price = road_trip_cost (rate, distance, charge); any old names←

bucks = road_trip_cost (25.5, 1230.0, 2.35); numbers←

Insight Through
Computing

A Restaurant Meal Cost Function

Your restaurant order has a certain cost.
Blacksburg adds 11% tax to the meal cost.
You want to tip, at the rate of 10%, 15% or

20%, of the meal plus tax, depending on
poor, average, or good service.

You want to round up your cost to the dollar.
We have one input, the basic meal cost, and

three outputs, the amount we pay based on
the service we got.

Insight Through
Computing

Price of Restaurant Meal

function [low_tab, medium_tab, high_tab] =restaurant_tab (meal)

 tax_rate = 0.11; Blacksburg!←
 tax = meal * tax_rate;
 charge = meal + tax;

 low_tip = charge * 0.10;
 medium_tip = charge * 0.15;
 high_tip = charge * 0.20;

 low_tab = ceil (charge + low_tip); <- The ceil() function rounds up.
 medium_tab = ceil (charge + medium_tip);
 high_tab = ceil (charge + high_tip);

 return
end

Insight Through
Computing

Multiple Outputs

If a function has multiple outputs, you supply corresponding variables in a
list. If you shorten the list, only the first few variables will be set.

 meal = 120.0;
 [lo, med, hi] = restaurant_tab (meal);
 [low, medium, high] = restaurant_tab (meal)
 [l, m] = restaurant_tab (120.0)
 [low_tip] = restaurant_tab (meal)
 cheapo = restaurant_tab (meal)
 restaurant_tab (meal) only prints the first output.←

You CANNOT ask for only the medium tip, the second output variable! To
get the second output, you must get the first as well. To get the third,
you must get the first and second.

Insight Through
Computing

The Theron Formula

Our formula for a child’s weight at age n:

 lb = 2.20462 e^(0.175571 * n + 2.197099)

This is easy to turn into a function:

function lb = theron (n)
 lb = 2.20462 * exp(0.175571 * n + 2.197099);
 return
end

Insight Through
Computing

Plot A User Function

Can we plot our Theron function, just as
we would plot the sine function?

n = linspace (0.0, 24.0, 101);
y = theron (n);

Insight Through
Computing

Plot theTheron Weight Formula

Insight Through
Computing

Can Input Be a Vector?

For our Theron plot, the input “n” was a list of 101 values.
We were actually lucky that worked!

MATLAB can do arithmetic with a list in a way that is useful to us, as
long as we use "dot operators" when needed:

 List .* List
 Anything ./ List
 List .^ Anything
 Anything .^ List

Even though "n" is a list, the Theron formula is "safe":
 lb = 2.20462 * exp (0.175571 * n + 2.197099);

Insight Through
Computing

Plot Another Formula

Consider this formula for the weight of a trout, in kilograms,
at age Y in years:

 kg = 25.1 (1 - e^(-1.19 y))^3

We want to write a function "trout" that will accept the age Y,
and return the weight KG. It will work fine.

Then, we decide we want to plot KG as a function of Y, which
means we are going to give our "trout" function a list of
values "Y", rather than just a single value.

What could go wrong?

Insight Through
Computing

trout.m

function kg = trout (y)

 kg = 25.1 * (1.0 - exp (- 1.19 * y)) ^ 3;

 return
end

Why will this function have trouble if we try to pass
in a list of values in Y, rather than just one value?

Insight Through
Computing

Plot() uses Lists, Lists use Dot Operators

y = linspace (0, 6, 101);
kg = trout (y);
Error using ^
One argument must be a square matrix and the other must
be a scalar. Use POWER (.^) for elementwise power.

Error in trout (line 2)
 kg = 25.1 * (1.0 - exp (- 1.19 * y)) ^ 3;

Since y is a list, we need to use “.^” instead of “^”

Insight Through
Computing

After we fix the function...

Insight Through
Computing

What if input is a vector?

A MATLAB function will allow input variables
to be lists. If the input can be a list, then
the calculations must be careful to use the
"dot operators" as appropriate.

This is the most common thing to "break"
when a function gets a list as input.

There are some other issues that can come
up, and we will run into them as we go along.

Insight Through
Computing

Will sqrt_function work with List input?

function RESULT = sqrt_function (A)
%
%% SQRT_FUNCTION2 estimates the square root of number.
%
% A, input, is the number whose square root is desired.
%
% RESULT, output, is the estimated square root of X.
%
 L = A;
 for k = 1 : 10
 W = A / L;
 L = (L + W) / 2;
 end
 RESULT = L;

 return
end

Insight Through
Computing

No Error Message = No Error?

Suppose we wanted to plot the data returned by
"sqrt_function()"?

If we evaluate sqrt_function(x), we don't get an error
message. But if we compare against MATLAB's sqrt()
function, we see something is wrong.

What's worse than an error message? A silent error!

x = linspace (0.0, 10.0, 201);
y1 = sqrt_function (x);
y2 = sqrt (x);
plot (x, y1, 'r', x, y2, 'b');

Insight Through
Computing

The Vector Input Breaks Our Function!

Insight Through
Computing

A "tiny" error, a missing "dot"

function RESULT = sqrt_function2 (A)

 L = A;
 for k = 1 : 10
 W = A ./ L; <- A and L are lists. Use the DOT division!
 L = (L + W) / 2;
 end
 RESULT = L;

 return
end

Insight Through
Computing

Input that is also Output...

The functions we have seen so far take input, but
return a completely new set of variables.

Sometimes it is convenient to have a variable go
“through” a function, that is, be both an input
and an output quantity.

One example checks numbers XLO and XHI, to
ensure that XLO <= XHI and both numbers are
in the range [0,1].

Insight Through
Computing

xrange.m

function [xlo, xhi] = xrange (xlo, xhi)

 if (xhi < xlo) <- Make sure XLO <= XHI
 t = xlo; <- You swap two variable values by using a helper variable "t".
 xlo = xhi;
 xhi = t;
 end

 xlo = max (xlo, 0.0); <- Make sure XLO and XHI are in [0,1].
 xlo = min (xlo, 1.0);
 xhi = max (xhi, 0.0);
 xhi = min (xhi, 1.0);

 return
end

Notice that the inputs are modified, and become the outputs.

Insight Through
Computing

Real Roots of a Quadratic Equation

Task: Given the equation
 a x^2 + b x + c = 0
return the real roots, if any.

The discriminant is:
 D = b^2 – 4 ac

If D < 0, no real roots
 D = 0, 1 real root:
 r = -b/(2a)
 D > 0, 2 real roots:
 r1 = (-b+sqrt(D))/(2a),
 r2 = (-b-sqrt(D))/(2a)

Insight Through
Computing

real_roots.m

function r = real_roots (a, b, c)

 d = b^2 – 4 * a * c;

 if (d < 0.0)
 r = [];
 elseif (d == 0)
 r = - b / (2 * a);
 else
 r = [(- b + sqrt(d)) / (2 * a), ...
 (- b – sqrt(d)) / (2 * a)];
 end

 return
end

Insight Through
Computing

Using real_roots.m

a = 1.0
b = 4.0;
c = 3.0;

r = real_roots (a, b, c);
n = length (r); <- Count how many results we got back.

if (n == 0)
 fprintf ('No real roots.\n');
elseif (n == 1)
 fprintf ('One root: %g\n', r(1));
else
 fprintf (' Roots: %g and %g\n', r(1), r(2));
end

Insight Through
Computing

Control and Memory

Suppose a script contains a line that uses a function.
MATLAB reads the script line by line, and we say the
script is "in control". When the function call is
reached, the script "pauses", and control passes to the
function, in order to compute the necessary value.

MATLAB copies input values from the script to the
function. The function may set up other variables, but
these are all local, and hidden from the script.

When the function has completed its computation, the
output values are returned to the script, which then
resumes control.

Insight Through
Computing

 a = 1

 b = f(2)

 c = 3

 function y = f(x)
 z = 2*x
 y = z+1

Script function

Let’s execute the script line-by-line
and see what happens during the
call to f.

Insight Through
Computing

 a = 1

 b = f(2)

 c = 3

 function y = f(x)
 z = 2*x
 y = z+1

Script function

x, y, z serve as local
variables during the
process. x is referred
to as an input parameter.

Insight Through
Computing

 a = 1

 b = f(2)

 c = 3

 function y = f(x)
 z = 2*x
 y = z+1

 1 a: Green dot tells
us what the
computer is currently
doing.

Insight Through
Computing

 a = 1

 b = f(2)

 c = 3

 function y = f(x)
 z = 2*x
 y = z+1

 1 a: 2 x:

Control passes to the function.

The
input
value is
assigned
to x

Insight Through
Computing

 a = 1

 b = f()

 c = 3

 function y = f()
 z = 2*x
 y = z+1

 1 a: 2 x:

Control passes to the function.

The
input
value is
assigned
to x

2
x

Insight Through
Computing

 a = 1

 b = f(2)

 c = 3

 function y = f(x)
 z = 2*x
 y = z+1

 1 a: 2 x:

4 z:

Insight Through
Computing

 a = 1

 b = f(2)

 c = 3

 function y = f(x)
 z = 2*x
 y = z+1

 1 a: 2 x:

 4z:

 5 y:

The
last
command
is
executed

Insight Through
Computing

 a = 1

 b = f(2)

 c = 3

 function y = f(x)
 z = 2*x
 y = z+1

 5 b:

 1 a:

Control passes back to the calling program

After the
the value is
passed back,
the call to the
function ends and
the local variables
disappear.

Insight Through
Computing

 a = 1

 b = f(2)

 c = 3

 function y = f(x)
 z = 2*x
 y = z+1

 5 b:

 1 a:

 3 c:

Insight Through
Computing

Repeat to Stress the
distinction between

local variables
and

variables in the calling program.

Insight Through
Computing

 z = 1

 x = f(2)

 y = 3

 function y = f(x)
 z = 2*x
 y = z+1

Script function

Let’s execute the script line-by-line
and see what happens during the
call to f.

Insight Through
Computing

 z = 1

 x = f(2)

 y = 3

 function y = f(x)
 z = 2*x
 y = z+1

 1 z: Green dot tells
us what the
computer does next.

Insight Through
Computing

 z = 1

 x = f(2)

 y = 3

 function y = f(x)
 z = 2*x
 y = z+1

 1 z: 2 x:

Control passes to the function.

The
input
value is
assigned
to x

Insight Through
Computing

 z = 1

 x = f(2)

 y = 3

 function y = f(x)
 z = 2*x
 y = z+1

 1 z: 2 x:

4 z:

Insight Through
Computing

 z = 1

 x = f(2)

 y = 3

 function y = f(x)
 z = 2*x
 y = z+1

 1 z: 2 x:

4 z:

This does NOT change

Because
this
is the
current
context

Insight Through
Computing

 z = 1

 x = f(2)

 y = 3

 function y = f(x)
 z = 2*x
 y = z+1

 1 z: 2 x:

 4z:

 5 y:

The
last
command
is
executed

Insight Through
Computing

 z = 1

 x = f(2)

 y = 3

 function y = f(x)
 z = 2*x
 y = z+1

 5 x:

 1 z:

Control passes back to the calling program

After the
the value is
passed back,
the function
“shuts down”

Insight Through
Computing

 z = 1

 x = f(2)

 y = 3

 function y = f(x)
 z = 2*x
 y = z+1

 5 x:

 1 z:

 3 y:

Insight Through
Computing

 x = 1;

 x = f(x+1);

 y = x+1

 function y = f(x)
 x = x+1;
 y = x+1;

Question Time

A. 1 B. 2 C. 3 D. 4 E. 5

What is the output?

Insight Through
Computing

 x = 1;

 x = f(x+1);

 y = x+1

 function y = f(x)
 x = x+1;
 y = x+1;

Question Time

A. 1 B. 2 C. 3 D. 4 E. 5

What is the output?

Insight Through
Computing

Function Summary

The first line of a function file defines the
output, the function name, and the input.

The function is stored in a file whose name
matches the function name.

A script can call the function, as long as the script
and function file are in the same directory.

The script must supply values for all required
inputs, but the values don't have to have the
same names as used in the function, and they
can even be numbers or expressions.

Insight Through
Computing

Projects

You know that 15% of the course grade involves a final
project.

One version of the project will simply be a long assignment
of problems like the homework you have been doing, which
I will hand out before Thanksgiving break.

You may instead propose a topic of interest to you. This
would involve doing some reading, writing some programs
and a report, and perhaps a short demo in class.

I have placed some documents in the new “projects” folder
on Canvas. See if a topic interests you; then we can agree
on a list of tasks for you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

